

 www.cypress.com Document No. 001-86439 Rev. *B 1

AN86439

PSoC® 4 – Using GPIO Pins

Author: Rajiv Badiger
Associated Project: Yes

Associated Part Family: PSoC 4
Software Version: PSoC Creator™ 3.2 or higher

Related Application Notes: For a complete list of the application notes, click here.
If you have a question, or need help with this application note, contact the author at
rjvb@cypress.com

AN86439 explains how to use PSoC
®
 4 GPIO pins effectively with various use case examples to take full advantage of

their features. Major topics include GPIO basics, configuration options, mixed-signal use, interrupts, and low-power

behavior.

Contents

1 Introduction ... 2
2 PSoC Resources .. 2
3 PSoC Creator ... 3
4 Example Projects .. 4
5 PSoC Creator Help ... 5
6 Technical Support ... 5
7 GPIO Pin Basics ... 6

7.1 Physical Structure of GPIO Pins 6
7.2 Pin Routing .. 8
7.3 Startup and Low-Power Behavior 15
7.4 GPIO Interrupt ... 16

8 Overvoltage-Tolerant (OVT) Pins 17
9 GPIO Pins in PSoC Creator 18

9.1 Pins Component Symbols 18
9.2 Pins Component Customizer 18
9.3 Pins Component Interrupts 20
9.4 Manual Pin Assignments 23
9.5 PSoC Creator APIs .. 23
9.6 Debug Logic on GPIO Pins 24
9.7 Add Multiple GPIO Pins as a Logical Port...... 24
9.8 Represent Off-Chip Components 26

10 GPIO Tips and Tricks ... 28
10.1 Toggle an LED ... 29
10.2 Read an Input and Write to an Output 30
10.3 Drive an Output from a Digital Logic Gate 30
10.4 Set the GPIO Input/Output Synchronization .. 31
10.5 Toggle GPIOs Faster with Data Registers 36
10.6 Configure GPIO Output Enable Logic 39
10.7 Pin Interrupt ... 41
10.8 Configure GPIO Interrupt Settings with
Firmware .. 42

10.9 Using Both Analog and Digital on a GPIO 44
10.10 Gang Pins for More Drive/Sink Current 46
10.11 Control Register Handling in Deep-Sleep .. 49

11 Related Application Notes 51
12 Summary .. 52
13 About the Authors ... 52
A Appendix A: PSoC 4 GPIO Compared to PSoC 1,
PSoC 3, and PSoC 5LP GPIO .. 53
B Appendix B: PSoC 4 Development Boards 53
Document History .. 54
Worldwide Sales and Design Support 55
Products .. 55
PSoC

®
 Solutions ... 55

Cypress Developer Community....................................... 55
Technical Support ... 55

mailto:rjvb@cypress.com

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 2

1 Introduction

PSoC has powerful and flexible general-purpose I/O (GPIO) pins that provide more features than traditional MCUs. In
PSoC, the GPIOs are controlled not only by configuring the registers in the firmware, similar to traditional MCUs, but
are also driven by custom digital logic and analog block signals. This application note explains the basics of PSoC 4
GPIO pins and demonstrates techniques for using them effectively for different functions.

This application note assumes that you are familiar with PSoC Creator™ and the PSoC 4 architecture. If you are new
to PSoC 4, read AN79953 – Getting Started with PSoC 4. If you are new to PSoC Creator, visit the PSoC Creator
home page. For information on device packages or GPIO specifications, see the PSoC 4 datasheet. If you already
know the PSoC 4 device and the PSoC Creator, you can jump to the section GPIO Tips and Tricks.

2 PSoC Resources

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design,
and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources,
see KBA86521, How to Design with PSoC 3, PSoC 4, and PSoC 5LP. The following is an abbreviated list for PSoC
4:

 Overview: PSoC Portfolio, PSoC Roadmap

 Product Selectors: PSoC 1, PSoC 3,
PSoC 4, or PSoC 5LP. In addition, PSoC
Creator includes a device selection tool.

 Datasheets: Describe and provide electrical
specifications for the PSoC 4000,
PSoC 4100, and PSoC 4200, PSoC 4xx7
BLE, PSoC 4200-M device families

 CapSense Design Guide: Learn how to
design capacitive touch-sensing applications
with the PSoC 4 family of devices.

 Application Notes and Code Examples:
Cover a broad range of topics, from basic to
advanced level. Many of the application
notes include code examples. PSoC Creator
provides additional code examples – see
Code Examples.

 Technical Reference Manuals (TRM):
Provide detailed descriptions of the
architecture and registers in each PSoC 4
device family.

 Development Kits:

 CY8CKIT-040, CY8CKIT-042, CY8CKIT-
042-BLE, and CY8CKIT-044 PSoC 4
Pioneer Kits are easy-to-use and
inexpensive development platforms.
These kits include connectors for
Arduino™ compatible shields and
Digilent® Pmod™ daughter cards.

 CY8CKIT-049 is a very low-cost
prototyping platform for sampling PSoC 4
devices.

 CY8CKIT-001 is a common development
platform for all PSoC family devices.

 The MiniProg3 device provides an interface
for flash programming and debug.

http://www.cypress.com/?rID=78695
http://www.cypress.com/go/creator
http://www.cypress.com/go/creator
http://www.cypress.com/go/creator
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=107&id=4749&id=5284&applicationID=0&l=0
http://www.cypress.com/
http://www.cypress.com/?id=4&rID=77024&source=an79953
http://www.cypress.com/psoc
http://www.cypress.com/?rID=86788&source=an79953
http://www.cypress.com/?id=1573&source=an79953
http://www.cypress.com/?id=5041&source=an79953
http://www.cypress.com/?id=4976&source=an79953
http://www.cypress.com/?id=5044&source=an79953
http://www.cypress.com/?rID=94034&source=an79953
http://www.cypress.com/?rID=78805&source=an79953
http://www.cypress.com/?rID=78632&source=an79953
http://www.cypress.com/?rID=99492
http://www.cypress.com/?rID=99492
http://www.cypress.com/?rID=99492
http://www.cypress.com/?rID=108039
http://www.cypress.com/?rID=78578&source=an79953
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=76&id=4749
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=117&id=4749&applicationID=0&l=0
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=110&id=4749&applicationID=0&l=0
http://www.cypress.com/?rID=94456&source=an79953
http://www.cypress.com/go/cy8ckit-042
http://www.cypress.com/go/cy8ckit-042-ble
http://www.cypress.com/go/cy8ckit-042-ble
http://www.cypress.com/cy8ckit-044
http://www.cypress.com/?rID=92146&source=an79953
http://www.cypress.com/go/cy8ckit-001
http://www.cypress.com/go/cy8ckit-002

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 3

3 PSoC Creator

PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware
design of systems based on PSoC 3, PSoC 4, and PSoC 5LP. See Figure 1 – with PSoC Creator, you can:

1. Drag and drop Components to build your hardware
system design in the main design workspace

2. Codesign your application firmware with the PSoC
hardware

3. Configure Components using configuration tools

4. Explore the library of 100+ Components

5. Review Component datasheets

Figure 1. PSoC Creator Features

http://www.cypress.com/psoccreator/?source=an79953

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 4

4 Example Projects

PSoC Creator includes a large number of example projects. These
projects are available from the PSoC Creator Start Page, as Figure 2
shows.

Example projects can speed up your design process by starting you off
with a complete design, instead of a blank page. The example projects
also show how you can use PSoC Creator Components for various
applications. Example projects and datasheets are included, as Figure 3
shows.

In the Find Example Project dialog shown in Figure 3, you have several
options:

 Filter for examples based on architecture or device family
(such as PSoC 3, PSoC 4, or PSoC 5LP); category; or
keyword

 Select from the menu of examples offered based on the
Filter Options

 Review the datasheet for the selection (on the
Documentation tab)

 Review the code example for the selection. You can copy
and paste code from this window to your project, which can
help speed up code development, or

 Create a new project (and a new workspace, if needed)
based on the selection. This can speed up your design
process by starting you off with a complete, basic design.
You can then adapt that design to your application.

Figure 2. Code Examples in PSoC
Creator

Figure 3. Example Projects with Sample Code

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 5

5 PSoC Creator Help

Visit the PSoC Creator home page to download the latest version of PSoC Creator. Then, launch PSoC Creator and navigate
to the following items:

 Quick Start Guide: Choose Help > Documentation > Quick Start Guide. This guide gives you the basics for
developing PSoC Creator projects.

 Simple Component example projects: Choose File > Open > Example projects. These example projects
demonstrate how to configure and use PSoC Creator Components.

 Starter designs: Choose File > New > Project > PSoC 4 Starter Designs. These starter designs demonstrate
the unique features of PSoC 4.

 System Reference Guide: Choose Help > System Reference > System Reference Guide. This guide lists
and describes the system functions provided by PSoC Creator.

 Component datasheets: Right-click a component and select ―Open Datasheet.‖ Visit the PSoC 4 Component
Datasheets page for a list of all PSoC 4 Component datasheets.

 Document Manager: PSoC Creator provides a document manager to help you to easily find and review
document resources. To open the document manager, choose the menu item Help > Document Manager.

6 Technical Support

If you have any questions, our technical support team is happy to assist you. You can create a support request on the Cypress
Technical Support page.

If you are in the United States, you can talk to our technical support team by calling our toll-free number: +1-800-541-4736.
Select option 8 at the prompt.

You can also use the following support resources if you need quick assistance.

 Self-help

 Local Sales Office Locations

http://www.cypress.com/?id=2494&source=an79953
http://www.cypress.com/?id=4749&rtID=377
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=377&id=4749&source=an79953
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=377&id=4749&source=an79953
https://secure.cypress.com/myaccount/?id=25&techSupport=1&source=an79953
https://secure.cypress.com/myaccount/?id=25&techSupport=1&source=an79953
http://www.cypress.com/support
http://www.cypress.com/?id=1062

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 6

7 GPIO Pin Basics

The PSoC 4 GPIO pins offer the following features:

 Analog and digital input and output capability

 LCD segment drive support (not available in PSoC 4000)

 CapSense® support

 Interrupt on level, rising-edge, falling-edge, or both edges

 Slew-rate control

 Input threshold select (CMOS / LVTTL / 1.8-V CMOS)

 Overvoltage-tolerant pins (available only in PSoC 4 BLE and PSoC 4 M-Series) with hot swap capability

7.1 Physical Structure of GPIO Pins

The pin connections with the resources in the PSoC 4 device can be represented as shown in Figure 4.

Figure 4. Simplified GPIO Block Diagram

Digital Output

Driver

Buffer

Digital

Input

Digital

Output

Analog

Pin

A detailed block diagram of the GPIO structure is available in the ―I/O System‖ chapter of the PSoC 4 Architecture
TRM. Each pin can act as an input or an output to the CPU and the digital peripheral such as the Timer, PWM, or I

2
C.

It can also act as an analog pin for use with opamps and ADC. At any given time, you can use a pin for only digital
input, or only digital output, or only analog pin, or even combinations of these three. For example, if you enable both
the digital output and the input, it provides a digital bidirectional pin. The input buffer provides high-impedance to the
external input. It is configurable to the following signaling standards:

 CMOS

 LVTTL

 1.8-V CMOS (available only in PSoC 4 BLE and PSoC 4 M-Series)

For the input threshold values, see the device datasheet.

