
 Matlab Serial Communication Tutorial
 Esposito 2009

Page 1 of 16

Tutorial: Serial Communication in Matlab

Objective: This tutorial teaches you how to use Matlab serial objects to interact with external hardware.

Disclaimer: The tutorial is not a replacement for reading the Matlab Documentation on Serial Interfacing;
nor does it conver all the concepts and implementation details of serial communication and the RS-232
protocol. The examples are soley geared toward the types of applications we see in our projects such as
sending commands to control robots, motors, or reading sensors such as GPS, laser scanners, compasses,
etc. Other types of eqpitment may require different techniques not covered here.

Contact:
Associate Professor Joel M. Esposito
esposito@usna.edu
Systems Engineering Department
United States Naval Academy,
Annapolis, MD 21402
http://www.usna.edu/Users/weapsys/esposito/

mailto:esposito@usna.edu

 Matlab Serial Communication Tutorial
 Esposito 2009

Page 2 of 16

Hardware Devices
A lot of external hardware devices are designed to connect to a PC through a Serial Port. Examples in our
department include Koala Robots, iCreate Robots, Scorbot, Robix Kits; and lots of sensors such as the Sick
or Hokuyo Laser Scanners, the Northstar kits, GPS, Compasses, etc

Traditionally all PC's had a serial port in the back. However, now they are being replaced by USB ports.
"Serial ports" take many forms. For example the Xbee modems create a wireless serial link. Many laptops
don't have a serial port – just USB ports. USB to Serial Converters or Bluetooth Connections can function
as "virtual serial ports", meaning that once set up correctly Matlab just veiws them as additional serrial
ports.

Basic Concepts
• Cabling:
• Serial Message: You litterally send or recive data over this cable on a single pin as a series of

bytes (1 byte = 8 bits or 0 – 255).
o Example: [0] [12] [27] [42] [112]

• Terminators: Just as we use a period in English to dentote the end of a sentence, we use a
"terminator" to indicate the end of a series of bytes that constitute a message.

o The terminator can be anything the sender and receiver agree on but a "carrage return"
(\r) is a common choice.

• Buffer: If you don't understand how a buffer works, you will never understand serial
communication. Say a sensor is streaming back data to your program, more frequently than your
program reads it. On your computer this data gets stored in something called a buffer, until you
decide to read it. Think of a buffer as a list.

o As new data values come in they get added to the bottom of the list (most recent data).
o If your program reads a value from the buffer, it starts at the top of the list (oldest data).

Once you read a byte of data, it is no longer in the buffer; and the data in the second
position on the list moves up to the top position, etc.

o The buffer has a finite length (you set it). This means there is a limit to how long the list
can get. Once the buffer is totally full, what happens when the sensor tries to send new
data to the buffer? The oldest data (top of the list) gets discarded forever, and all the
entries move up, to make room on the bottom of the list for new data.

o If you'rer smart about using the buffer, you can make sure you never miss any data. If
your not smart about it, it is easy to loose data or use old data.

Ex: We create a buffer of length 5. Initially it is empty
1
2
3
4
5

The sensor writes a value (10) to it
1 10
2
3
4
5

The sensor writes another value (6) to it, Note that the oldest data is in the first position and new data fills
in the buffer from the bottom.

 Matlab Serial Communication Tutorial
 Esposito 2009

Page 3 of 16

1 10
2 6
3
4
5

Now we read a value from it into the variable x.

1 6
2
3
4
5

x= 10. Note that once we read the value it is no longer in the buffer! Also note that we read the top
element which was the oldest data.

Here is anothet scenario. The buffer is full
1 10
2 6
3 12
4 3
5 1

Now the sensor writes a value to it (4)
1 6
2 12
3 3
4 1
5 4

The oldest data, in the top entry, (10) is discarded forever and all the entries shift up 1 spot, to make room
for the new value (4).

