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Linear and Nonlinear Controller 
Design for Robust Automatic Steering 

Jurgen Ackermann, Jurgen Guldner, Wolfgang Sienel, Reinhold Steinhauser, and Vadim I. Utkin 

Abstract-For an automatic steering problem of a city bus 
the reference maneuvers and specifications are introduced. The 
robustness problem arises from large variations in velocity, mass, 
and road-tire contact. Two controller structures, both with feed- 
back of the lateral displacement and the yaw rate, are introduced: 
a linear controller and a nonlinear controller. The controller 
parameters are first hand-tuned and then refined by performance 
vector optimization. Both controllers meet all specifications. Their 
relative merits are analyzed in simulations for four typical driving 
maneuvers. 

I. INTRODUCTION 

UTOMATIC steering of vehicles is of practical interest, A e.g., for transport vehicles in factories and ship docks, for 
buses on separate, narrow (i.e., cheap) lanes, and in the future 
as part of an integrated system of automated highway traffic. 
The primary task of automatic steering is to track a reference 
path, where the displacement from the guideline is measured 
by a displacement sensor. The reference may consist of the 
magnetic field of an electrically supplied wire or permanent 
magnets in the road. The sensor is mounted in the center of 
the front end of the vehicle. The controller output acts on the 
front steering angle. 

The design of an automatic steering system is a robustness 
problem in view of large variations in velocity and mass of 
the vehicle and contact between tire and road surface. In the 
present study, model data and specifications for a city bus 
0 305 are taken from the IFAC benchmark example [l]. 
A comparison will be made between linear and nonlinear 
controller concepts. 

For linear control it was investigated in an earlier study [2], 
how the tracking accuracy is improved by additional feedback 
of the yaw rate which can be measured by a gyro. Thereby, 
the automatic steering problem becomes much less dependent 
on the uncertain operating conditions velocity, mass, and 
road-tire contact. The study showed a significant reduction 
in the displacement from the guideline for all maneuvers and 
operating conditions. In the present study the design method 
used in [ 2 ] ,  the Parameter Space Approach is further exploited 
to explore extreme design directions. The resulting robust 
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linear controller with fixed gains achieves good performance 
for a wide range of uncertainty in the operating conditions. 

In the second part of this paper, a nonlinear controller struc- 
ture is designed in an effort to further improve the performance 
of the automatic steering system. The nonlinear controller 
is based on Sliding Mode Control and includes dynamic 
adaptation to changing operating conditions via an estimator- 
like observer. The control design procedure is presented in 
a step-by-step manner. The advantages and drawbacks of the 
two approaches are contrasted in simulation studies. 

Finally, controller parameters of both the linear and nonlin- 
ear controller are tuned automatically by optimizing a vector 
performance index such that the tracking performance for 
typical maneuvers is improved. 

11. DYNAMIC MODEL AND PROBLEM STATEMENT 

A. Model for Vehicle Dynamics 

The classical single-track model is u5ed to model the 
steering dynamics. It is obtained by lumping the two front 
wheels into one wheel in the centerline of the vehicle, the 
same is done with the two rear wheels, see Fig. 1. 

In Fig. 1 the variables denote the following quantities: 6 ~ :  
steering angle; v': velocity vector at the CG, its magnitude 
is zi > 0; io: sideslip angle between vehicle center line and 
5 T :  yaw ra1.e; f~ (fr): lateral forces generated by the front 
(rear) tire, acting on the chassis; fw: wind forces acting on the 
aerodynamical center of the side surface; &, : distance between 
CG and aerodynamical center of the side surface; Ad): angle 
between centerline of vehicle and tangent to the guideline. 

Together with the dynamics of the reference path and an 
actuator with integrating characteristics the vehicle dynamics 
is described by the fifth order model 
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Fig. I .  Single-track model for car steering. 

where 
1111 = -((’, + (:f)/??1,’0 

(112 = -1 + (c,.!, - C f l ‘ f ) / i i W 2  

bl l  = c ~ / T ? I . ~  

b21 = c f l f / J  
(121 = ( C , l ,  - C f O f ) / J  d l l  = l / r r w  

= -((:,e; + c f~ ; ) / . l v  d21 =l, / .J .  

The cornering stiffnesses are written as a product p c f  for 
the front axle and pc, for the rear axle, where I.’ is a common 
road adhesion factor with p = 1 for dry road and 11, = 0.5 
for wet road. The vehicle mass 711 is normalized by p, i.e., 
rYr = , in /p  is a “virtual mass.” Similarly, the moment of inertia 
J is normalized as .I = *JILL. 

The curvature p r e f  = l / R r e f  of the guideline appears as a 
reference input to the system. It is assumed that the reference 
path consists of circular arcs, i.e., the transition to a new 
curvature corresponds to a step input in p,,f. 

