## **Assignment 1 Solutions**

METR 130 Spring Semester 2011

## Problem 1

### (Calculation of Neutral ABL depth, h<sub>n</sub>)

- Given relationship h<sub>n</sub> = cu<sub>\*</sub>/f
- c = 0.6, u<sub>\*</sub> is friction velocity and f is Coriolis parameter
- $u_*$  determined from  $C_g = u_*^2/G^2 = f(Ro)$
- Surface Rossby Number,  $Ro = G/fz_0$
- G is geostrophic wind speed, z<sub>0</sub> is surface roughness length.
- Set typical values
  - G = 10 m/s (typical for 850 mb)
  - $f = 10^{-4} s^{-1}$  (value for 45 degrees latitude)
  - $z_0 = 0.1$  meters (short vegetation on open land, general value for land areas)
  - Using these leads to  $Ro = 10^6$
  - $C_g$  (from class handout)  $\approx 0.0016$
  - With G = 10 m/s this leads from above to  $u_* = 0.4$  m/s
- Using this  $u_*$  with  $f = 10^{-4}$  and c = 0.6 gives ...

 $h_n = (0.6)(0.4 \text{ m/s})/(10^{-4} \text{ s}^{-1}) = 2400 \text{ m}$ 

## **Problem 2**

# (Determining ABL depths from routine sounding data using methods in Seidel et al. 2010)

Show for typical, "well behaved" sounding: Miramar AFB (San Diego) on Feb. 9, 2011.

#### Miramar AFB Sounding (San Diego, CA) Feb 9 2011, 00Z



Virtual Potential Temperature (K)

#### **METHOD 1: PARCEL METHOD**

Used for determining daytime ABL depth (CML /CBL) since it requires unstable air @ sfc



Used primarily for determining depth of ABL capped by an elevated stable layer (either CML/CBL or a near-neutral ABL).



Miramar AFB Sounding (San Diego, CA) Feb 9 2011, 00Z

Used primarily for determining depth of ABL capped by an elevated stable layer (either CML/CBL or a near-neutral ABL).



Used primarily for determining depth of ABL capped by an elevated stable layer (either CML/CBL or a near-neutral ABL).



Used primarily for determining depth of ABL capped by an elevated stable layer (either CML/CBL or a near-neutral ABL).



Miramar AFB Sounding (San Diego, CA) Feb 9 2011, 00Z

#### **METHOD 3: BASE OF ELEVATED TEMPERATURE INVERSION**

Used for determining depth of ABL capped by an elevated stable layer (either CML/CBL or a near-neutral ABL).



#### **METHOD 4: TOP OF SURFACE BASED TEMPERATURE INVERSION**

Used for determining depth of nighttime ABL depth (stable ABL, aka "SBL")



Miramar AFB Sounding (San Diego, CA)

**Temperature (deg C)** 

## **Summary Table**

| Sounding | Method 1<br>(Parcel<br>Method) | Method 2<br>(Max Theta<br>Gradient) | Method 3<br>(Base of<br>Elevated T-inv) | Method 4<br>(Top of<br>Surface-based<br>T-inv) |
|----------|--------------------------------|-------------------------------------|-----------------------------------------|------------------------------------------------|
| 00Z      | ~ 900 m                        | 1486 m                              | 1374 m                                  | -                                              |
| 12Z      | -                              | -                                   | -                                       | 81 m                                           |
|          |                                |                                     | •                                       |                                                |

Take average of Methods 1, 2 and 3 for daytime ABL depth = 1250 m 25<sup>th</sup> Percentile (Seidel) = 750 m 75<sup>th</sup> Percentile (Seidel) = 2500 m Midpoint (Seidel) = 1625 m Average of San Diego & Seidel = AVERAGE(1250, 1625) = 1440 m

**Problem 4**: Value for c that better describes ABL capped by an elevated stable layer ... Let h = 1440 m and plug into neutral ABL eq. w/ u<sub>\*</sub> and f from Problem 1 ...  $c = hf/u_* = (1440 m)(10^{-4} s^{-1})/(0.4 m/s) = 0.36$