• Message Length and Check Sum: It's very possible, especially when you use wireless serial
connections that individual bytes in the message can get lost or garbled. There are a lot of
complex schemes out there to check that this doesn't happen. Here are two common ones that
show up in some serial command interfaces.

o One of the bytes in the message might indicate the length of the message (the total
number of bytes the message should contain).

o Another byte might be a checksum. A checksum is a number computed using a simple
arithmetic formula that can help you determine if the message has been garbled. Here is
an example: CheckSum = 255 – Sum of all data bytes in message.

o On the receiving end you can check that the length and checksum for the message you
received match the actual message. If they don't, you can decide to discard the message
or request new data from the device.

o Example: [4] [253] [1] [1] where 4 is the length (includes length and checksum bytes),
[1] [1] are the data bytes (meaning depends on what the sensor does), and 253 = 255 –
(1+1) is the checksum (does not include itself or length byte).

• Streaming vs. polling:

 Matlab Serial Communication Tutorial
 Esposito 2009

Page 4 of 16

o Polling a sensor is simple. You send it a message requesting some data each time you
want to take a measurement; then it returns a message containing that data.

o Streaming means that you send the sensor a message to turn it on. Then it begins
sending back measurements as it gets them – usually at a regular interval

What You Need to Know Before You Continue
Go the computer you will use, your device, and all the documentation that came with it.

• Find the Serial Port on the PC. If there is none, use a USB-to-Serial Converter. You may have
to install drivers for it. Connect the device to the PC.

• COM Port Number: Each serial port on the PC is labeled COM1, COM2, etc. You need to
figure out which one you're attached to.

o If there is a serial port at the back of the computer, chances are it's COM1. However,
even if there is only 1 serial port visible in the back, its possible its COM2, or COM3
especially if there is a modem.

o If you use a converter or blue tooth the port number gets assigned in software and may
change each time you disconnect or reconnect the device. On Windows XP (or vista
classic view), go to Control Panel/System/Hardware/DeviceManager/Ports/Comm Ports
and verify which port your device was assigned

• Device Settings: Go to the documentation that came with your device and identify the
Communication settings. We'll need this for the next section. Here is an example:

o Baud Rate
o

• Serial Command Interface (SCI): Go to the documentation that came with your device and find
the serial command interface (may have a different name). It explains how messages are
formatted and how to interpret the results. We'll need this later

Setting up Serial port objects
Basic Concepts

• Matlab uses a special variable type to keep track of serial connections – the Serial Object.
• Unlike nornal variables which have a single value, objects have many "attributes" or parameters

that can be set. (ex. port number, baud rate, buffersize, etc)
• One of those attributes is the port number. A label that cooresponds to which port your device is

connected to.
• In order to actually send or recieve data through the serial port object it must be open. When not

in use it can be closed (not the same as deleting it)
• You can have many different serial objects in memory. They can all send and receive data at the

same time as long as they are each on a different port.
• There can even be several objects associated with the same physical port. However, only one of

those objects associated with a given port can actually be open (sending or receiving data) at any
time.

Creating a Serial Port Object
Here is an example of how to do this. the only piece of information you must supply is which com port to
use. The rest of the attributes are set to some default values:
serialPort = serial('com1')

 Serial Port Object : Serial-COM1

 Communication Settings
 Port: COM1

 Matlab Serial Communication Tutorial
 Esposito 2009

Page 5 of 16

 BaudRate: 9600
 Terminator: 'LF'

 Communication State
 Status: closed
 RecordStatus: off

 Read/Write State
 TransferStatus: idle
 BytesAvailable: 0
 ValuesReceived: 0
 ValuesSent: 0

Note that this list of parameters and attributes it returns is not exhaustive.

Setting the Parameters
Most of the time you don't want to use the default values. You can view or change any attribute using the
functions get and set.
 get(serialPort, 'baudrate')

ans =
 9600

set(serialPort, 'BaudRate', 19200)
get(serialPort, 'BaudRate')

ans =
 19200

This method is cumbersome if you have a lot of things you want to change. A better way to to set them
when you create the Serial Object.
serialPort_new = serial('com1', 'baudrate', 19200, 'terminator', 'CR')

 Serial Port Object : Serial-COM1

 Communication Settings
 Port: COM1
 BaudRate: 19200
 Terminator: 'CR'

 Communication State
 Status: closed
 RecordStatus: off

 Read/Write State
 TransferStatus: idle
 BytesAvailable: 0
 ValuesReceived: 0
 ValuesSent: 0

