Assignment 1 Solutions

METR 130

Spring Semester 2011

Problem 1

(Calculation of Neutral ABL depth, h_{n})

- Given relationship $h_{n}=\mathrm{cu}_{*} / \mathrm{f}$
- $c=0.6, u_{*}$ is friction velocity and f is Coriolis parameter
- u_{*} determined from $\mathrm{C}_{\mathrm{g}}=\mathrm{u}_{*}{ }^{2} / \mathrm{G}^{2}=\mathrm{f}(\mathrm{Ro})$
- Surface Rossby Number, Ro = G/fzo
- G is geostrophic wind speed, z_{0} is surface roughness length.
- Set typical values
- G=10 m/s (typical for 850 mb)
- $f=10^{-4} \mathrm{~s}^{-1}$ (value for 45 degrees latitude)
$-z_{0}=0.1$ meters (short vegetation on open land, general value for land areas)
- Using these leads to Ro $=10^{6}$
$-\mathrm{C}_{\mathrm{g}}($ from class handout $) \approx 0.0016$
- With $G=10 \mathrm{~m} / \mathrm{s}$ this leads from above to $\mathrm{u}_{*}=0.4 \mathrm{~m} / \mathrm{s}$
- Using this u_{*} with $f=10^{-4}$ and $c=0.6$ gives ...

$$
h_{n}=(0.6)(0.4 \mathrm{~m} / \mathrm{s}) /\left(10^{-4} \mathrm{~s}^{-1}\right)=2400 \mathrm{~m}
$$

Problem 2
 (Determining ABL depths from routine sounding data using methods in Seidel et al. 2010)

Show for typical, "well behaved" sounding: Miramar AFB (San Diego) on Feb. 9, 2011.

Miramar AFB Sounding (San Diego, CA)

Feb 9 2011, $00 Z$

METHOD 1: PARCEL METHOD

Used for determining daytime ABL depth (CML /CBL) since it requires unstable air @ sfc

Miramar AFB Sounding (San Diego, CA)
Feb 9 2011, $00 Z$

METHOD 2: MAXIMUM VERTICAL GRADIENT OF POTENTIAL TEMPERATURE

Used primarily for determining depth of ABL capped by an elevated stable layer (either CML/CBL or a near-neutral $A B L$).

Miramar AFB Sounding (San Diego, CA)
Feb 9 2011, $00 Z$

METHOD 2: MAXIMUM VERTICAL GRADIENT OF POTENTIAL TEMPERATURE

Used primarily for determining depth of ABL capped by an elevated stable layer (either CML/CBL or a near-neutral $A B L$).

Miramar AFB Sounding (San Diego, CA)
Feb 9 2011, $00 Z$

METHOD 2: MAXIMUM VERTICAL GRADIENT OF POTENTIAL TEMPERATURE

Used primarily for determining depth of ABL capped by an elevated stable layer (either CML/CBL or a near-neutral $A B L$).

Miramar AFB Sounding (San Diego, CA)
Feb 9 2011, $00 Z$

METHOD 2: MAXIMUM VERTICAL GRADIENT OF POTENTIAL TEMPERATURE

Used primarily for determining depth of ABL capped by an elevated stable layer (either CML/CBL or a near-neutral $A B L$).

Miramar AFB Sounding (San Diego, CA)
Feb 9 2011, $00 Z$

METHOD 3: BASE OF ELEVATED TEMPERATURE INVERSION

Used for determining depth of ABL capped by an elevated stable layer (either CML/CBL or a near-neutral $A B L$).

Miramar AFB Sounding (San Diego, CA)
Feb 9 2011, $00 Z$

METHOD 4: TOP OF SURFACE BASED TEMPERATURE INVERSION

Used for determining depth of nighttime ABL depth (stable ABL, aka "SBL")

Miramar AFB Sounding (San Diego, CA)
Feb 9 2011, $12 Z$

Summary Table

Sounding	Method 1 (Parcel Method)	Method 2 (Max Theta Gradient)	Method 3 (Base of Elevated T-inv)	Method 4 (Top of Surface-based T-inv)
$\mathbf{0 0 Z}$	$\sim 900 \mathrm{~m}$	1486 m	1374 m	-
$\mathbf{1 2 Z}$	-	-	-	81 m

Take average of Methods 1, 2 and 3 for daytime ABL depth $=1250 \mathrm{~m}$ $25^{\text {th }}$ Percentile (Seidel) $=750 \mathrm{~m}$
$75^{\text {th }}$ Percentile (Seidel) $=2500 \mathrm{~m} \rightleftharpoons$ Problem 3 (with appropriate discussion)
Midpoint (Seidel) $=1625 \mathrm{~m}$
Average of San Diego \& Seidel $=$ AVERAGE $(1250,1625)=1440 \mathrm{~m}$

Problem 4: Value for c that better describes ABL capped by an elevated stable layer .. Let $h=1440 \mathrm{~m}$ and plug into neutral ABL eq. $\mathrm{w} / \mathrm{u}_{*}$ and f from Problem 1 ...
$\mathrm{c}=\mathrm{hf} / \mathrm{u}_{*}=(1440 \mathrm{~m})\left(10^{-4} \mathrm{~s}^{-1}\right) /(0.4 \mathrm{~m} / \mathrm{s})=0.36$

