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A two-wheeled self-balancing robot with a fuzzy PD control method is described and analyzed
as an example of a high-order, multiple-variable, nonlinear, strong-coupling, and unstable system.
Based on a system structure model, a kinetic equation is constructed using Newtonian dynamics
andmechanics. After a number of simulation experiments, we get the bestQ,R, and state-feedback
matrices. Then a fuzzy PD controller is designed for which the position and speed of the robot are
inputs and for which the angle and angle rate of the robot are controlled by a PD controller. Finally,
this paper describes a real-time control platform for the two-wheeled self-balancing robot that
controls the robot effectively, after some parameter debugging. The result indicates that the fuzzy
PD control algorithm can successfully achieve self-balanced control of the two-wheeled robot and
prevent the robot from falling.

1. Introduction

Existing research on fuzzy reasoning can be roughly divided into three overlapping
categories [1]: fuzzy reasoning methods and their analysis, logical foundations of fuzzy
reasoning, and applications of fuzzy reasoning. Various fuzzy methods have been proposed
based mainly on three different ideas. The first idea, composition, leads to the Zadeh
compositional rule of inference (CRI) method [2, 3] and its variants [4–6]. The second idea
is that of analogy and similarity. The third idea, interpolation analysis of fuzzy reasoning
methods, is concerned with various properties of interest, such as interpretability of fuzzy
rules, consistency of new fuzzy consequences with existing fuzzy premises, and continuity
of fuzzy consequences with respect to fuzzy premises and fuzzy relations [7]. Numerous
different implication operators and connectives can be adopted in fuzzy reasoning methods,
including an important class of methods concerned with the suitability of particular fuzzy
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reasoning methods for domain-specific applications [8]. The logical foundation of fuzzy
reasoning is concerned with formal systems in which various fuzzy reasoning methods can
be interpreted. Several formal systems of this kind have been proposed, including basic logic,
monoidal t-norm-based logic, the quasiformal deductive system ofWang [9], and possibilistic
logic [10]. These formal systems are mainly generalizations of classical propositional logic
and multivalued logic. On the other hand, applications of fuzzy reasoning methods are
extensive and can be found in disparate areas such as complex systems modeling and control
[11], pattern recognition, decision-making [12], and safety monitoring.

In recent decades, motion control of robot manipulators has received a lot of attention
[13]. Motion control is needed to make each joint track a desired trajectory as closely as
possible. Many control algorithms, such as the computer torque method [14], optimal control
[15], adaptive control [16], variable structure control (VSC) [17], neural networks (NNs), and
fuzzy systems [18], have been proposed to deal with this robotic control problem. In [19, 20],
a computer torque control is developed on the basis of feedback linearization. However, these
designs are possible only when the robotic dynamics are well known.

A fuzzy logic controller (FLC) makes control decisions using well-known fuzzy IF-
THEN rules. FLCs can be classified into two major categories: the Mamdani-type FLC,
which uses fuzzy numbers to make decisions [21], and the Takagi-Sugeno (TS)-type FLC,
which generates control actions using linear functions of the input variables. In the early
years, most FLCs were designed by trial and error. Since the complexity of an FLC will
increase exponentially when it is used to control complex systems, it is tedious to design
and tune FLCs manually for most industrial problems such as robotic systems. This is
why conventional nonlinear design methods [22] such as fuzzy sliding control, fuzzy gain
scheduling [8], and adaptive fuzzy control [17] were adopted in the fuzzy control field to
alleviate difficulties in constructing the fuzzy rule base.

Analytical calculations show that a two-input FLC employing a proportional error
signal and a velocity error signal is a nonlinear proportional-integral (PI) or proportional-
derivative (PD) controller. Due to the popularity of PID controllers in industrial applications,
most of the development of fuzzy controllers in the past decade has revolved around fuzzy
PID controllers [13]. PI- and PD-type fuzzy controllers have gained prominence for almost
two decades now because of their simple structure, ease of implementation, and inherent
robustness [22]. Another possible implementation of a PID-type FC requires the development
of a popular PD-type fuzzy controller in parallel with a conventional integral (I) controller.
Presently, research interest in this field is focused on the development of adaptation policies
that can adapt these component fuzzy controllers in a suitable and simple fashion and can
further achieve a reasonably accurate and satisfactory performance. An excellent example of
applying self-organized fuzzy systems to autotune the gains of a classic PID controller online
and its successful application in controlling a MIMO robot arm can be found in [23].