You can list as many properties as you want. The name of the property goes in single quotes (check
spelling) and the value follows (if the value is text then use single quotes)

 Matlab Serial Communication Tutorial
 Esposito 2009

Page 6 of 16

The Parameters
To see a list of parameters and their current values
get(serialPort)

 ByteOrder = littleEndian
 BytesAvailable = 0
 BytesAvailableFcn =
 BytesAvailableFcnCount = 48
 BytesAvailableFcnMode = terminator
 BytesToOutput = 0
 ErrorFcn =
 InputBufferSize = 512
 Name = Serial-COM1
 ObjectVisibility = on
 OutputBufferSize = 512
 OutputEmptyFcn =
 RecordDetail = compact
 RecordMode = overwrite
 RecordName = record.txt
 RecordStatus = off
 Status = closed
 Tag = GarminGPS
 Timeout = 0
 TimerFcn =
 TimerPeriod = 1
 TransferStatus = idle
 Type = serial
 UserData = []
 ValuesReceived = 0
 ValuesSent = 0

 SERIAL specific properties:
 BaudRate = 19200
 BreakInterruptFcn =
 DataBits = 8
 DataTerminalReady = on
 FlowControl = none
 Parity = none
 PinStatus = [1x1 struct]
 PinStatusFcn =
 Port = COM1
 ReadAsyncMode = continuous
 RequestToSend = on
 StopBits = 1
 Terminator = LF

Note that some values are just numbers, while others can only take on certain values in a list (ex. 'on' or
'off '). To see a list of all paremeters with valid choices type (note that the curly brace denotes the default
value)
set(serialPort)

 ByteOrder: [{littleEndian} | bigEndian]
 BytesAvailableFcn: string -or- function handle -or- cell array
 BytesAvailableFcnCount
 BytesAvailableFcnMode: [{terminator} | byte]

 Matlab Serial Communication Tutorial
 Esposito 2009

Page 7 of 16

 ErrorFcn: string -or- function handle -or- cell array
 InputBufferSize
 Name
 ObjectVisibility: [{on} | off]
 OutputBufferSize
 OutputEmptyFcn: string -or- function handle -or- cell array
 RecordDetail: [{compact} | verbose]
 RecordMode: [{overwrite} | append | index]
 RecordName
 Tag
 Timeout
 TimerFcn: string -or- function handle -or- cell array
 TimerPeriod
 UserData

 SERIAL specific properties:
 BaudRate
 BreakInterruptFcn: string -or- function handle -or- cell array
 DataBits
 DataTerminalReady: [{on} | off]
 FlowControl: [{none} | hardware | software]
 Parity: [{none} | odd | even | mark | space]
 PinStatusFcn: string -or- function handle -or- cell array
 Port
 ReadAsyncMode: [{continuous} | manual]
 RequestToSend: [{on} | off]
 StopBits
 Terminator

Suggestions on Parameters
Some of these you don't really need to change. Others you will want to change.

Always Set
You always have to set this to match what is specified in the documentation that came with your device.

• BaudRate

Always Check
The defaults here are usually OK, but you should check that they match whatever is specified in the device
documentation.

• Terminator (sometimes have to change) 'LF' is linefeed, 'CR' is carrage return, etc
• FlowControl (defaults usually OK)
• Parity (defaults usually OK)
• DataBits (defaults usually OK)
• ByteOrder (more on this later)

Good Idea To Set
Your device will work without setting these but you can set these to make your life easy later.

 Matlab Serial Communication Tutorial
 Esposito 2009

Page 8 of 16

• Tag: The tag is like giving the serial port object a nickname. If have a few different serial ports
open this a good way to keep track of them. Example, serialPort is configured to talk with a
garmin GPS.
set(serialPort, 'tag', 'GarminGPS')

• TimeOut: If you try to read data from the serial port and there is no data in the buffer matlab will
keep trying to read for "Timeout" seconds (default 10 sec):
get(serialPort, 'Timeout')

ans =
 10

This might really slow down your code. There are ways around this, but if there is no data there
you probably don't want to sit there for 10 seconds, so consider making it smaller. On the other
hand, it does take some time for messages to pass over the wire, so setting it to zero means you
will probably miss a lot of messages.