The digital output driver supports different drive modes and slew-rate control (see Figure 5).

http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=117&id=4749&id=5284&applicationID=0&l=0
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=117&id=4749&id=5284&applicationID=0&l=0
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=107&id=4749&id=5284&applicationID=0&l=0

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 7

Figure 5. Digital Output Driver

Digital

Logic

Slew

Control

In

PIN

Vdd

Vdd Vdd

Output

Enable

Drive

Mode

Slew-rate control is provided to reduce EMI and cross-talk. There are two options – Fast and Slow. Slew rate is set to
Fast by default. Use the Slow option when the signals are not speed-critical.

The circuit shown in Figure 5 supports eight drive modes in PSoC 4, as listed in Table 1.

Table 1. Drive Modes and Applications

Drive Mode Application Examples

1 High-impedance Analog Analog input/output

2 High-impedance Digital Digital input

3 Resistive Pull-Up

(~5 KΩ)

Interface to open drain-low input, such as tachometer output from motors or a
switch connected to ground. It can also be used to drive LEDs.

4 Resistive Pull-Down

(~5 KΩ)

Interface to an open drain-high input or a switch connected to VDD. It can be
used as an output to interface LEDs in current sink mode.

5 Open Drain, Drives Low Provides high-impedance in the high state and a strong drive in the low state;
This configuration is used for I

2
C pins. This mode works in conjunction with an

external pull-up resistor.

6 Open Drain, Drives High Provides strong drive in the high state and high-impedance in the low state.
This mode works in conjunction with an external pull-down resistor.

7 Strong Drive CMOS output drive in both low and high state

8 Resistive Pull-Up and
Resistive Pull-Down

(~5 KΩ)

Adds series resistor in both high and low states

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 8

Figure 6. Drive Modes

Out

In Pin

Out

In
Pin

Out

In

Pin

Out

In

Pin

Out

In
Pin

Out

In

Pin

Out Pin

Out

In
Pin

1 . High-Impedance

Analog

2 . High-Impedance

Digital
3 . Resistive Pull Up 4 . Resistive Pull Down

5 . Open Drain,

 Drives Low

6 . Open Drain,

 Drives High
7 . Strong Drive 8 . Resistive Pull Up

& Pull Down

VDD VDD

VDD

VDD

VDD

Analog

~5k

~5k

~5k

~5k

Analog Analog Analog

Analog Analog Analog Analog

In

7.2 Pin Routing

7.2.1 Digi tal Rout ing

A pin can be routed to different digital peripherals, such as the universal digital block (UDB), serial communication
block (SCB), timer/counter/pulse-width modulator (TCPWM) block, LCD driver, CAN block, interrupt controller, and
the data register which is read/written by the CPU. Figure 7 shows the routing for an input pin and Figure 8 shows the
routing for an output pin.

Note 1: The resistor values for the pull-up and pull-down drive modes, shown in Figure 6, are approximate values;
see the device datasheet for the resistor value specifications. Use an external resistor if higher accuracy is
required. In this case, the pin must be configured as open drain drive high or open drain drive low.

Note 2: At all times, avoid the device VDD getting powered from an external voltage at the pin through the ESD
clamp diodes. This can happen if the PSoC 4 device is not powered and an external voltage is applied at the
GPIO or when an external voltage at the GPIO is greater than the device VDD. This is, however, not applicable to
the Overvoltage-Tolerant (OVT) Pins as there are no clamp diodes.

http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=107&id=4749&id=5284&applicationID=0&l=0

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 9

As shown in Figure 7 and Figure 8, peripherals are connected to the pins using the high-speed I/O matrix (HSIOM). It
multiplexes the signals from different peripherals to connect to a particular pin.

In PSoC 4, there are two routing possibilities: dedicated I/O routed through the HSIOM and flexible routing using
digital system interconnect (DSI). DSI usage is not limited to routing the peripheral inputs and outputs to pins; it is
also used to route signals between digital resources. The Port Adapter connects the HSIOM and the DSI. It also
provides hardware to synchronize pin input and output signals.

Figure 7. Digital Pin Input Path

SCB

TCPWM

UDB(2)

CPU

(Pin State Reg)

Interrupt

Controller

DSI(1)

From Input

Buffer

HSIOM

High

Speed

IO

Matrix

1. not applicable to PSoC 4000

2. not applicable to PSoC 4000, PSoC 4100, PSoC 41xx-BL

and PSoC 4100M

3. only available in PSoC 4200M

CAN(3)

Port

Adapter(1)

GPIO Edge

Detect

SCB (I
2
C, UART, and SPI) and TCPWM have dedicated routes to some I/Os. The flexible routing option is available

for UDB inputs and outputs, generating interrupts from the pins, and even for TCPWM. The LCD driver is present in
all I/Os of the PSoC 4 parts (except PSoC 4000), with any I/O acting as a segment or a common driver for the LCD
glass.

The GPIO Edge Detect block enables pin interrupts on rising-edge, falling-edge, and both edges. See the GPIO
Interrupt section for details.

Figure 8. Digital Pin Output Path

SCB

TCPWM

UDB(2)

CPU

(Data Reg)

DSI(1)

To Digital

Output

Driver

LCD(1)

1. not applicable to PSoC 4000

2. not applicable to PSoC 4000, PSoC 4100, PSoC 41xx-BL and

 PSoC 4100M

3. available only in PSoC 4200M

HSIOM

High

Speed

IO

Matrix

CAN(3)

Port

Adapter(1)

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 10

Note: PSoC 4 has multiple ports with a maximum of 8 pins per port. Port 4 and higher ports do not have the port
adapter. These ports have the following restrictions:

 Cannot be routed through the DSI; thus UDB-based digital signals cannot be routed to the pins of these ports

 Cannot be used for analog blocks, such as SAR ADC, Opamp - Continuous Time Block mini (CTBm), and Low-
Power Comparator (applicable only to PSoC 4100 and PSoC 4200)

 No input/output synchronization

However, these ports are useful in the following ways:

 As a GPIO controlled in firmware

 Direct connection to TCPWM, SCB, or CAN

 LCD and CapSense pins

 Interrupts generation

Note: Pins of the PSoC 4 device are shared for dedicated connections to different peripherals. To know the functions
possible at each pin, see the ―Pinouts‖ section in the respective device datasheets.

7.2.2 Analog Rout ing

GPIO pins configured in the High-Impedance Analog (HI-Z) mode are connected to the analog resources by direct
connections or through the analog switches and the analog mux (AMUX) bus, as Figure 9 to Figure 12 show.

Following are the key highlights of the analog routing in the PSoC 4000 parts shown in Figure 9:

 All pins (except port 3) can connect to the AMUX buses, controlled by firmware. There are two buses:
AMUXBUS_A and AMUXBUS_B.

 CapSense IDAC0 is connected to AMUXBUS_A, and IDAC1 is connected to AMUXBUS_B.

 CapSense CMOD is connected to P0[4], and the shield tank capacitor is connected to P0[2].

 Any pin can be used for the capacitive touch sensors (except Port 3) as the CapSense block connects to the
sensors using the AMUX bus.

Note: Place the CMOD capacitor close to the pin. See AN85951 PSoC 4 CapSense Design Guide for layout
guidelines.

Following are the key highlights of the analog routing in other PSoC 4 parts, as shown in Figure 10, Figure 11, and
Figure 12:

 There are two AMUX buses. All pins have the capability to connect to AMUXBUS_A and AMUXBUS_B. AMUX
bus connection can be controlled by firmware or using the DSI signal. Note that in case of port 4 and higher port
pins, where the DSI connection is not available, AMUX can be connected only in firmware.

 Direct connections are available for opamp inputs and outputs, which provide better performance due to lower
trace resistance and parasitic capacitance.

 Direct connections are also available for low-power comparator (LPCOMP) inputs without switches.

 There are dedicated pins for CapSense CMOD and the shield tank capacitor. See Figure 10, Figure 11, and
Figure 12 to know the pins.

 CapSense IDAC0 is connected to AMUXBUS_A, and IDAC1 is connected to AMUXBUS_B.

http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=107&id=4749&id=5284&applicationID=0&l=0
http://www.cypress.com/?rID=78578

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 11

 Any pin can be used for the capacitive touch sensors as the CapSense block connects to the sensors using the
AMUX bus.

 AMUXBUS_A and AMUXBUS_B can be split using switches (marked in blue) as shown in Figure 11 and Figure
12. This is useful in case the AMUX buses are required for non-CapSense applications, such as
opamp/comparator input and output routing, along with the CapSense in the system.

 The SAR sequencer connects the SAR ADC input to:

 Port 2 in PSoC 4100 / PSoC 4200 and PSoC 4100M / PSoC 4200M and Port 3 in PSoC 41xx-BL /
PSoC 42xx-BL

 CTBm outputs

 Temperature sensor output.

Multiplexing is done by controlling the switches shown in red in Figure 10, Figure 11, and Figure 12. Note that the
SAR ADC can also take the input from any pin using AMUXBUS without the sequencer.

Note: The opamp output is connected to a dedicated pin without any switches. If the connection to AMUX bus is
required, the AMUX switch associated with the dedicated pin is activated. This also allows other pins to act as opamp
output pins if the corresponding AMUX switches are activated.

Note: When the SAR ADC is operated with differential inputs in the sequencer mode, the positive input can only be
an even pin with negative input as the adjacent odd pin. For example, in PSoC 4200, P2[0] and P2[1] are pair pins
with P2[0] as positive input and P2[1] as negative input.

