METR 130: Take-Home Assignment for Exam #1 (Spring 2011) Due Date: February 24, 2011

Question 1: For the following typical midday conditions ...

- A value for incident solar radiative flux at surface of 700 W/m².
- A measured skin temperature from a downward directed radiometer of 25°C.
- Swinbank's equation for calculating incident downward longwave radiative flux at surface.
- A measured two-meter air temperature and relative humidity of 20°C and 70%, respectively.
- A measured ten-meter wind speed of 5 mph.
- $C_H = C_Q = k^2/ln^2(z_a/z_0)$, where k = 0.4, z_a is the height of the wind measurement, and z_0 is the roughness length, which we will set to 0.1 m for this exercise.
- A soil texture that is 30% sand, 30% clay and 40% silt.
- A surface soil moisture content that is 20% above wilting point.

Calculate the following:

- 1. Potential evaporation (kg_{vap}/m^2 -sec and mm/day)
- 2. Actual evaporation $(kg_{vap}/m^2-sec \text{ and } mm/day)$
- 3. Latent heat flux (W/m^2)
- 4. Sensible heat flux (W/m^2)
- 5. Bowen Ratio
- 6. Ratio of Ground Heat Flux to Net Radiation

How do your calculated values of these coincide with values shown in graphs and ratios given in lecture and/or in the text? Roughly consistent? A bit larger? A bit smaller?

Question 2: From reading through Chen and Dudhia (2001), briefly bulletpoint some ways (two or three perhaps) with brief explanation in which the following land surfaces are accounted for their model?

- 1. Vegetation cover
- 2. Snow coverage