A two-wheeled self-balancing robot [24] system is characterized as being multiple-
variable, high-order, nonlinear, strong-coupling, and unstable, so it is considered a standard
research target by many modern control theory researchers [25], and many abstract control
concepts such as system stability, robustness, controllability, and system anti-interference
properties can be displayed via two-wheeled self-balancing robot system experiments.
Recently, a two-wheeled self-balancing robot, namely, Segway [26], has been widely
recognized as a powerful personal transportation vehicle. It is constructed from very
sophisticated and high-quality dedicated components, such as a brushless servomotor
with neodymium magnets, a precision gearbox, nickel metal hydride batteries, silica-based
wheels, a digital signal processor as the main controller, motor drivers, six gyroscopes,
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and several safety accessories. In contrast to this kind of high-cost human transporter,
many researchers have presented low-tech self-balancing transporters and claimed that such
a vehicle can be built using off-the-shelf inexpensive components. Because of its simple
structure, stable operation, high energy efficiency, and environmental adaptability, it has very
broad application prospects in both military and civilian areas.

In this paper, the utility and effectiveness of soft computing approaches for a two-
wheeled self-balancing robot with structured and unstructured uncertainties is presented. In
this approach, precompensation of a hybrid fuzzy PD controller is proposed. The control
scheme consists of a fuzzy logic-based precompensator followed by fuzzy PD control.
Moreover, a fuzzy supervisory controller is used to supervise conventional proportional
and derivative actions such that the conventional gains are adapted online through fuzzy
reasoning.

We study the GBOT1001 two-wheeled self-balancing robot produced by Googol Tech-
nology (Shenzhen) Limited, and we establish the mathematical model of this system, use
fuzzy PD control theory to control the robot, and, at the same time, achieve effective control.

2. System Description

2.1. Structural Analysis of the Robot System

We can develop a linear model with the following assumptions [27].

(1) The robot is a rigid body and does not distort during moving.

(2) The left- and right-hand wheels are completely analogous.

(3) Cornering forces are considered negligible.

(4) Friction is neglected during the analysis.

(5) Since the time constant of electric motors is small compared to the system’s time
constants, the motor dynamics have been neglected in the model.

The design of the two-wheeled self-balancing robot is based on a mobile single
inverted pendulum. The robot is composed of a chassis carrying a DC motor coupled to
a planetary gearbox for each wheel, the DSP board used to implement the controller, the
power amplifiers for the motors, the necessary sensors to measure the robot’s states, and
the receiver for the radiocontrol unit, as well as a vertical bar. The wheels of the vehicle are
directly coupled to the output shaft of the gearboxes. A GE laser (scanner) motion controller
is the core of the embedded DSP board. This is composed of a floating-point DSP fromAnalog
Devices, an FPGA, three 10-bit D/A converters, and four 12-bit A/D converters.

2.2. Dynamics Model of the System

Figure 1 [27] shows the chassis diagram of the robot. The linear movement of the chassis
is characterized by the position x and the speed ẋ; it is also able to rotate around the axis
(pitch), a movement described by the angle θ, and the corresponding angular velocity θ̇. In
addition, the vehicle can rotate around its vertical axis (yaw)with the associated angle δ and
angular velocity δ̇. m is the mass of rotating masses connected to the left and right wheels,
M is the mass of the chassis, R is the radius of the wheel, L is the distance between the z-axis
and the center of gravity of the chassis, D is the lateral distance between the contact patches
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Figure 1: Chassis diagram of the robot.

of the wheels, yp is the shift position of the wheel with respect to the y-axis, and xp is the
shift position of the chassis with respect to the x-axis.

For the left-hand wheel,

m
··
xl = fl −Hl

Jω
R

··
xl = Cl − flR.

(2.1)

For the right-hand wheel,

m
··
xr = fr −Hr (2.2)

Jω
R

··
xr = Cr − frR. (2.3)

For the chassis,

M
··
xp = Hl +Hr

Jp
..