Figure 9. PSoC 4000 Analog Routing Diagram

P
0

[7
]

P
0

[6
]

P
0

[5
]

P
0

[4
]

P
0

[3
]

P
0

[2
]

P
0

[1
]

P
0

[0
]

P3[2]

P3[1]

P3[0]

P
2

[0
]

P
1

[7
]

P
1

[6
]

P
1

[5
]

P
1

[4
]

P
1

[3
]

P
1

[2
]

P
1

[1
]

P
1

[0
]

CSIDAC1

iout

CSIDAC0

iout

CSD0
source

shieldcsh

cmod

Port0 Port1

P
o

rt3CapSense

A
M

U
X

B
U

S
_

A

A
M

U
X

B
U

S
_

B

Firmware Controlled Switch

Port2

Switch Control Legend

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 12

Figure 10. PSoC 4200/PSoC 4100 Analog Routing Diagram

P
0

[7
]

P
0

[6
]

P
0

[5
]

P
0

[4
]

P
0

[3
]

P
0

[2
]

P
0

[1
]

P
0

[0
]

P3[7]

P3[6]

P3[5]

P3[4]

P3[3]

P3[2]

P3[1]

P3[0]

P
2

[7
]

P
2

[6
]

P
2

[5
]

P
2

[4
]

P
2

[3
]

P
2

[2
]

P
2

[1
]

P
2

[0
]

P
1

[7
]

P
1

[6
]

P
1

[5
]

P
1

[4
]

P
1

[3
]

P
1

[2
]

P
1

[1
]

P
1

[0
]

P4[3]

P4[2]

P4[1]

P4[0]

LPCOMP0
vplus
vminus

LPCOMP1
vplus
vminus

CSIDAC1

iout

CSIDAC0

iout

SARADC0
vplus

vminus

ext_vref

CSD0
source

shield

csh

cmod

+-

~

1
x

1
0

x

+ -

~

1
x

1
0

x

Port0 Port1 Port2

P
o

rt3
P

o
rt4

CTBm SARMUX

SAR

OA1 OA0

TEMP0
temp
Vssa_kelvin

CAP

SENSE

Firmware Only

Firmware + DSI

Firmware + DSI +

SAR-Sequencer

AMUXBUS_A
AMUXBUS_B

Switch Control Legend

Comp out to DSI Comp out to DSI

v
p

lu
s

v
m

in
u

s

sarbus0

sarbus1

P1[2] and P1[3] are directly connected to

OPAMP 0 and OPAMP 1 outputs, respectively,

without switches.

P0[0], P0[1], P0[2] and P0[3] are directly

connected to LPCOMP0 and LPCOMP1

inputs without switches.

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 13

Figure 11. PSoC 41xx-BL/PSoC 42xx-BL Analog Routing Diagram

P
2

[7
]

P
2

[6
]

P
2

[5
]

P
2

[4
]

P
2

[3
]

P
2

[2
]

P
2

[1
]

P
2

[0
]

LPCOMP1
vminus

vplus

C
S

ID
A

C
1io
u

t

C
S

ID
A

C
0io
u

t

SARADC0
vplus

vminus

ext_vref

C
S

D
0

s
o

u
rc

e

s
h

ie
ld

c
s
h

c
m

o
d

+-

~

1
x

1
0
x

+ -

~

1
x

1
0
x

CTBm

SAR

OA1 OA0

TEMP0
temp

Vssa_kelvin

CAPSENSE

Firmware Only

Firmware + DSI

Firmware + DSI +

SAR-Sequencer

AMUXBUS_A
AMUXBUS_B

Switch Control Legend

Comp out to DSI Comp out to DSI

sarbus0

sarbus1

P
1

[7
]

P
1

[6
]

P
1

[5
]

P
1

[4
]

P
1

[3
]

P
1

[2
]

P
1

[1
]

P
1

[0
]

+-

~

1
x

1
0
x

+ -

~

1
x

1
0
x

CTBm

OA3 OA2

AMUXBUS_A

AMUXBUS_B

Comp out to DSI Comp out to DSI

P
3

[7
]

P
3

[6
]

P
3

[5
]

P
3

[4
]

P
3

[3
]

P
3

[2
]

P
3

[1
]

P
3

[0
]

P
4

[1
]

P
4

[0
]

P0[7]

P0[6]

P0[5]

P0[4]

P0[3]

P0[2]

P0[1]

P0[0]

LPCOMP0

vminus

vplus

P
5

[1
]

P
5

[0
]

P
6

[1
]

P
6

[0
]

V
R

E
F

LPCOMP

P2[2] and P2[3] are

connected to OA0 and

OA1 OPAMP outputs

respectively

P1[2] and P1[3] are

connected to OA2 and

OA3 OPAMP outputs

respectively

P0[0], P0[1], P0[4] and

P0[5] are connected to

LPCOMP0 and

LPCOMP1 inputs

AMUX Splitter - Firmware Only

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 14

Figure 12. PSoC 4100M/PSoC 4200M Analog Routing Diagram

P
1

[7
]

P
1

[6
]

P
1

[5
]

P
1

[4
]

P
1

[3
]

P
1

[2
]

P
1

[1
]

P
1

[0
]

LPCOMP1
vminus

vplus

C
S

ID
A

C
1io
u

t

C
S

ID
A

C
0io
u

t

SARADC0
vplus

vminus

ext_vref

C
S

D
0

s
o

u
rc

e

s
h

ie
ld

c
s
h

c
m

o
d

+-

~

1
x

1
0

x

+ -

~

1
x

1
0

x
CTBm

SAR

OA1 OA0

TEMP0
temp

Vssa_kelvin

CAPSENSE
Firmware Only

Firmware + DSI

Firmware + DSI + SAR-Sequencer

AMUXBUS_A
AMUXBUS_B

Switch Control Legend

Comp out to DSI Comp out to DSI

sarbus0

sarbus1

P
5

[5
]

P
5

[4
]

P
5

[3
]

P
5

[2
]

P
5

[1
]

P
5

[0
]

+-

~

1
x

1
0

x

+ -

~

1
x

1
0

x

CTBm

OA3 OA2

Comp out to DSI Comp out to DSI

P
2

[7
]

P
2

[6
]

P
2

[5
]

P
2

[4
]

P
2

[3
]

P
2

[2
]

P
2

[1
]

P
2

[0
]

P0[7]

P0[6]

P0[5]

P0[4]

P0[3]

P0[2]

P0[1]

P0[0]

LPCOMP0

vminus

vplus

P
4

[1
]

P
4

[0
]

P
4

[3
]

P
4

[2
]

LPCOMP

P1[2] and P1[3] are

connected to OA0 and

OA1 OPAMP outputs

respectively

P5[2] and P5[3] are

connected to OA2 and

OA3 OPAMP outputs

respectively

P0[0], P0[1], P0[2] and

P0[3] are connected to

LPCOMP0 and

LPCOMP1 inputs

P
4

[5
]

P
4

[4
]

P
4

[7
]

P
4

[6
]

CSIDAC2

iout

CSIDAC3

iout

CSD1

source

shield

csh

cmod

P7[2]

P7[1]

P7[0]

P6[5]

P6[4]

P6[3]

P6[2]

P6[1]

P6[0]

P
3

[1
]

P
3

[0
]

P
3

[3
]

P
3

[2
]

P
3

[5
]

P
3

[4
]

P
3

[7
]

P
3

[6
]

C
A

P
S

E
N

S
E

AMUX Splitter - Firmware Only

Note: The PSoC Creator IDE tool provides an analog routing diagram for a design similar to those illustrated in
Figure 9 to Figure 12. See the Analog tab in the .cydwr file of the project in PSoC Creator.

http://www.cypress.com/?id=2494&source=an79953

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 15

7.3 Startup and Low-Power Behavior

On reset/power-up, all GPIO pins start up in the high-impedance analog mode, that is, with input buffer and output
driver disabled. It remains in this mode until the reset is released. Then, each pin is set to its initial configuration

before invoking the main()function.

Note In the PSoC 4000 parts (all parts except the 24-pin QFN), pin P1[6] is temporarily configured as XRES during
power-up until the device executes the start-up code. Do not pull this pin down during power-up as this keeps the
device in reset.

See KBA91258 – I/O System Restrictions in the PSoC 4000 Family for more information.

PSoC 4 has four power modes. Table 2 shows the power mode availability in the PSoC 4 families.

Table 2. Low Power Modes

Device Sleep Deep Sleep Hibernate Stop

PSoC 4000    

PSoC 4100/4200    

PSoC 4 BLE    

PSoC 4 M    

In the Sleep mode, the GPIOs are active and can be actively driven by the peripherals. Only the CPU is inactive in
this mode. In the Deep-Sleep mode, the pins driven by the deep-sleep sources such as I

2
C, LCD driver, opamp, and

comparator are functional. The I
2
C pins can wake the device up on an address match event. The segment LCD,

connected to the device pins, is periodically refreshed even in the Deep Sleep mode.

The PSoC 4 parts (except PSoC 4000) have an additional feature that freezes the GPIOs in Deep-Sleep, Hibernate,
and Stop mode. Unfreezing of GPIOs also happens automatically when the low power mode is exited. However, note
that the GPIOs driven by Deep-Sleep peripherals are active in Deep-Sleep mode and are not frozen.

In the case of Hibernate and Stop mode, wake up happens with a device reset. This clears the GPIO configuration

and the state. To retain the pin state, use the CySysPmFreezeIo() and CySysPmUnfreezeIo() APIs. Note that

you do not need to call the CySysPmFreezeIo()function for Stop mode since it is automatically called when the

user invokes Stop mode using the API CySysPmStop(). However, you should call the CySysPmFreezeIo() API

just before the function call to enter the Hibernate mode. The GPIOs are unlocked with the call to API

CySysPmUnfreezeIo(). Call to this API is also required when the exit is made from the Stop mode. Note that the

Frozen pin states and configurations are not maintained on an external reset (XRES) event.

CySysPmFreezeIo() and CySysPmUnfreezeIo() are also useful in Deep-Sleep mode. An example of use of this

feature is shown in the Control Register Handling in Deep-Sleep section. The UDB-based components, such as the
control registers, are not active and lose the data in Deep Sleep, Hibernate, and Stop modes. If the Control Register
is driving a pin, a glitch can occur when the PSoC device enters or exits these modes if the last state is ‗1‘. To avoid
this glitch, the GPIO should be frozen before entering the low-power mode.

For information on the low-power modes, see AN86233 – PSoC 4 Low-Power Modes and Power Reduction
Techniques.

http://www.cypress.com/?id=4&rID=94560
http://www.cypress.com/?rID=78797
http://www.cypress.com/?rID=78797

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 16

7.4 GPIO Interrupt

Figure 13 shows the detailed diagram on the signal path from HSIOM to the Interrupt Controller.

Figure 13. GPIO Interrupt Signal Routing

GPIO Edge

Detect

From

HSIOM

Port

Adapter(a)
DSI(a)

Rising Edge

Detect (a) To Interrupt

Controller

Interrupt Select

Interrupt Configuration

0

1

1

0

Interrupt Source

Multiplexer

DSI

Fixed Function

(a) Not available in PSoC 4000

At each of the 32 interrupt lines of the Interrupt Controller in the processor core, there is an ―Interrupt Source
Multiplexer‖. This multiplexer block selects the source of interrupt and provides an option of rising-edge detection or
the direct connection to the Interrupt Controller. There are two sources of interrupts-

1. Fixed Function Source

2. DSI Source

The ―Interrupt Select‖ line selects the DSI or the fixed function source. The ―Interrupt Configuration‖ selects the direct
connection or the rising-edge detection logic route to connect to the Interrupt Controller.

A fixed function interrupt source has a fixed-interrupt vector; this means that the interrupt source has a dedicated
connection to one of the 32 interrupt lines of the Cortex M0. Interrupt source on this route is directly connected to the
Interrupt Controller. When the interrupt source is routed through the DSI, the vector selection is not fixed. This routing
also provides an option of rising-edge detection in addition to the direct connection.

Note: The interrupt vector table is available in the Interrupts chapter of the Technical Reference Manual.

The use of Interrupt Source Multiplexer is not limited to the GPIO interrupts; it is also used for all other sources. The
GPIO interrupt, in addition to the resources present in the Interrupt Source Multiplexer, makes use of its own GPIO
Edge Detect block as Figure 13 shows.