• InputBufferSize: This specifies how long the buffer is. The default is 512 bytes. That might not

be long enough for your messages. Especially if you think the sensor will be streaming data back
more frequently than you plan on reading the buffer. Remember if the sensor tries to send data
and the buffer is full it will discard some old data and it will be gone forever. On the otherhand,
having an unessecarliy large buffer can be cumbersome.

Closing Serial Port Objects
Concepts
When your done with a serial port object it doesn't go away. Also, closing it, deleting it from memory and
clearing it from the workspace are three separate actions.

Example Code
For technical reasons you have to use this systax to properly get rid of it:
delete(serialPort_new)
clear serialPort_new

Comprehensive Example On Creating a New Port
Sometimes, if your program does not terminate correctly you have to abort (CTRL-C) before you can
properly delete or close a port. So, it is good practice to check for old serial objects before creating new
ones:

oldSerial = instrfind('Port', 'COM1'); % Check to see if there are
existing serial objects (instrfind) whos 'Port' property is set to
'COM1'
% can also use instrfind() with no input arguments to find ALL existing
serial objects
if (~isempty(oldSerial)) % if the set of such objects is not(~) empty
 disp('WARNING: COM1 in use. Closing.')
 delete(oldSerial)
end

% creating a new serial object for my GPS (note I can do all this in one
line if I wanted to
serGPS = serial('COM1'); % Define serial port
set(serGPS, 'BaudRate', 4800); % instructions for GPS gave me this
set(serGPS, 'Tag', 'GPS'); % give it a name for my own reference

 Matlab Serial Communication Tutorial
 Esposito 2009

Page 9 of 16

set(serGPS, 'TimeOut', .1); %I am willing to wait 0.1 secs for data to
arive
% I wanted to make my buffer only big enough to store one message
set(serGPS, 'InputBufferSize', 390)
get(serGPS) %so you can see my result

WARNING: COM1 in use. Closing.
 ByteOrder = littleEndian
 BytesAvailable = 0
 BytesAvailableFcn =
 BytesAvailableFcnCount = 48
 BytesAvailableFcnMode = terminator
 BytesToOutput = 0
 ErrorFcn =
 InputBufferSize = 390
 Name = Serial-COM1
 ObjectVisibility = on
 OutputBufferSize = 512
 OutputEmptyFcn =
 RecordDetail = compact
 RecordMode = overwrite
 RecordName = record.txt
 RecordStatus = off
 Status = closed
 Tag = GPS
 Timeout = 0.1
 TimerFcn =
 TimerPeriod = 1
 TransferStatus = idle
 Type = serial
 UserData = []
 ValuesReceived = 0
 ValuesSent = 0

 SERIAL specific properties:
 BaudRate = 4800
 BreakInterruptFcn =
 DataBits = 8
 DataTerminalReady = on
 FlowControl = none
 Parity = none
 PinStatus = [1x1 struct]
 PinStatusFcn =
 Port = COM1
 ReadAsyncMode = continuous
 RequestToSend = on
 StopBits = 1
 Terminator = LF

Writing To The Serial Port
Before you can write to your serial port, you need to open it:
fopen(serGPS)

 Matlab Serial Communication Tutorial
 Esposito 2009

Page 10 of 16

Now you need to figure out two things from the Serial Command Interface (SCI) that came with your
device:

1. Will you send binary data (bytes) or text (ascii)?
2. What will you send to it?

If your SCIs messages look like a list of numbers (ex: [4][253][1][1])), its probably the first choice. Note
that even though what you send is actually binary, the documentation might list it as numbers between 0
and 255, or hexidecimal numbers.

If your SCIs messages look like a mix of text and numbers (ex: 'MOVE 31'), its probably the second
choice.

Writing Binary Data
Use the command fwrite to send four bytes of binary data
fwrite(serGPS, [0, 12, 117, 251]);

Writing ASCI Commands
Use the command fprintf to send asci data. You can use a mix of text in single quotes and variables
values.

moveNum = 98; pauseTime = 2; % just some example data
fprintf(serGPS, 'MOVE %d, PAUSE %d', [moveNum, pauseTime]) ; % note

Its important to understand that a number, (ex. 98) is not sent as a number. Its actually the asci code for
the characters '9' and '8'.