θ = (Vl + Vr)L sin θ − (Hl +Hr)L cos θ − (Cl + Cr)

M
..
yp = Vl + Vr −Mg

Jδ
..

δ =
D

2
(Hl −Hr).

(2.4)
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For a premise,

xp = x + L sin θ,

yp = L cos θ,
(2.5)

where Hl,Hr, Vl, Vr represent reaction forces between the different free bodies [27].
Modifying the above equations and then linearizing the result around the operating point
(θ ≈ 0, so sin θ ≈ θ, cos θ ≈ 1), the system’s state-space equations can be written in matrix
form as:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ẋ
..
x
θ̇
..

θ
δ̇
..

δ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 a23 0 0 0
0 0 0 1 0 0
0 0 a43 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x
ẋ
θ
θ̇
δ
δ̇

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0
b21 b22
0 0
b41 b42
0 0
b61 b62

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(
Cl

Cr

)
. (2.6)

In order to derive a simpler mathematical model, we need a decoupling unit (2.7) that
transforms Cl and Cr into the wheel torques Cθ and Cδ as follows:

(
Cl

Cr

)
=
(
0.5 0.5
0.5 −0.5

)(
Cθ

Cδ

)
. (2.7)

Some parameters of the GBOT1001 robot are as follows:

M = 21 kg, m = 0.42 kg, R = 0.106m, L = 0.3m, D = 0.44m, g = 9.8m/s2. (2.8)

Then the state-space equations for the vehicle can be written as two different systems
[28]: one system is the model (2.9) of an inverted pendulum, which describes the rotation
about the z-axis, and the other is the model (2.10) of rotation, which describes the rotation
about the y-axis. Thus, we obtain

⎛
⎜⎜⎝

ẋ
ẍ
θ̇
θ̈

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 1 0 0
0 0 −23.7097 0
0 0 0 1
0 0 83.7742 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x
ẋ
θ
θ̇

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0
1.8332

0
−4.9798

⎞
⎟⎟⎠Cθ, (2.9)

(
δ̇
δ̈

)
=
(
0 1
0 0

)(
δ
δ̇

)
+
(

0
5.1915

)
Cδ. (2.10)
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Table 1: Fuzzy control rules.
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Figure 2: Structure chart of the multiple fuzzy PD controllers.

3. Controller Design

3.1. Parameters of the Fuzzy PD Controller

First, we examine the controllability of the open-loop system. After some calculations, we
know that the system is controllable and the state feedback matrices can be obtained using
the LQR method. After a number of simulation experiments, we choose the matrices

Q =

⎛
⎜⎜⎝

1000 0 0 0
0 0 0 0
0 0 1000 0
0 0 0 0

⎞
⎟⎟⎠, R = 1. (3.1)

Then, we use the MATLAB function K = lqr(A,B,Q,R) to solve the optimality
problem. Running K = lqr(A,B,Q,R) in MATLAB, we can get the state feedback matrix:

K = [−10.1522, −5.6683, −26.5230, −4.1971]. (3.2)

Thus, the proportion parameter is 26.5230, and the differential parameter is 4.1971.

3.2. Fuzzy PD Control Method

3.2.1. Fuzzy PD Controller Design

A fuzzy logic controller is a controller that utilizes fuzzy logic to determine a course of action.
The computation of the control action is composed of four steps [28]: input scaling and
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Figure 4: Membership functions of output.

shifting, fuzzification, fuzzy inference, and defuzzification. In the input scaling and shifting
step, crisp inputs can be processed and scaled appropriately. In the fuzzification step, the
crisp inputs are then converted into fuzzy values. After fuzzy inference, a proper control
action is determined by searching through a previously established rule table. Finally, the
deterministic output is defined in the defuzzification step.

In this section, a fuzzy PD controller is applied to the dynamic model of the two-
wheeled self-balancing robot. Two inputs, position error e(t) = r − x and change of error
ė(t) = ṙ − ẋ, are fed to the fuzzy controller, while integral error is used as a conventional
integral action [29]. The inputs of the fuzzy controller are the position and speed of the robot,
while the angle and angle rate of the robot are controlled by the PD controller. Figure 2 shows
the structure of the fuzzy PD controller.