The GPIO interrupt signal from the HSIOM is routed in the following ways:

 Route 1: Fixed function route through the GPIO Edge Detect block with the Interrupt Source Multiplexer
configured to direct connection

 Route 2: DSI route through the GPIO Edge Detect block with the Interrupt Source Multiplexer configured to
rising-edge

 Route 3: DSI route through the GPIO Edge Detect block with the Interrupt Source Multiplexer configured to direct
connection

 Route 4: DSI route bypassing the GPIO Edge Detect block with the Interrupt Source Multiplexer configured to
rising-edge

 Route 5: DSI route bypassing the GPIO Edge Detect block with the Interrupt Source Multiplexer configured to
direct connection

The section Pins Component Interrupts explains how different routes are configured.

Figure 14 shows the GPIO Edge Detect block. This block detects rising-edge, falling-edge, and both edges in the
incoming GPIO signal. Individual GPIO interrupt signals within a port are ORed together to generate a single interrupt
request. Thus, there is one interrupt vector for each port.

http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=117&id=4749&applicationID=0&l=0

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 17

Figure 14. GPIO Edge Detect

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

To Interrupt

Source

Multiplexer

Pin 1

Pin 2

Pin 3

Pin 4

Pin 0

Pin 5

Pin 6

Pin 7

As it is clear from Figure 14, when the interrupt is triggered, the interrupt source is required to be identified. PSoC 4
provides a status register to identify the interrupting pin. After reading the status register, it is important to clear it
whenever the GPIO Edge Detect logic is used to avoid the following behavior:

1. Single interrupt trigger and non-responsive to subsequent requests when the Interrupt Source Multiplexer is
configured to rising-edge. This scenario will occur if Route 2 is used.

2. Repetitive interrupts for a single request when the Interrupt Source Multiplexer is configured to direct connection.
This scenario will occur if Route 1 or Route 3 is used.

When the GPIO interrupt takes the route without the GPIO Edge Detect block, there is no need to clear the interrupt.
However, when the rising-edge detection logic in the Interrupt Source Multiplexer is also bypassed, it results in a level
type interrupt (Route 5). In this case, the interrupt is triggered repeatedly as long as the pin signal is high. Thus, it is
recommended to configure the Interrupt Source Multiplexer to a rising-edge interrupt when the GPIO Edge Detect
block is bypassed (Route 4).

Note: The GPIO interrupt logic continues to function in the Sleep, Deep Sleep, and Hibernate modes; thus, any pin
can be used as a wakeup source. A dedicated wakeup pin, P0[7], is available to wake the device from Stop mode in
PSoC 4200 / PSoC 4100 and PSoC 4 M parts. For a PSoC 4 BLE device, the wakeup pin is P2[2].

7.4.1 Limitat ions in GPIO Interrupt

1. Port 4 and higher ports do not have a Port Adapter. Thus, pin interrupt via DSI routing is not possible for these
port pins.

2. PSoC 4000 and PSoC 4100/PSoC 4200 have one interrupt vector for each port. PSoC 4 BLE does not have a
dedicated interrupt vector for the ports beyond Port 5 and PSoC 4 M does not have one for the ports beyond Port
4. However, a common port interrupt vector is allocated, which gets triggered when any port interrupt becomes
active. See the Pins Component datasheet to understand how to use this common port interrupt.

An example project is shown in the Pin Interrupt section, which explains how to use the GPIO interrupt. To
understand interrupts in general, see the application note AN90799 – PSoC 4 Interrupts.

8 Overvoltage-Tolerant (OVT) Pins

Pins P5[0] and P5[1] in PSoC 4 BLE and Port 6 in PSoC 4 M are the OVT pins. These are similar to regular GPIOs with the
following additional features:

1. Overvoltage-tolerant - There are no ESD clamp diodes at the OVT pins. In addition, the GPIO-OVT cell has the
hardware to compare the I/O supply voltage (VDDIO) and the pin voltage. If the pin voltage exceeds the VDDIO
voltage, the output driver is disabled and the pin is tristated. This results in negligible current sink at the pin. Note
that the input buffer data, during overvoltage conditions at the pin, will not be valid if the external source‘s
specification of VOH and VOL do not match with the trip points of the input buffer.

2. Provides better pull-down drive strength as compared to a regular GPIO

3. Serial Communication Block (SCB) - When configured as I
2
C and its lines routed to OVT pins, it meets the

following I
2
C specifications:

a) Fast Mode Plus IOL Specification

b) Fast Mode and Fast Mode Plus Hysteresis and minimum fall time specifications

For more details on the I/O hardware, refer to the I/O System chapter of the Technical Reference Manual.

http://www.cypress.com/?rID=48513
http://www.cypress.com/?rID=95069
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=117&id=4749&applicationID=0&l=0

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 18

9 GPIO Pins in PSoC Creator

This section describes how to use PSoC Creator to configure and use GPIO pins.

9.1 Pins Component Symbols

The Pins Component is the recommended method for connecting internal PSoC resources to a physical pin. It allows
PSoC Creator to automatically place and route the signals within the PSoC device based on the chosen pin
configuration.

The standard Cypress Component Catalog contains four predefined GPIO configurations in the Ports and Pins class
of symbols: analog, digital bidirectional, digital input, and digital output. Drag one of these Components to the
schematic to add a pin to the project, as Figure 15 shows.

Figure 15. Pins Component Symbol Types in PSoC Creator

9.2 Pins Component Customizer

Each component in PSoC Creator comes with a customizer to configure the component. Figure 16 shows the pin
component customizer, which is accessed by double-clicking on the component.

Figure 16. Pin Component Customizer

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 19

Table 3 describes some of the parameters in the Pin customizer. For details of all the parameters, see the Pins
Component datasheet.

Table 3. Pin Component Settings

Setting Description

General Tab -> Type This setting configures the pin type. Possible options are:

Analog

Digital input with or without hardware (HW) connection

Digital output with or without HW connection and output enable

Bidirectional pin.

When the digital input or output is configured with no HW connection, it means, the pin state
is controlled by the CPU. Note that more than one selection can be made at once. For
example, a pin can be configured for both Analog and Digital Input at the same time.

General Tab -> Drive
Mode

This setting configures the pin with one of the eight drive modes described in the GPIO Pin
Basics section. Figure 17 lists the drive mode options in the pin customizer.

General Tab -> Initial
Drive State

The ―Initial drive state‖ parameter sets the data register value. This value is reflected at the
pin if it is software-driven, given that the pin is set with an appropriate drive mode. If the pin is
in output mode with ―HW connection‖ enabled and ―Output enable‖ disabled, the ―initial drive
state‖ acts as the enable control. Setting the initial state to 1 enables the pin, which is done
as default value by PSoC Creator, as shown in Figure 17. If the pin is configured as input,
initial drive state can still be useful. For example, if resistive pull-up is required at the input
pin, then the drive mode should be configured to ―Resistive pull up‖ with initial state as high
in order to turn on the pull up path through the resistor. Likewise, for resistive pull down, the
initial drive state should be set to low to enable the pull down path.

Input Tab ->
Threshold

CMOS and LVTTL input threshold setting is for an entire port. There are three options as
Figure 18 shows. The ―CMOS or LVTTL‖ option allows the PSoC Creator tool to select
CMOS or LVTTL depending on the threshold setting for other pins in the port.

Input Tab -> Interrupt This setting configures the GPIO Edge Detect block described in the

GPIO Interrupt section. For more details on this setting, refer to Pins Component Interrupts.

Figure 17. Pin Drive Mode Setting and Initial Drive State

http://www.cypress.com/?rID=48513
http://www.cypress.com/?rID=48513

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 20

Figure 18. Pin Input Threshold Selection

9.3 Pins Component Interrupts

The Interrupt parameter in the pin customizer configures the GPIO Edge Detect block described in the GPIO Interrupt
section.

Figure 19. Interrupt Configuration in PSoC Creator

The Pins Component symbol changes when interrupts are enabled, as Figure 20 shows.

Figure 20. Pins Component Symbol with Interrupts Enabled

Note that you can use only one Pin Component with each physical GPIO port if the interrupt is enabled. The reason
for this limitation is that all pin interrupts in a port are ORed together, as described in the GPIO Interrupt section.
Therefore, only one IRQ signal can be shown on the schematic per port. For example, consider two Pin Components
with interrupts enabled, as Figure 21 shows. These components cannot be mapped to pins in the same physical port.

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 21

Figure 21. Two Pins Components with Interrupts Enabled

PSoC Creator will not allow you to assign the two components to the same port. The accepted method is to assign
multiple pins to the same component, as Figure 22 shows. This ensures that there is only one IRQ signal in the
schematic for that physical port. You can still assign each pin its own interrupt edge type. The only limitation is that
the pins must be contiguous in the same port. The interrupt source should be identified in the ISR; see the Pin
Interrupt section.

Figure 22. Multiple Pins in the Same Port with Interrupts Enabled

The IRQ of the pin component should be connected to the Interrupt component. This routes the GPIO interrupt signal
to the interrupt controller. The interrupt component is in the Component catalog shown in Figure 23.

Figure 23. Interrupt Component in the Catalog

The interrupt component configures the ―Interrupt Source Multiplexer‖ to either direct connection (shown as ―level‖ in
the Interrupt Component customizer) or the rising-edge. The GPIO interrupt architecture is described in the GPIO
Interrupt section along with the different routes available for the interrupt signal. Different routes are configured with
help of the pin component and the interrupt component customizer settings as Table 4 shows.

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 22

Table 4. GPIO Interrupt Configurations

Schematic Interrupt setting in
Pin Component

Interrupt
Component

Setting

Route Details

Rising-Edge or
Falling-Edge or Both
Edges

Level Route 1 Interrupt on edges depending on
the Pin Component Setting. It
uses a fixed interrupt vector
depending on the selected port.
In this configuration GPIO
interrupt status register should be
cleared; otherwise, interrupts are
triggered repeatedly on a single
interrupt request.

Rising-Edge or
Falling-Edge or Both
Edges

Rising-Edge Route 2 Interrupt on edges depending on
the Pin Component Setting. In
this configuration GPIO interrupt
should be cleared; otherwise,
interrupt is triggered only once.
Interrupt vector is not fixed.

Rising-Edge or
Falling-Edge or Both
Edges

Level Route 3 This is similar to Route 1.
However, Route 3 is taken only if
the interrupt vector is forced on to
a desired DSI vector line. See the
application note AN90799 –
PSoC 4 Interrupts to know how to
force the interrupt vector.

Disabled Rising-Edge Route 4 This configuration provides rising-
edge interrupt. In this case, there
is no need to clear the interrupt.

Disabled Level Route 5 This configuration provides Level
interrupt. Note that the interrupt is
triggered repeatedly as long as
the pin signal is high. In this case
also, there is no need to clear the
interrupt.

http://www.cypress.com/?rID=95069
http://www.cypress.com/?rID=95069

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 23

9.4 Manual Pin Assignments

You can use the Pins tab of the Design-Wide Resources (DWR) window to assign a Pins Component to a physical
pin. PSoC Creator automatically assigns pins if the user does not choose any but this may lead to a pin placement
that is more difficult to route on a PCB.