Example Code

Reading From The Serial Port
 Streaming vs Polling: Flushing the Buffer
If you are going to poll the device (send it a request each time you want to get data) you don't want to read
any old data that might be left over in the buffer. This is a useful and quick way to clean it out

N = serRoomba.BytesAvailable();
while(N~=0)

fread(serRoomba,N);
N = serRoomba.BytesAvailable();

end

Reading Formatted ASCI
Say my device returns a text sentence like this

X, 2.1, Y, 3.2, T, -0.5

 Matlab Serial Communication Tutorial
 Esposito 2009

Page 11 of 16

Where X is the x position, Y the y position and T is the heading.

sentence = fscanf(serialObj, '%s'); % this reads in as a string (until
a terminater is reached)
[x, xPosition, y, yPosition, t, Heading] = strread(sentence,
'%s%f%s%f%s%f', 1, 'delimiter', ',')
% decodes "sentence" as string, float, string, float, string, float"
seperated (delimted) by commas

ans =

x = 'X'
xPosition = 2.1
y = 'Y'
yPosition = 3.2
t = 'T'
Heading = -0.5

Reading Data
You can use fread to read in data (not text). It can automatically format the data for you. Here is
an example. Say the buffer currently has 2 bytes of data in it
[1], [8]

a = fread(serialObj, 2);
% Will read two bytes and create a vector
a = [1; 8]

If you omit the ,2 the result would be the same -- it will just read until either a terminater is
reached or there is no more data in the buffer

Alternatively, suppose you know those two bytes are used to express a singel 16-bit integer, you
can use
a = fread(serialObj, 1, 'int16')

ans =

 264

Which is equivilent to 1*(256^1) + 8*(256^0)
Note that even though we only "read" 1 value, two elements were take out of the buffer since a 16
bit interger is actually composed of two bytes. To see a list of all format types, type
>> help serial/fread

Putting It All Together
Good Programming Advice

• to make your code crash resistance try: preinitializating any return variables, then put the reading
and writiing to the serial port inside a T RY-CATCH statement

• Debugging??

Example 1: GPS Initialization

 Matlab Serial Communication Tutorial
 Esposito 2009

Page 12 of 16

function [serGPS] = initializeGarmin(ComPortNumber)
%This function initializes the serial port properly
% for use with the Garmin GPS
%COMPORT is the number of the serial port: ex use 3 for 'COM3'
% port number can be checked in
% Control Panel/System/Hardware/DeviceManager/Ports
% serGPS output is a matlab serial port object
% Esposito 6/25/2008 with code from regneier, bishop, et al; modified by
% MIDN 1/C Li

port = strcat('COM',num2str(ComPortNumber));

out = instrfind('Port', port); % Check to see if THAT serial port is
already defined in MATLAB
if (~isempty(out)) % It is
 disp('WARNING: port in use. Closing.')
 if (~strcmp(get(out(1), 'Status'),'open')) % Is it open?
 delete(out(1)); % If not, delete
 else % is open
 fclose(out(1));
 delete(out(1));
 end
end

serGPS = serial(port); % Define serial port
set(serGPS, 'BaudRate', 19200); % Default Baud rate of 19200
set(serGPS, 'Tag', 'GPS'); % give it a name
set(serGPS, 'TimeOut', .1);
% want to make the buffer big enough that new message can always fit
%(example is 389 characters long but messsage length is variable)
% but not so big as to hold 2 messages
set(serGPS, 'OutputBufferSize', floor(389*1.5));
set(serGPS, 'InputBufferSize', floor(389*1.5));
fopen(serGPS); % Open it;
pause(1) % give it a second to start getting data
disp('Garmin Initialized')

Example 1: Read GPS

function [lat, lon] = ReadGarmin(serGPS)
% Reads a streaming GPS. If no data, does not wait, returns nans.
% Note that this code never crashes. Even if the GPS unit dies or
gets unplugged, or cant find satelites.