The data for the city bus 0 305 are lif = 
3.67ni, e, = 1.931n, li, = 6.12rn, e,, = 0.565111, 
(‘f = 198000N/rad, c,. = 470000N/rad, ti E 11; 201 Ins-’, 
7 1 ~  E [9950; 160001 kg, ji E [0.5; 11 and J = i 2 m ,  i 2  = 
10.85 m2. The parameter ,i is called “inertial radius.” Sensors 
are available for the lateral deviation y and for the yaw rate T .  

B. Design Specifications and Driving Maneuvers 

The design specifications are taken from the IFAC bench- 
mark example [l]. They are primarily given in terms of 
maximal displacement from the guideline and maximal steer- 
ing angle and steering angle rate. In detail they are: 

The steering angle is limited to I S f I  5 40 deg. 
The steering angle rate is limited to ISf) 5 23 deg s-’. 
The displacement from the guideline must not exceed 0.15 
m in transient state and 0.02 m in steady state. 
The lateral acceleration must not exceed 2 nis-’ for 
passengers comfort. The ultimate limit is 4 I ~ S - ~  for 
tip-over. 
The natural frequency of the lateral motion must not 
exceed 1.2 Hz. 

The maximal displacement of 0.15 m is due to safety 
reasons, e.g., if the bus enters a bus stop bay where passengers 
are waiting to enter the bus. 

The reference maneuvers considered for the simulations are: 
Transition from a straight line into a circle. The curve 
radius is R,,, = 400 m. 
Transition from manual to automatic operation. The bus 
is assumed to drive in a distance of y = 0.15 m parallel 

Fig. 2. Reference input p ,  ‘ I for entering a bu? stop bay. 
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Fig. 3.  Operating domain of the city bus 

. 
to the guideline when the control is activated. A fast 
transient is desired. 
Side wind forces. A gust of wind attacks the bus from 
the lateral direction. It is assumed that the wind velocity 
increases with U, = (1 - e P t l T )  20 m/s, T = 0.5 s. 
Entering into a narrow bus stop bay. The reference input 
preJt is shown in Fig. 2.  The admissable velocity should 
be 2.5 mg-l or higher. 

All simulations are performed with the linear vehicle 
model 1) taking into account the actuator saturations 
ISf I  5 23degs-1 and 16fl 5 40 deg. 

111. LINEAR CONTROLLER DESIGN 
The design of a robust automatic steering system for vehi- 

cles with fixed compensator transfer function is a challenging 
task due to the large uncertainty in velocity ( I  and virtual mass 
k = m/’p.  The domain Q of possible operating conditions for 
the city bus 0 305 is given in Fig. 3 where a road adhesion 
factor p E [0.5; 11 is assumed, such that fit E [9950; 32000] 
kg. Since the bus is not controllable for 71 = 0, a minimum 
velocity of ,ti- = 1 ms-l is assumed. The extrema1 vertex 
plants are denoted by q1 to q4, where q := [ v T ~ ] ~ .  

In earlier design studies, e.g., [2], it tumed out that a 
hard design conflict exists between the 23 deg s-l constraint 
on the steering angle rate when entering a narrow bus stop 
bay and good track following at all speeds. In [2] it was 
shown that additional feedback of the yaw rate leads to a 
significant reduction of the deviation from the guideline in 
nearly all driving maneuvers compared to earlier controller 
designs which used solely feedback of the deviation y. The 
present design study is based on the approach in [2] and will 
investigate extreme design directions. 

A.  Selecting a Controllei Structure 
In [2], feedback of the yaw rate with 

Sf = - IC,. r’ (2) 

was proposed. Fig. 4 shows the root locus of the transfer 
function r ( s ) / u f ( s )  with feedback (2) in dependency of the 
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Fig. 4. ti? I for iricrraaing gain 
1., . The zeros of the transfer function y( , ) / I / ,  ( .A )  are marked with circles, 
the Lero of /(.+)/ul(..) with a square. 

Root locus of the transfer function from I !  

gain A:?., where the operating point with maximal virtual mass 
and maximal velocity was selected, which turned out to be 
the most critical operating condition in an eigenvalue analysis 
[ 3 ] .  The feedback law ( 2 )  shifts the poles of the transfer 
function r ( s ) / ~ u ~ ( s ) ,  which are also poles of the transfer 
function : y ( s ) / u f ( s ) .  There occurs an almost cancellation of 
a pole/zero-pair in the transfer function from ' u ~ f  to :r/ for 
k ,  z 0.8'3. This reduces the influence of the complex pole 
pair on the time responses. The tracking controller will be 
designed with the fixed feedback gain k ,  = 0.89. 