Figure 24 shows three assigned pins. The pins highlighted in gray are manually assigned and the pin highlighted in
yellow is automatically assigned. Selecting the Lock option prevents the pin from being reassigned by PSoC Creator.

PSoC Creator makes it simple to reassign pins as needed, but you should consider pin selection before the boards
are designed.

Figure 24. Pin Assignment in DWR Window

9.5 PSoC Creator APIs

Cypress provides a set of API functions that you can use to control GPIOs dynamically through the firmware. The API
for the Pins Component enables access on both a Component-wide and per-pin basis. See the ―API‖ section of the
Pins datasheet for more details.

Per-pin API functions, which are provided as part of cy_boot in the cypins.h file, are documented in the ―Pins‖

section of the PSoC Creator System Reference Guide (Help > Documentation > System Reference). You can use
these functions to control the configuration registers for each physical pin.

Note: PSoC Creator can use the unused pin switches for routing the analog signals. This is configured using the
"Unused Bonded I/O" parameter in the System tab of the .cydwr file. Refer PSoC Creator Help for more details.

http://www.cypress.com/?rID=48513

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 24

9.6 Debug Logic on GPIO Pins

The PSoC 4 serial wire debug (SWD) pins are shared on the port pins. Refer to the respective device datasheet for
more information on the debug port pins. The debug function, however, can be disabled and the pins can be used as
regular GPIOs by setting the ―Debug Select‖ option to ―GPIO‖ in the System tab of the DWR window as Figure 25
shows.

Figure 25. Debug Port Disabled

Note that disabling the debug interface does not affect the ability to program the device.

9.7 Add Multiple GPIO Pins as a Logical Port

In PSoC Creator, you can organize a group of as many as 36 pins into a logical port, which can then be referenced in
code by the port‘s defined name. All the pins may be part of the same physical port, or they may form separate
physical ports. In the Pin component customizer, set the Number of Pins required in a port. The pins appear in the
list below the field as Figure 26 shows. Each pin can be configured independently. Select [All Pins] to configure
every pin in the Component with the same settings.

Figure 26. One of Four Pins Configured as a Digital Input

http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=107&id=4749&id=5284&applicationID=0&l=0

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 25

If the number of pins is configured to ‗4‘ with three digital inputs and one digital output, the schematic symbol appears
as shown in Figure 27.

Figure 27. Pins Component in Port Configuration

There is an option to display the port with bus instead of individual pin terminals. Select Display as Bus in the
Mapping tab of the pin configuration window to display the port with a bus, as Figure 28 shows. Note that all pins
must be of the same type to display a bus.

Figure 28. Display as Bus Option

If the Number of Pins is configured to four digital outputs, the schematic symbol appears as shown in Figure 29.

Figure 29. Four Pins Displayed with Bus

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 26

The pins with the bus terminal can be forced to map to adjacent pins by enabling Contiguous in the Mapping tab as
Figure 30 shows.

Figure 30. Contiguous Pin Placement Option

When you select Contiguous, PSoC Creator modifies the list of available pin options to match the port‘s
configuration, as Figure 31 shows. When the Contiguous option is disabled, any pin can be selected. When the
Contiguous option is enabled, only adjacent pins can be selected as Figure 31 shows.

Figure 31. Pin Placement with Contiguous Disabled/Enabled

Contiguous Disabled Contiguous Enabled

These features are described in more detail in the pin configuration window and the Pins Component datasheet.

9.8 Represent Off-Chip Components

The Off-Chip Components Catalog provides a way to mix external and internal components on the same schematic,
as Figure 32 shows. This makes it possible to improve documentation and convey clearly how the internal schematic
fits in the entire design. Off-chip components serve the same function as comments in the code – they do not change
the functionality of the PSoC design but, instead, provide a clearer picture of the entire system.

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 27

Figure 32. Design with Off-Chip Components

External Connection

Internal Connection

External Connection

Internal Connection

In the design shown in Figure 32, PWM_1 and Opamp_1 are internal blocks of the device. These blocks are connected to the
external components using pins Pin_1 throughPin_4. Green and orange wires are the internal connections (green for digital
signals and orange for analog signals); whereas, blue wires and components are external to the device. To make the
connections with the external components in the schematic, enable the ―External Terminal‖ parameter in the Pin component
customizer as Figure 33 shows. This brings out an additional terminal on the schematic as Figure 34 shows.

Figure 33. Enabling External Terminal

Figure 34. Pin Component With Internal and External Terminal

External Terminal Internal Terminal

The components, to connect to the external terminals on the schematic, are available in the Off-Chip tab in the
Components Catalog as Figure 35 shows.

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 28

Figure 35. Off-Chip Components Catalog

The components in this catalog cover those that are most likely to be connected to the pins of a PSoC device on the
board. These components consist of resistors, capacitors, transistors, inductors, switches, and others. Drag the
component and place it on the schematic as it is done in the case of internal components.

10 GPIO Tips and Tricks

This section provides practical examples of how to use GPIO pins. All these examples are included in the PSoC
Creator project provided with this application note.

Table 5. PSoC Creator Projects

Section Project PSoC
4000

PSoC
4100

PSoC
4200

PSoC
41xx-BL

PSoC
42xx-BL

PSoC
4100M

PSoC
4200M

1 Toggle an LED Project1_ToggleLED       

2 Read an Input and
Write to an Output

Project2_ReadingPin       

3 Drive an Output from
a Digital Logic Gate

Project3_HWDrive       

4 Set the GPIO
Input/Output
Synchronization

Project4_GPIOSynchron
ization

      

5 Toggle GPIOs
Faster with Data
Registers

Project5_FastGPIOUpda
te

      

6 Configure GPIO
Output Enable Logic

Project6_OutputEnable       

7 Pin Interrupt Project7_PinInterrupt       

8 Configure GPIO
Interrupt Settings
with Firmware

Project8_GPIOIntConfig       

9 Using Both Analog
and Digital on a
GPIO

Project9_GPIOAnalogDi
gital

      

10 Gang Pins for More
Drive/Sink Current

Project10_GangingPins       

11 Control Register
Handling in Deep-
Sleep

Project11_ControlRegIn
DeepSleep

      

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 29

The Cypress development kits, listed in Appendix B: PSoC 4 Development Boards, can be used for testing these
projects.

10.1 Toggle an LED

The simplest use of a GPIO is to set the output of a pin HIGH or LOW in the firmware. This example demonstrates
how to set the output to toggle an LED using the Pins Component API.

1. Place a Digital Output Pin Component in the project schematic.

2. Name the Component ―Pin_LED‖ and disable the hardware connection as Figure 36 shows.

Figure 36. Pin_LED Configuration

3. Enable the external terminal to connect to the external components on the schematic

4. Assign it to a physical pin (this example uses P1[6]) in the Pins tab of the DWR window).

5. Connect the physical pin to an LED. Note that the LED and resistor R are off-chip components. The Top Design
schematic is shown in Figure 37.

Figure 37. Toggle an LED Example Schematic

6. In main.c, use the Component API to set the output as follows:

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 30

for(;;)

{

 /* Set LED output to logic HIGH */

 Pin_LED_Write(1u);

 /* Delay of 500 ms */

 CyDelay(500u);

 /* Set LED output state to logic LOW */

 Pin_LED_Write(0u);

 /* Delay of 500 ms */

 CyDelay(500u);

}

7. Build the project and program the PSoC 4 device.

The result is an LED blinking at a frequency of 1 Hz.

10.2 Read an Input and Write to an Output

This example demonstrates how to read from and write to a GPIO pin with the Component APIs. The output pin
drives the inverse of the input pin state.

1. Place two pins in the project schematic—one Digital Input Pin and one Digital Output Pin with hardware
connection disabled—as Figure 38 shows.

 Figure 38. Input and Output Example Schematic

2. Assign the pins for Pin_Input and Pin_Output in .cydwr

3. Use the Component APIs to set the state of Pin_Output based on Pin_Input as follows:

 for(;;)

 {

/* Set the output pin with an inverted value of input pin */

 Pin_Output_Write(~Pin_Input_Read());

 }

4. Build the project and program the PSoC 4 device.

You can test this project by feeding a square wave from a signal generator to the Pin_Input. The signal at Pin_Output
will be an inverted form of Pin_Input signal.

10.3 Drive an Output from a Digital Logic Gate

The previous example showed the use of the processor core to read a pin and set another pin with an opposite of the
read value. This example demonstrates the same task but with the use of configurable digital resources known as
Universal Digital Blocks (UDBs). In this example, an input pin signal is routed to the NOT gate and the output of the
NOT gate is routed to another pin. Follow these steps to create the project:

1. Place two pins in the project schematic—one Digital Input Pin and one Digital Output Pin with hardware
connection enabled—as Figure 39 shows.

Figure 39. Input and Output Pins with HW Connection Enabled

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 31

2. Place a NOT gate and connect to the pins as Figure 40 shows.

Figure 40. NOT Gate Connection

3. Assign the pins for Pin_Input and Pin_Output in .cydwr

4. This project does not require any code. Build the project and program the PSoC 4 device.

Similar to the previous project, you can test this project by feeding a square wave from a signal generator to the
Pin_Input. The signal at Pin_Output will be an inverted form of Pin_Input signal.

10.4 Set the GPIO Input/Output Synchronization

For digital input and output signals, the GPIO provides synchronization with an internal clock, HFCLK, or a digital
signal as a clock in the PSoC 4 parts (except PSoC 4000). In addition, it provides the configuration for clock enable
and synchronization logic reset. Port adapter logic is used for input and output synchronization, as Figure 41 and
Figure 42 show.

Figure 41. Input Synchronization in PSoC 4

From

Input Pin

Selected

Reset

Selected

Sync Clock

2

PACFGx

IN SYNC[1:0]

To DSI

00: Transparent

01: Single Sync

10: Double Sync

11: Reserved

As Figure 41 shows, the input synchronization circuit provides the options of transparent, single sync, and double
sync.

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 32

Figure 42. Output Synchronization in PSoC 4

From

DSI

Selected

Reset

Selected

Sync Clock

2

PACFGx

OUT SYNC[1:0]

To Pin

00: Transparent

01: Single Sync

10: Clock

11: Clock Inverted

The output synchronization circuit provides the options of transparent, single sync, clock, and clock inverted, as
shown in Figure 42. Clock and clock inverted route the sync clock to the output pin. These are set in the Pins
Component customizer, as Figure 43 shows.

The synchronizer clock can be configured as HFCLK, an external signal (from DSI), or one of the pin signals. The
synchronizer block reset signal can be an external signal (from DSI) or one of the pin signals. These are configured in
the Pins Component customizer from the Clocks tab, as Figure 44 shows.

For more information on the parameters in the Clocking tab of the Pins Component customizer, refer to the Pins
Component datasheet.