% serial port must first be initialized using initializeGarmin
% inputs: serGPS (from initializeGarmin)
% Outputs: x (lon) and y(lat)

%% initialize to nan, will have something to return even if serial
comms fail
lat =nan; lon = nan;

 Matlab Serial Communication Tutorial
 Esposito 2009

Page 13 of 16

%% IF THERE IS NO DATA?
if (get(serGPS, 'BytesAvailable')==0)
 disp('Data not avail yet. Try again or check transmitter.')
 return
end

%% IF THERE IS DATA
while (get(serGPS, 'BytesAvailable')~=0)
 try
 % read until terminator
 sentence = fscanf(serGPS, '%s');
 Ns = length(sentence);

 % Make sure header is there
 if strcmp(sentence(1:6),'$GPRMC')

[prefixRMC,timeRMC,ActiveRMC,lat,latdirRMC,lon,londirRMC,spdKnots,AngleD
eg] = strread(sentence, '%s%f%s%f%s%f%s%f%f', 1, 'delimiter', ',');

 % these cases mean that the GPS can't find satelities

 % (status not equal to A (active)
 % or the sentence wasn't long enough to fill in lat and lon

 if isempty(lat)||(ActiveRMC{1} ~='A')
 lat = nan;
 end
 if isempty(lon)||(ActiveRMC{1} ~='A')
 lon = nan;
 end
 end

catch ERR_MSG
 % if something didn't work correctly the error message displays
 disp('Error Reading Data! Check Unit')

end

end

 Matlab Serial Communication Tutorial
 Esposito 2009

Page 14 of 16

Example 2: Initialize the iRobot Create

function [serPort] = RoombaInit(my_COM);
% initializes serial port for use with Roomba
% COMMport is the number of the comm port
% ex. RoombaInit(1) sets port = 'COM1'
% note that it sets baudrate to a default of 57600
% can be changed (see SCI). Will NOT work if robot is plugged into
% charger.
% An optional time delay can be added after all commands
% if your code crashes frequently
global td
td = 0.01;
% This code puts the robot in SAFE(130) mode, which means robot stops
% when cliff sensors or wheel drops are true; or when plugged into
charger
Contrl = 132;

% Esposito 9/2008

warning off

%% set up serial comms,
% output buffer must be big enough to take largest message size
comm = strcat('COM', num2str(my_COM));

a = instrfind('port',comm);
if ~isempty(a)
 disp('That com port is in use. Closing it.')
 fclose(a)
 delete(a)
end

disp('Establishing connection to Roomba...');

% defaults at 57600, can change
serPort = serial(comm,'BaudRate', 57600);
set(serPort,'Terminator','LF')
set(serPort,'InputBufferSize',100)
set(serPort, 'Timeout', 1)
set(serPort, 'ByteOrder','bigEndian');
set(serPort, 'Tag', 'Roomba')

disp('Opening connection to Roomba...');
fopen(serPort);

%% Confirm two way connumication
disp('Setting Roomba to Control Mode...');
% Start! and see if its alive
Start=[128];
fwrite(serPort,Start);
pause(.1)

 Matlab Serial Communication Tutorial
 Esposito 2009

Page 15 of 16

fwrite(serPort,Contrl);
pause(.1)
% light LEDS
fwrite(serPort,[139 25 0 128]);

% set song
fwrite(serPort, [140 1 1 48 20]);
pause(0.05)
% sing it
fwrite(serPort, [141 1])

disp('I am alive if my two outboard lights came on')

confirmation = (fread(serPort,4))
pause(.1)

Example 2: Read all sensors from the Create.