The vehicle with yaw rate feedback is now considered 
for design of an outer loop with feedback of y to ?if via 
a compensator. A compensator structure for feedback of the 
sensor displacement from the guideline can be determined 
by root locus considerations. In Fig. 5 the root locus with 
proportional feedback of the deviation y to r r j -  is shown. By the 
control lab (2) one of the three poles at s = 0 has been shifted 
to s = -0.8934. From the remaining two poles at s = 0, two 
root locus branches start under f-90 deg and turn into the right- 
half plane to converge to asymptotes under an angle of f 6 0  
deg. Obviously. two zeros are necessary in the left-half plane 
to attract these two branches. These considerations suggest a 
compensator transfer function 

where inside the bandwidth J,. we have a proportional part 
k p ,  a differential part k ~ ,  and a double differential part ~ D D .  

The above controller structure, however, leads to an undesired 
stationary error in curve riding. To avoid this an integrating 
term k l / s  in the numerator of the controller transfer function 
has to be added. 'The PIDD' controller transfer function then 
becomes 

where a third real compensator pole with the same bandwidth 
U(. was chosen. The final controller structure with yaw rate 
and displacement feedback is shown in Fig. 6. 

-1 5 -1 0 - 0 5  0.0 0.5 1.0 1.5 211 
" 

Fig. 5. Root locus of the transfer function from I I  I to with yaw rate 
feedback A.,. = 0.89. 

Fig. 6 .  Controller stmcture 

TABLE I 
POLES AhD ZFROS OF THF TRANFER FUVCTlOh I / (  \ ) / I t ,  ( 5 )  

305 THERE IS 4N ADDITIOML DOLBLE POLE XT THI ORKIIN 
WITH Y A W  RATE FEEDBACK A ,  = 0 89 FOR THF CITY BLS 0 

Pule< Zeros 

-0.1695 - 0.1243 

Operatins 
condition 

1 -39.66 
-6.3.78 

-0.8934 - 0 . 4 3 6 6 ~ ~ 1 . 4 9 1  3 -0.3930 f .j1.376 
-0.1608 -0.12.X 

4 -12.25 
-21.17 -19.75 

B .  The Parameter Space Approach 

To illustrate the different system dynamics for varying 
operating conditions, the poles and zeros of the transfer 
function y(s ) /uf (s )  of the bus 0 305 with yaw rate feedback 
(kv = 0.89) are calculated in Table I for the four extrema1 
plants, see Fig. 3. For low velocities (operating conditions 
1 and 4) a real pole is close to the origin, for high velocities 
(operating conditions 2 and 3) a weakly damped complex pole 
pair is critical. In all four cases the influence of these critical 
poles on the time response of the system is decreased by zeros 
in their neighborhood which was intended by proportional 
feedback of the yaw rate. 

Conventional methods for controller design like pole place- 
ment yield a unique controller for each plant. i.e., no further 
robustness criteria can be incorporated in the design step. The 
parameter space approach, on the other hand, can be used to 
determine a set of coefficients for a given controller structure 
which simultaneously stabilize a finite number of plants. 
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More generally speaking, the parameter space approach 
allows to determine the set of parameters 3.1, for which 
the characteristic polynomial p ( s .  h) ,  h E X, is stable. The 
parameter vector h may consist of uncertain plant parameters 
q, like v and fi in the present example. Then, the parameter 
space approach can be utilized for stability analysis 141. The 
plant is robustly stable if the operating domain is entirely 
contained in the set of stable parameters: Q c Qstat,le := 3.1. 
In the case of controller parameters k, the set K := 7-l of 
stabilizing controller parameters can be determined [3], i.e., 
each controller from the set IC will stabilize the given plant. 

The procedure for determining the stability regions in h- 
space for Hurwitz-stability is as follows: First. the real and 
imaginary parts of the characteristic polynomial are deter- 
mined for s = j w  

p(jw. h)  = Rep(w, h)  + j Imp(w, h)  

The frequency w is gridded in the interval w E [O; m) and 
for each grid point w = w* the simultaneous solution of the 
two equations 

Rep(w*. h) = O  
Inip(w*, h) = O  (4) 

is determined. An explicit solution is only possible for a 
two-dimensional h-space. Therefore, a two-dimensional cross 
section in h-space has to be fixed before solving (4), if dim 
h > 2. A simple choice of such a cross section is fixing all 
but two parameters, say h ~ ,  1 ~ 4 .  . . .. Then, (4) depends only on 
hl and h2 and the resulting solutions can be visualized in the 
(h l ,  h2)-plane. 