Figure 43. Sync Mode Setting

http://www.cypress.com/?rID=48513
http://www.cypress.com/?rID=48513

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 33

Figure 44. Clock Setting

Pin signals are synchronized using a combination of the UDB port adapter and GPIO blocks. Also, the clock is shared
for all the pins of a port for internal clock synchronization. For more information, refer to the PSoC 4 Architecture TRM.

Note: The signals at port 4 and higher port pins cannot be synchronized because these ports do not have a UDB port
adapter. Therefore, these port pins should always be used in the Transparent mode to avoid an error during build.

The next two examples demonstrate how to set the input/output synchronization.

10.4.1 GPIO Input Synchronizat ion

1. Place one Digital Input Pin, two Digital Output Pins, and one Clock Component in the project schematic.
Configure them as Table 6 shows.

Table 6. Components Configuration

Component Name Configuration

Digital Input Pin Pin_Input_DoubleSync Drive Mode: Resistive Pull-Up

Sync Mode: Double-Sync

In Clock (for input sync): External

Digital Output Pin Pin_Output_LFCLK_1 Output Mode: Transparent

Digital Output Pin Pin_Output_Transparent_1 Output Mode: Transparent

Clock LFCLK Clock Type: Existing

Source: LFCLK

2. Connect the pins and add the Off-Chip Components, as Figure 45 shows.

http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=117&id=4749&id=5284&applicationID=0&l=0

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 34

Figure 45. GPIO Input Synchronization Example Schematic

Note: Clocks in PSoC 4 cannot be directly connected to a pin terminal, except for SYSCLK and LFCLK. See the
"Clocking System" section of the PSoC 4 Architecture TRM for more information.

3. Assign the pins, and connect the Pin_Input_DoubleSync pin to a switch connected to GND.

4. Build the project and program the PSoC 4 device.

When the button connected to Pin_Input_DoubleSync is pressed, the signal waveforms occur as Figure 46 shows.
The Pin_Output_Transparent_1 pin becomes LOW at the second rising edge of LFCLK because the input is double-
synchronized with LFCLK.

Figure 46. Input/Output Signal Waveforms

http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=117&id=4749&id=5284&applicationID=0&l=0

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 35

10.4.2 GPIO Output Synchronizat ion

1. Place one digital input pin, three digital output pins, and one Clock Component in the project schematic, as Figure 47
shows, and configure them as described in Table 7.

Figure 47. GPIO Output Synchronization Example Schematic

Table 7. Pins Configuration

Component Name Configuration

Digital Input Pin Pin_Input_Transparent Drive Mode: Resistive Pull-Up

Sync Mode: Transparent

Digital Output Pin Pin_Output_LFCLK_2 Output Mode: Transparent

Digital Output Pin Pin_Output_SingleSync Output Mode: Single-Sync

Out Clock (for output sync):
External

Digital Output Pin Pin_Output_Transparent_2 Output Mode: Transparent

Clock LFCLK Clock Type: Existing

Source: LFCLK

2. Connect the pins as Figure 47 shows.

3. Assign the pins, and connect the Pin_Input_Transparent to a switch connected to GND. Note that you cannot
select Port 4 and higher port pins for Pin_Output_SingleSync as they don‘t support synchronization.

4. Build the project and program the PSoC 4 device.

Figure 48 shows the waveforms corresponding to a button press.

The Pin_Output_SingleSync pin becomes LOW at the next rising-edge of LFCLK because the output is synchronized
with LFCLK. The Pin_Output_Transparent_2 pin becomes LOW at the same time as the Input_Transparent pin
because there is no synchronization.

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 36

Figure 48. Input/Output Signal Waveform

10.5 Toggle GPIOs Faster with Data Registers

The Component API is the easiest way to control GPIO pins; however, it is not the fastest way.

Take an example of writing logic 1 to Pin_1 mapped to pin P5[2]. Here is the API function call:

The equivalent assembly code can be seen in the listing file (main.lst) in the results tab of the project workspace.

The assembly code of component API Pin_1_Write function can also be seen in the listing file-

This code takes 20 CPU cycles to write logic 1 to Pin_1.

Alternatively, you can use the register definitions and masks in the <pin_name>.h file that is created for each Pins
Component to update the pins quickly.

ldr r3, .L2 ;load the address of Pin_1_DR into r3

ldr r1, [r3] ;load the value of Pin_1_DR into r1

mov r2, #251 ;load 251 into r2 (value depends on location of pin

 ;in 8 bit wide port, in this case, Pin_1 is on port P5[2])

and r2, r1 ;AND the values of r2 and r1 and load result back in r2

lsl r0, r0, #2 ;left shift r0 by two bits and load the result back in

 ;r0(this instruction is not present for the pin on LSB)

mov r1, #4 ;load value of 4 into r1 (depends on the location of

 ;pin in 8 bit wide port)

and r0, r1 ;and the value of r0(contains "value")and r1 and load

 ;the result in r0

orr r0, r2 ;or the value of r0 with r2 and load the result back in

 ;r0

str r0, [r3] ;store the result back in Pin_1_DR

bx lr ;return to calling function

mov r0, #1 ;load the value in r0

bl Pin_1_Write ;call Pin_1_Write

Pin_1_Write(1);

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 37

The following statement sets logic 1 at Pin_1 mapped to P5[2]. Pin_1_DR is the data register of Pin_1.

In the listing file (main.lst),, the above instruction translates into an assembly code as follows:

This code takes eight cycles as against 20 cycles used by the component API.

The component API had firmware overhead for the following actions, which are not required in direct register writes:

 Function call

 Checking the function argument to set the pin to logic 1 or logic 0

 Return from the function

ldr r3, .L3 ;load the address of Pin_1_DR into r3

ldr r1, [r3] ;load value of Pin_1_DR into r1

mov r2, #4 ;move value of 4 (Pin_1_MASK) into r2

orr r2, r1 ;Set the bit in Pin_1_DR

strb r2, [r3] ;Store it back into Pin_1_DR

Pin_1_DR |= Pin_1_MASK

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 38

To set, reset, and read the pin using direct register writes, the following macros are provided in PSoC Creator:

Macro Description

CY_SYS_PINS_SET_PIN(portDR, pin) Sets the output value for the pin to logic high

portDR is the address of the port data register

pin is the pin number (0 to 7)

CY_SYS_PINS_CLEAR_PIN(portDR, pin) Clears the output value for the pin to logic low

portDR is the address of the port data register

pin is the pin number (0 to 7)

CY_SYS_PINS_READ_PIN(portPS, pin) Reads the pin value

portPS is the address of the port status register

pin is the pin number (0 to 7)

Refer to the System Reference Guide (available from the PSoC Creator Help Menu) for more details on these
macros.

Follow these instructions to create a PSoC Creator project that can be used to compare the performance of the API
function call and direct register write:

1. Place two digital output pins, with hardware connection disabled, in the project schematic and name them
―Pin_Test‖ and ―Pin_Index,‖ as Figure 49 shows.

Figure 49. Toggle GPIOs with Data Registers Example Schematic

2. Assign the pins in .cydwr.

3. Add the following code to the main.c file. The code sets the Pin_Index HIGH and toggles Pin_Test using the
Component API. It then sets the Pin_Index LOW and toggles Pin_Test using the data register (DR).

 for(;;)

 {

 /* Set IndexPin */

 Pin_Index_Write(1);

 /********************* API Call ********************/

 /* Set TestPin */

 Pin_Test_Write(1u);

 /* Clear TestPin */

 Pin_Test_Write(0u);

 /* do it again */

 Pin_Test_Write(1u);

 Pin_Test_Write(0u);

 /***/

 /* Clear IndexPin */

 Pin_Index_Write(0);

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 39

 /************* Direct Register Writes **************/

 /* Set TestPin */

 CY_SYS_PINS_SET_PIN(Pin_Test__DR, Pin_Test_SHIFT);

 /* Clear TestPin */

 CY_SYS_PINS_CLEAR_PIN(Pin_Test__DR, Pin_Test_SHIFT);

 /* do it again */

 CY_SYS_PINS_SET_PIN(Pin_Test__DR, Pin_Test_SHIFT);

 CY_SYS_PINS_CLEAR_PIN(Pin_Test__DR, Pin_Test_SHIFT);

 /***/

 }

Note Pin_Test__DR is the address of the data register; whereas, Pin_Test_DR is the value of the data

register. See the pin component .h file in the Source Files of the project workspace (in this case Pin_Test.h) to

know the macro for the data register address.

The code that writes to the data register is also portable similar to the API call, so that if the pin assignment changes
during development, you do not have to change the code.

4. Observe the waveform of the two pins using an oscilloscope, as shown in Figure 50.

Figure 50. Output Signals Waveform

A. Pin_Test_Write(1u)

B. Pin_Test_Write(0u)

C. CY_SYS_PINS_SET_PIN(Pin_Test__DR, Pin_Test_SHIFT)

D. CY_SYS_PINS_CLEAR_PIN(Pin_Test__DR, Pin_Test_SHIFT)

A

B

C

D

Figure 50 shows that a pin can toggle faster by directly writing to the data register, as opposed to calling the API
functions.

To know about coding techniques to achieve time efficiency, refer to the application note, AN89610 – PSoC 4 and
PSoC 5LP ARM Cortex Code Optimization.

10.6 Configure GPIO Output Enable Logic

This example demonstrates how to configure and use the output enable logic of a GPIO pin. This project is applicable
only for PSoC 4200, PSoC 42xx_BL, and PSoC 4200M parts.

1. Place two Digital Output Pins in the project schematic.

2. Open the configuration dialog for each pin and select the Output Enable option, as Figure 51 shows.

http://www.cypress.com/?rID=91945
http://www.cypress.com/?rID=91945

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 40

Figure 51. Output Enable Selection

3. Place a Control Register in the schematic.

4. Configure the Control Register for two outputs, as Figure 52 shows.

Figure 52. Control Register Configured With Two Outputs

5. Add one Logic Low ‗0‘ Component.

6. Connect the Logic Low to the pins and add the Off-Chip Components for the LEDs, as Figure 53 shows.

Figure 53. Control Register Driving Pins' Output Enable

7. Assign the pins and connect the pins to LEDs.

8. Add the following code to the main.c file.

uint8 count;

for(;;)

{

 for(count = 0u; count < 4u; count++)

 {

 /* Set Control_Reg Value */

 Control_Reg_Write(count);

 /* Delay for 500ms */

 CyDelay(500u);

 }

}

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 41

9. Build the project and program the PSoC 4 device.

The result is the output of the two pins gated by the state of Control_Reg, which causes the LEDs to ―count‖ to 3.

10.7 Pin Interrupt

This example demonstrates how to use an interrupt generated from two pins in the same port, using the Component
APIs. These two pins can use only one IRQ terminal. Thus, the interrupt source must be identified in the ISR.

1. Place two pins in the project schematic: one Digital Input Pin named Pin_Button and one Digital Output Pin
named Pin_LED.