function [BumpRight, BumpLeft, BumpFront, Wall, virtWall, CliffLft, ...
 CliffRgt, CliffFrntLft, CliffFrntRgt, LeftCurrOver,
RightCurrOver, ...
 DirtL, DirtR, ButtonPlay, ButtonAdv, Dist, Angle, ...
 Volts, Current, Temp, Charge, Capacity, pCharge] =
AllSensorsReadRoomba(serPort);
% Reads all 23 Roomba Sensors from a single data packet. Values are
% [BumpRight (0/1), BumpLeft(0/1), BumpFront(0/1), Wall(0/1),
virtWall(0/1), CliffLft(0/1), ...
% CliffRgt(0/1), CliffFrntLft(0/1), CliffFrntRgt(0/1), LeftCurrOver
(0/1), RightCurrOver(0/1), ...
% DirtL(0/1), DirtR(0/1), ButtonPlay(0/1), ButtonAdv(0/1), Dist
(meters since last call), Angle (rad since last call), ...
% Volts (V), Current (Amps), Temp (celcius), Charge (milliamphours),
Capacity (milliamphours), pCharge (percent)]
% Can add others if you like, see code
% Esposito 3/2008
warning off
global td
sensorPacket = [];
% flushing buffer
confirmation = (fread(serPort,1));
while ~isempty(confirmation)
 confirmation = (fread(serPort,26));
end

%% Get (142) ALL(0) data fields
fwrite(serPort, [142 0]);

%% Read data fields
BmpWheDrps = dec2bin(fread(serPort, 1),8); %

BumpRight = bin2dec(BmpWheDrps(end)) % 0 no bump, 1 bump

 Matlab Serial Communication Tutorial
 Esposito 2009

Page 16 of 16

BumpLeft = bin2dec(BmpWheDrps(end-1))
if BumpRight*BumpLeft==1 % center bump sensor is really just
% left AND right at same time
 BumpRight =0;
 BumpLeft = 0;
 BumpFront =1;
else
 BumpFront = 0;
end
Wall = fread(serPort, 1) %0 no wall, 1 wall

CliffLft = fread(serPort, 1) % no cliff, 1 cliff
CliffFrntLft = fread(serPort, 1)
CliffFrntRgt = fread(serPort, 1)
CliffRgt = fread(serPort, 1)

virtWall = fread(serPort, 1)%0 no wall, 1 wall

motorCurr = dec2bin(fread(serPort, 1),8);
Low1 = motorCurr(end); % 0 no over current, 1 over Current
Low0 = motorCurr(end-1); % 0 no over curr, 1 over Curr
Low2 = motorCurr(end-2); % 0 no over curr, 1 over Curr
LeftCurrOver = motorCurr(end-3) % 0 no over curr, 1 over Curr
RightCurrOver = motorCurr(end-4) % 0 no over curr, 1 over Curr
DirtL = fread(serPort, 1)
DirtR = fread(serPort, 1)

RemoteCode = fread(serPort, 1); % coudl be used by remote or to
communicate with sendIR command
Buttons = dec2bin(fread(serPort, 1),8);
ButtonPlay = Buttons(end)
ButtonAdv = Buttons(end-2)

Dist = fread(serPort, 1, 'int16')/1000 % convert to Meters, signed,
average dist wheels traveled since last time called...caps at +/-32
Angle = fread(serPort, 1, 'int16')*pi/180 % convert to radians, signed,
since last time called, CCW positive

ChargeState = fread(serPort, 1);
Volts = fread(serPort, 1, 'uint16')/1000
Current = fread(serPort, 1, 'int16')/1000 % neg sourcing, pos charging
Temp = fread(serPort, 1, 'int8')
Charge = fread(serPort, 1, 'uint16') % in mAhours
Capacity = fread(serPort, 1, 'uint16')
pCharge = Charge/Capacity *100 % May be inaccurate
%checksum = fread(serPort, 1)
pause(td)

	Tutorial: Serial Communication in Matlab
	Hardware Devices
	Basic Concepts
	What You Need to Know Before You Continue

	Setting up Serial port objects
	Basic Concepts
	Creating a Serial Port Object
	Setting the Parameters
	The Parameters
	Suggestions on Parameters
	Always Set
	Always Check
	Good Idea To Set

	Closing Serial Port Objects
	Concepts
	Example Code

	Comprehensive Example On Creating a New Port
	Writing To The Serial Port
	Writing Binary Data
	Writing ASCI Commands
	Example Code

	Reading From The Serial Port
	Streaming vs Polling: Flushing the Buffer
	Reading Formatted ASCI
	Reading Data

	Putting It All Together
	Good Programming Advice
	Example 1: GPS Initialization
	Example 1: Read GPS
	Example 2: Initialize the iRobot Create
	Example 2: Read all sensors from the Create.