The input (e(t), ė(t)) and output (u) membership functions are denoted as NB, NM,
NS, ZE, PS, PM, and PB. The fuzzy membership functions for inputs and output are shown
in Figures 3 and 4. The control surface of the output is shown in Figure 5. Table 1 lists the
fuzzy control rules.

3.2.2. Simulation Result

The control system includes a Simulink model of the feedback system [29]. The block dia-
gram, as shown in Figure 6, consists of the subsystem 1 block with systemmatrices as defined
in the script file. The position state is compared to a reference signal and then multiplied by
its feedback gain, while the other states are simply multiplied by their respective gains, and
all of these are fed back into the subsystem 1 block, which is the Simulink model of the robot,
as shown in Figure 7.
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When a disturbance x0 = [0 0 0.2 0] is input to the system, the response curves
become as shown in Figures 8 and 9.

As shown in Figure 8, when the disturbance of the angle is given as θ = 0.2 rad, the
system is successfully stabilized as required, with good dynamic performance. The robot’s
position, speed, angle, and angle rate return to the origin point after no more than 5 s. The
system is stable throughout with good dynamic performance and robustness, showing that
the fuzzy PD control method is effective. Figure 9 is the graph of the output motor torque;
we can see that at time 0 the motor torque is very high, almost 5.4N ·m. 5 s later, it reduces to
0N ·m.
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4. Real-Time Control System

We use the fuzzy PD controller to replace the real-time control platform designed by
Googol Technology Limited, so we can get the self-balancing robot’s real-time control system
platform, as shown in Figure 10. Compared with the simulation model, the real-time control
system has a corner controller that is used to control the robot to turn around. After some



10 Mathematical Problems in Engineering

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

Times (s)

−1

M
ot

or
 to

rq
ue

(N
·m

)

Figure 9: Graph of output motor torque.

GoogolTech self-balancing robot control platform

To workspace 1

Simout 1

To workspace

Simout

Scope 1

Scope

Real control

CL

CR

Pos

Vel

Pitch
angle

Pitch
rate

Yaw
angle

Yaw
rate

RC joystick 2

VRMC

RC joystick 1

VRMC

PD

K∗u

ku

21

kec
-K-

ke

-K-

Gain 1

−

−

−

−

−

+

+

+

+
+

−1

Gain

0.8

GU-300-ESV initialization

Initialize

GU-300-ESV

Fuzzy logic
controller

Decoupling

Cθ

Cδ

CL

CR

Backlash

Controller

In1 Cδ

1
s

1
s

Figure 10: Actual self-balancing robot control platform.

parameter debugging, the robot is controlled effectively. Figure 11 is the robot’s real-time
curve; Figure 12 is its stable control photo.

From Figure 11, we can see that the robot’s angle is very large at the beginning, about
0.31 rad, so the motor output torque is very high, that is, about 13N · m with 1.7m/s initial
angle rate. 0.5 s later, the robot basically comes to a dynamic balance, which is 4 s faster than
in the simulation. Since the ground is not flat, and there are various outside interferences,
the robot does not move smoothly, and so there will be a little convulsion. After 5 s, an
interference is given to the robot; from the figure we can see that the motor output torque
and the angle rate increase rapidly. 0.7 s later, they all enter a stable state.

5. Conclusion

In this paper, based on the structure model of a two-wheeled self-balancing robot, a
systematic mathematical model is devised according to dynamic mechanics theory. After a
number of simulation experiments, we get the best Q, R, and state-feedback matrices. Based
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Figure 12: Stable control photo of robot.

on traditional PD control theory and fuzzy logic control theory, a fuzzy PD controller is
designed, which coordinates effectively the robust stability and speediness of the system.

Finally, a real-time control platform for the two-wheeled self-balancing robot is
designed; after some parameter debugging, the robot is controlled effectively. The result
indicates that the fuzzy PD control algorithm can achieve self-balanced control of the two-
wheeled robot successfully and prevent the robot from falling in order to satisfy the robot’s
anticipated control goals and obtain a good dynamic performance.
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