2. Set Pin_Button‘s number of pins to 2, Drive mode as Resistive Pull Up, and Interrupt as Falling-Edge. This
exposes the IRQ terminal.

3. Connect the interrupt component to the irq terminal as shown in Figure 54.

Figure 54. Pin Interrupt Example Schematic

4. Assign the pins in .cywdr

5. Use the Component APIs to set the state of the LED Pin based on Pin_Button. Copy the following main.c code:

#define LED_ON (0u)

#define LED_OFF (1u)

/* The flag to enter ISR_Button */

uint8 isrFlag = 0u;

/* The LED state */

uint8 ledState = LED_OFF;

/* ISR for ISR_Button */

CY_ISR(INT_ISR_Button)

{

 /* Set the flag */

 isrFlag = 1u;

/* Check which pin caused interrupt by reading interrupt status register */

if(Pin_Button_INTSTAT & (0x01u << Pin_Button_SHIFT))

 {

 /* Triggered by Pin_Button_0 */

 ledState = LED_OFF;

 }

 else

 {

 /* Triggered by Pin_Button_1 */

 ledState = LED_ON;

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 42

 }

 /* Clear interrupt */

 Pin_Button_ClearInterrupt();

}

int main()

{

 /* Start Pin ISR */

 isr_Button_StartEx(INT_ISR_Button);

 /* Enable global interrupt */

 CyGlobalIntEnable;

 for(;;)

 {

 /* Check the flag */

 if(0u != isrFlag)

 {

 /* Clear the flag */

 isrFlag = 0u;

/* Drive the LED with ledState. Led State is updated in ISR */

 Pin_LED_Write(ledState);

 }

 /* Delay 1ms */

 CyDelay(1u);

 }

}

In the main.c code, CY_ISR(INT_ISR_Button) is the interrupt service routine for the pin interrupt.

6. Build the project and program the PSoC 4 device.

The result is that the LED turns OFF when you press the button connected to Pin_Button_0 and turns ON when you
press the button connected to Pin_Button_1, but not when you release the buttons. (Note that the switch bounce in
the buttons may cause several interrupts on a single button press; see AN60024 – Switch Debouncer and Glitch
Filter with PSoC 3, PSoC 4, and PSoC 5LP for details).

In the main.c code, Pin_Button_INTSTAT and Pin_Button_SHIFT are the functions and constant macros provided by
the Pins Component. These are used to check which pin caused an interrupt.

The function Pin_Button_ClearInterrupt() clears the interrupt status register.

For more information on interrupts and writing interrupt handlers, refer to AN90799 – PSoC 4 Interrupts.

10.8 Configure GPIO Interrupt Settings with Firmware

The GPIO interrupt is configured dynamically by writing to the two bits of the Interrupt Configuration register.

 For PSoC 4000: GPIO_PRTx_INTR_CFG[2y+1:2y]

 For other PSoC 4 parts: PRTx_INTCFG[2y+1:2y]

where ―x‖ corresponds to the port number and ―y‖ corresponds to the pin number (see Table 8). You can change the
configuration at any time to enable or disable pin interrupts.

http://www.cypress.com/?rID=40974
http://www.cypress.com/?rID=40974
http://www.cypress.com/?rID=95069

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 43

Table 8. GPIO Interrupt Types and Bit Settings

PRTx_INTCFG [2y+1:2y] Edge Type Description

0 Disable Interrupts disabled

1 Rising-Edge Trigger on rising edge

2 Falling-Edge Trigger on falling edge

3 Both Edges Trigger on either edge

In this example, Pin_Button is configured with a rising-edge interrupt. Once the interrupt occurs, it is configured as a
falling-edge interrupt. An LED is toggled whenever the interrupt is triggered.

1. Place a Digital Input Pin and a Digital Output Pin in the project schematic. Add the Off-Chip Components for the
LED and button, as Figure 55 shows.

Figure 55. Example Schematic

2. Assign the pins to Pin_Button and Pin_LED in cydwr.

3. Configure Pin_Button as a resistive pull-up pin and connect it to a button.

4. Configure Pin_LED as a strong drive pin and connect it to an external LED.

5. Add the following code to the main.c file. Note that instead of using the device register name, this project uses
Pin_Button__INTCFG, provided by PSoC Creator (in the cyfitter.h file) for the interrupt configuration. You do not
need to worry about the exact register name in the selected device. This helps to port the project to a different
PSoC 4 device without changing anything in the code.

#define INTERRUPT_MASK 0x03

#define RISING_EDGE 0x01

#define FALLING_EDGE 0x02

int main()

{

 /* Variable to save temporary data */

 uint32 regVal = 0x00u;

 /* Flag to switch interrupt type */

 uint8 edgeFlag = 0x00u;

 for(;;)

 {

/* Get value of port interrupt configuration register */

regVal = CY_GET_REG32(Pin_Button__INTCFG);

/* Clear the configuration bits for the Pin_Button.

Pin_Button_SHIFT is multiplied by 2 as two bits of the interrupt

configuration register sets the configuration for one pin */

 regVal &= ~(INTERRUPT_MASK << (Pin_Button_SHIFT * 2));

if(edgeFlag)

{

/* Set P0[7] to GPIO interrupt rising-edge trigger.

Pin_Button_SHIFT is multiplied by 2 as two bits of the

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 44

interrupt configuration register sets the configuration for

one pin */

 CY_SET_REG32(Pin_Button__INTCFG, regVal | (RISING_EDGE <<

(Pin_Button_SHIFT * 2)));

}

else

{

/* Set P0[7] to GPIO interrupt falling-edge trigger.

Pin_Button_SHIFT is multiplied by 2 as two bits of the

interrupt configuration register sets the configuration for

one pin */

 CY_SET_REG32(Pin_Button__INTCFG, regVal | (FALLING_EDGE <<

(Pin_Button_SHIFT * 2)));

}

/* Toggle edgeFlag */

edgeFlag ^= 0x01u;

/* Wait for Interrupt */

while(!(CY_GET_REG32(Pin_Button__INTSTAT) & (0x01u <<

Pin_Button_SHIFT))) {;}

/* Clear interrupt */

CY_SET_REG32(Pin_Button__INTSTAT, (0x01u << Pin_Button_SHIFT));

/* Toggle LED */

Pin_LED_Write(~Pin_LED_Read());

 }

}

6. Build the project and program the PSoC 4 device.

The LED toggles whenever the button is pressed or released. When the button is pressed, the falling-edge triggers
the interrupt, and when it is released, the rising-edge triggers the interrupt.

The PSoC 4 Architecture TRM contains more information about the GPIO interrupt, including block diagrams and
functional descriptions. Another good resource is the application note AN90799 – PSoC 4 Interrupts.

10.9 Using Both Analog and Digital on a GPIO

This example demonstrates how to configure and use a pin for analog and digital functions. In this example, an
output pin is controlled alternately by an IDAC and the firmware. When controlled by the firmware, the LED blinks.
When controlled by the IDAC, the LED gradually brightens.

This type of multiplexing is useful when you need analog and digital functionality from a single pin. It can also reduce
the number of GPIOs used in a design.

You can use a hardware connection instead of firmware to control the digital output. See the description at the end of
this section for the required modifications to the project.

To configure the pin signal source, the HSIOM_PORT_SELx register is updated. Like the previous example, this
project uses the register name as defined in the Pins Component for easy portability across the PSoC 4 device family.

Follow these steps to create the schematic and firmware:

1. Place an Analog Pin and a Current DAC in the schematic.

2. Assign the Pins Component to a physical pin (this example uses P0[2]).

3. Configure the pin with both Analog and Digital Output settings, as Figure 56 shows.

4. Set the IDAC‘s Polarity as Negative (Sink), as Figure 57 shows. Connect the IDAC to the analog terminal, as
Figure 58 shows.

5. Build the project to create the necessary APIs.

http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=117&id=4749&id=5284&applicationID=0&l=0
http://www.cypress.com/?rID=95069

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 45

Figure 56. LED Pin Configured as both Analog and Digital

Figure 57. IDAC Setting

Figure 58. PSoC Creator Schematic of Analog and Digital Switching Scheme

6. Add the following code to the main.c file and build the project again. Program the device with the hex file
generated. Note that in this code, the macros defined in the Pins Component and Cyfitter.h are used.

#define HSIOM_SW_GPIO 0x00

#define HSIOM_AMUX_BUS_A 0x06

int main()

{

 uint32 i = 0u;

 uint32 regVal = 0x00u;

 /* Disable Input Buffer */

 Pin_LED_INP_DIS |= (0x01u << Pin_LED_SHIFT);

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 46

 /* Start IDAC */

 IDAC_Start();

 for(;;)

 {

 /* Get the current value of HSIOM_PORT_SEL0 register */

 regVal = CY_GET_REG32(Pin_LED__0__HSIOM);

 regVal &= ~Pin_LED__0__HSIOM_MASK;

 /* Set LED Pin as GPIO controlled by firmware */

 regVal = CY_SET_REG32(Pin_LED__0__HSIOM, regVal |(HSIOM_SW_GPIO <<

Pin_LED__0__HSIOM_SHIFT));

 /* Set LED Pin to Strong Drive Mode */

 Pin_LED_SetDriveMode(Pin_LED_DM_STRONG);

 for(i= 0u; i < 5u; i++)

 {

 /* Toggle LED with 100-ms delay */

 Pin_LED_Write(0u);

 CyDelay(100u);

 Pin_LED_Write(1u);

 CyDelay(100u);

 }

 /* Get the current value of HSIOM_PORT_SEL0 register */

 regVal = CY_GET_REG32(Pin_LED__0__HSIOM);

 regVal &= ~Pin_LED__0__HSIOM_MASK;

 /* Connect LED Pin to AMUXBUS-A */

 CY_SET_REG32(Pin_LED__0__HSIOM, regVal | (HSIOM_AMUX_BUS_A <<

Pin_LED__0__HSIOM_SHIFT));

 /* Set LED Pin to High Impedance-Analog Drive Mode */

 Pin_LED_SetDriveMode(Pin_LED_DM_ALG_HIZ);

 for(i = 0u; i < 0x7fu; i++)

 {

 /* Adjust LED brightness */

 IDAC_SetValue(i);

 /* Delay 20 ms */

 CyDelay(20u);

 }

 }

}

The result is an output that alternates control by the firmware and IDAC.

You can easily modify this project to use a hardware connection for the digital output instead of the firmware control.
To do so, in step 3, enable the HW connection in the pin configuration window. You can then wire a digital resource
to the pin. To select this digital resource as the pin output, set the pin as a DSI-controlled GPIO or a pin-specific
digital resource connection, using the HSIOM_PORT_SEL register. See the PSoC 4 Architecture TRM for more
details.

10.10 Gang Pins for More Drive/Sink Current

To increase the total source or sink capabilities of the circuit, GPIO pins can be ganged (shorted together). This
example demonstrates driving a PWM signal with four GPIO pins. Note that the project is applicable only for
PSoC 4200, PSoC 42xx_BL, and PSoC 4200M parts.

http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=117&id=4749&id=5284&applicationID=0&l=0

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 47

1. Place and configure a PWM (TCPWM mode) and a Clock Component in the schematic.

2. Place a single Digital Output Pins Component.

3. Connect the Components as Figure 59 shows.

Figure 59. PWM Driven to Single Pin

4. Open the pins configuration dialog and set the number of pins accordingly, as Figure 60 shows. This example
uses four GPIO pins. Set the Output Mode to Single-Sync and Out Clock to External, as Figure 61 and Figure
62 show.

Note: Synchronize the output to avoid different output signal delays for the different pins.

Figure 60. Configure Multiple Pins in the Component

Figure 61. Output Mode Setting

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 48

Figure 62. Out Clock Setting

5. (Optional) Set the pin mapping to Contiguous for easier PCB routing, as Figure 63 shows.

Figure 63. Enable Contiguous Mapping

6. Assign the Pins Component to physical pins.

7. Place a Sync Component and connect the signal source (PWM, in this example) to each of the pin terminals via
the Sync Component. Place another Clock Component and set its source to High Frequency Clock (HFCLK).
Connect the out_clk terminal of the Pin Component and the Clock terminal of the Sync Component to the HFCLK.

It is important to select a high-frequency synchronization clock to reduce the difference in pin signal delays. The Sync
Component is required to synchronize the signal crossing from one clock domain to another. In this case, the PWM
output is going to cross from Clock (1 kHz) domain to HFCLK.

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 49

Figure 64. PWM Driving Four Pins

8. Build the project and program the PSoC 4 device.

The output of the PWM is driven on all four GPIOs. The pins can be shorted externally on the PCB and connected to
the external circuit as needed.

10.11 Control Register Handling in Deep-Sleep

This example demonstrates freezing of GPIO pins to avoid glitches at the output while using the low-power modes.
As an example, consider a Control Register driving a pin. When the device enters the Deep-Sleep mode, all I/Os are
frozen without any user intervention. When the device wakes up, all the I/Os are automatically restored to their
original configuration. However, the Control Register loses its data in the Deep-Sleep mode. It needs to be restored
before the I/Os are unfrozen. Otherwise, there is a glitch at the output. PSoC 4 provides alternate control for the user

to freeze and unfreeze the GPIOs in the form of CySysPmFreezeIo() and CySysPmUnfreezeIo() APIs. Follow

these steps to create the PSoC Creator project. Note that this project is applicable only for PSoC 4200,
PSoC 42xx_BL, and PSoC 4200M.

1. Place one Digital Input Pin, two Digital Output Pins, a Clock, a Control Register, and an Interrupt Component in
the schematic.

2. Configure the Components as Table 9 lists. Connect the Components as Figure 65 shows.

Table 9. Component Configurations

Component Name Configuration

Digital Input Pin Pin_Button Drive Mode: Resistive Pull-Up

Interrupt: Rising-Edge

Digital Output Pin Pin_Clock Default Configuration

Digital Output Pin Pin_CtrlReg Default Configuration

Clock SYSCLK Source: SYSCLK

Interrupt isr_Buttton Default Configuration

Control Register Ctrl_Reg Output: 1

Initial value: 1

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 50

Figure 65. Avoiding Glitch While Exiting Deep-Sleep

3. Add the following code to the main.c file.

/* Set FREEZE_IO to 0x01 to avoid glitch by enabling the GPIO freeze */

/* else set it to 0 */

#define FREEZE_IO 0x01

/* The flag to enter ISR */

uint8 isrFlag = 0u;

CY_ISR(ISR_Handle)

{

 /* Set the flag */

 isrFlag = 1u;

 /* Clear pin interrupt */

 Pin_Button_ClearInterrupt();

}

int main()

{

 /* This variable is used as backup for Control register value */

 uint8 ctrlRegVal = 0u;

 /* Clear the flag */

 isrFlag = 0u;

 /* Start the ISR */

 isr_Button_StartEx(ISR_Handle);

 CyGlobalIntEnable;

 /* Set Control register output as high */

 Ctrl_Reg_Write(1u);

 for(;;)

 {

 /* If freeze flag is set */

 if(0u != isrFlag)

 {

 /* Clear isr flag set in GPIO Interrupt Handler */

 isrFlag = 0u;

 /* Rewrite the value */

 Ctrl_Reg_Write(ctrlRegVal);

 #if(FREEZE_IO)

 /* Unfreeze I/O */

 CySysPmUnfreezeIo();

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 51

 #endif

 }

 /* Delay 200us */

 CyDelayUs(200u);

 /* Store the value of Control register */

 ctrlRegVal = Ctrl_Reg_Read();

 #if(FREEZE_IO)

 /* Freeze I/O */

 CySysPmFreezeIo();

 #endif

 /* Enter Deep-Sleep mode */

 CySysPmDeepSleep();

 }

}

To disable the freeze option, set FREEZE_IO to 0. Build and program the device. When the button is pressed and
released, the glitch can be seen on Pin_CtrlReg as Figure 66 shows. To enable the freeze option, set FREEZE_IO to
1. Build and program the device. In this case, I/O is frozen and no glitch is observed, as Figure 67 shows.

Figure 66. Output Signal Waveform (No Freeze I/O)

SYSCLK

Enter Deep-SleepWakeup

Pin_Button

Pin_CtrlReg

Figure 67. Output Signal Waveform (Freeze I/O)

11 Related Application Notes

AN79953 – Getting Started with PSoC 4

AN86233 – PSoC 4 Low-Power Modes and Power Reduction Techniques

AN60024 – Switch Debouncer and Glitch Filter with PSoC 3, PSoC 4, and PSoC 5LP

AN72382 – Using PSoC 3 and PSoC 5LP GPIO Pins

AN90799 – PSoC 4 Interrupts

http://www.cypress.com/?rID=78695
http://www.cypress.com/?rID=78797
http://www.cypress.com/?rID=40974
http://www.cypress.com/?rID=40974
http://www.cypress.com/?rID=95069

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 52

AN2094 – PSoC 1 Getting Started with GPIO

AN89610 - PSoC® 4 and PSoC 5LP ARM Cortex Code Optimization

12 Summary

This application note explains the basic use cases of the GPIO modes in PSoC 4 using the Pin Component in PSoC
Creator.

13 About the Authors

Name: Charles Cheng

Title: Application Engineer

Background: Charles is an application
engineer in the Cypress
Semiconductor
Programmable Systems
Division focused on PSoC
applications.

Name: Rajiv Badiger

Title: Application Engineer Staff

Background: Rajiv is an application
engineer in the Cypress
Semiconductor
Programmable Systems
Division focused on PSoC
applications.

Contact: rjvb@cypress.com

http://www.cypress.com/?rID=2900
http://www.cypress.com/?rID=91945
mailto:rjvb@cypress.com

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 53

A Appendix A: PSoC 4 GPIO Compared to PSoC 1, PSoC 3, and PSoC 5LP
GPIO

The PSoC 4 GPIO is different from that of PSoC 1, PSoC 3, and PSoC 5LP; see Table 10 for details.

Table 10. PSoC 4 GPIO versus PSoC 1, PSoC 3, and PSoC 5LP GPIO

GPIO Features PSoC 1 PSoC 3 PSoC 4 PSoC 5LP

CapSense √ √ √ √

LCD segment drive √ √ √* √

Eight drive modes √ √ √ √

POR state configuration × √ × √

Separate port DR and PS × √ √ √

Input/output synchronization × Bus_clk HFCLK, External* Bus_clk

* Not available in PSoC 4000

B Appendix B: PSoC 4 Development Boards

You can test the PSoC Creator projects provided with this application note on the following Cypress development
boards.

Device Family Development Board

PSoC 4000 CY8CKIT-040 PSoC 4000 Pioneer Development Kit

PSoC 4200 / PSoC 4100 CY8CKIT-042 PSoC® 4 Pioneer Kit

PSoC 4 CY8CKIT-049 4xxx Prototyping Kits

PSoC 42x7_BL CY8CKIT-042-BLE Bluetooth® Low Energy (BLE) Pioneer Kit

PSoC 4200M CY8CKIT-044 PSoC® 4 M-Series Pioneer Kit

http://www.cypress.com/go/cy8ckit-040
http://www.cypress.com/go/cy8ckit-042
http://www.cypress.com/go/cy8ckit-049
http://www.cypress.com/go/cy8ckit-042-ble
http://www.cypress.com/go/cy8ckit-044

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 54

Document History

Document Title: AN86439 - PSoC® 4 – Using GPIO Pins

Document Number: 001-86439

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 4288100 CLSC 03/27/2014 New application note

*A 4381956 RJVB 05/16/2014 Updated for PSoC 4000

*B 4739860 RJVB 07/02/2015 Updated for PSoC 4 BLE and PSoC 4 M-Series

Updated component customizer screenshots

Added information on latency in GPIO update

Added example projects

Added Appendix B – PSoC 4 Development Boards

Updated information on GPIO architecture

PSoC
®
 4 – Using GPIO Pins

 www.cypress.com Document No. 001-86439 Rev. *B 55

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer‘s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products

Automotive cypress.com/go/automotive

Clocks & Buffers cypress.com/go/clocks

Interface cypress.com/go/interface

Lighting & Power Control cypress.com/go/powerpsoc

Memory cypress.com/go/memory

PSoC cypress.com/go/psoc

Touch Sensing cypress.com/go/touch

USB Controllers cypress.com/go/usb

Wireless/RF cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

CapSense and PSoC are registered trademarks and PSoC Creator is a trademark of Cypress Semiconductor Corp. All other trademarks or registered
trademarks referenced herein are the property of their respective owners.

Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709

Phone : 408-943-2600
Fax : 408-943-4730
Website : www.cypress.com

© Cypress Semiconductor Corporation, 2014-2015. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress‘ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

http://www.cypress.com/go/locations
http://www.cypress.com/?id=1936&source=anxxxxx
http://www.cypress.com/?id=24&source=anxxxxx
http://www.cypress.com/?id=1933&source=anxxxxx
http://www.cypress.com/?id=2308&source=anxxxxx
http://www.cypress.com/?id=64
http://www.cypress.com/psoc/&source=anxxxxx
http://www.cypress.com/?id=1932&source=anxxxxx
http://www.cypress.com/?id=167&source=anxxxxx
http://www.cypress.com/?id=10&source=anxxxxx
http://www.cypress.com/psoc/&source=anxxxxx
http://www.cypress.com/?id=1573&source=anxxxxx
http://www.cypress.com/?id=2232&source=anxxxxx
http://www.cypress.com/?id=4749&source=anxxxxx
http://www.cypress.com/?id=4562&source=anxxxxx
http://www.cypress.com/?id=2203&source=home_support
http://www.cypress.com/?id=2203&source=anxxxxx
http://www.cypress.com/?app=forum&source=anxxxxx
http://www.cypress.com/?id=2200&source=anxxxxx
http://video.cypress.com/video-library/video/PSoC
http://www.cypress.com/?id=1162&source=anxxxxx
http://www.cypress.com/?id=4&source=anxxxxx
http://www.cypress.com/