For the problem of automatic track guiding, Hurwitz- 
stability is not sufficient. A hyperbola in the s-plane is selected 
to guarantee settling time and damping values for the worst 
case. The eigenvalues of the closed-loop system should lie in 
the region I' on the left-hand side of the boundary 

The parameters a0 and W O  are chosen according to the basic 
rule of robust control [ 3 ] :  Leave a slow system slow and a 
fast system fast. Applied to the present problem this means 
not to shift the real pole which lies close to the origin for low 
velocities too far into the left-half plane. On the other hand 
it is not desired to have real poles close to the origin at high 
speeds in order to avoid a sluggish response. For this reason 
two different values for 00 are chosen in dependency of the 
velocity: 00 = 0.12 for low velocities and 00 = 0.35 for high 
velocities. The parameter WO which determines the damping 
of the hyperbola for (T H -m for fixed 00 is set such that 
w~/crO = 5 which corresponds to a damping of 0.196. The 
eigenvalues of Table I are all located in the admissible region 
I?. The main task of the control is to shift the two eigenvalues 
at the origin into the region r. If all eigenvalues of the closed 
loop system are located in the region l7 then the plant is called 
r-stable. 

For each of the four extremal plants (see Fig. 3 )  with 
controller (3),  the boundary i)r of the region I? in the complex 

1 
kD 

Fig. 7. Set of r-stabilizing controllers for operating point q3 

eigenvalue plane will be mapped into controller coefficient 
space resulting in four I?-stabilizing regions. Their intersection 
is the set of simultaneous I?-stabilizers for the four extremal 
plants [ 3 ] .  

The r-stability boundaries will be displayed in the 
( k ~ ,  kol,)-plane. These two parameters are involved in 
determining the location of the zero pair that should pull the 
right-half plane branches of the root locus of Fig. 5 into the 
left-half plane. Initial values for the controller parameters are 
taken from [ 2 ] .  The compensator transfer function obtained 
there was 

(6 )  
0 . 2 7 ~ ~  + 1.3s + 1.9 + 0.75/s 

( s 2  + 2 . 0.6.40s + 402)(s + 40) ' 
fc:l(s) = 403 

It robustly stabilizes the given operating domain Q, but it 
does no1 meet all specifications. 

With the fixed controller parameters k p  = 1.9,k1 = 
0.75, D = 0.6, and w, = 40 from (6). the closed-loop 
polynomial p ( s , k ~ , k ~ ~ )  depends only on k~ and k o ~ .  
For s = .(a) + jw (a ) .a  = -a, where ~ ( a )  satisfies (3, 
real and imaginary part of the characteristic polynomial can 
be determined. The boundary parameter cv is gridded in the 
interval Q: E [CO; cc) and for each grid point a* the set of 
equations (4) is solved for k~ and ~ D D .  

As an example the l7-stability boundaries for the operating 
point q3, i.e., a0 = 0.35, are shown in Fig. 7. The r-stability 
boundaries divide the parameter plane into a finite number of 
separated regions. By selecting one arbitrary point from each 
region, the set of I?-stabilizing controllers is determined: If one 
point of a region turns out to be I?-stable then the entire region 
is r-stable, and vice versa. The point (1.3, 0.27) marked with 
a cross IS I?-stable and, hence, all controller parameters from 
the entire region indicated by the cross I?-stabilize the plant q3. 

In this example, it was demonstrated how to determine 
the set of r-stabilizing controllers for one extremal plant. 
In the same manner the set of I?-stabilizing controllers can 
be deteimined for the other extremal plants. If there exists 
an intersection of these I?-stabilizing sets, then the controller 
parameters from this intersection simultaneously I?-stabilize 
the considered plants. The four vertex plants q1 to q4 (see 
Fig. 3 )  are taken as representatives for the present controller 
design. Once a controller is determined, a stability analysis of 
the selected controller has to verify r-stability for the entire 
plant family 131. 
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C. Investigation of Extreme Design Directions 
In view of actuator constraints and passenger comfort, i.e., 

small lateral accelerations and low natural frequency w, of the 
lateral motion, a controller with low gains and low bandwidth 
looks promising. On the other hand, low gain controllers lead 
to unsatisfactory path following. The controller (6) can be 
considered as a compromise solution which allows good track 
following at all speeds and has a sufficiently small bandwidth 
uc. This controller will be used as comparison for further 
controller designs. 

Simulation results for maximal virtual mass for the con- 
troller (6), taking into account the actuator constraints, are 
shown in Figs. 9-10 with dashed lines. The maximal speed 
for entering a narrow bus stop bay with maximal virtual 
mass is 1.3 rris-', for higher velocities the deviation from the 
guideline exceeds 0.15 m. All other maneuvers were simulated 
for maximal speed 71 = 20 111 s-'. 

It is desired to enter the bus stop bay at higher speeds. and 
the controller has to be redesigned. The deviation from the 
guideline will certainly get smaller with increasing controller 
gains and controller bandwidth. An interesting question which 
arises at this point is: Find controller parameters such that the 
admissible speed for entering the bus stop bay gets as large 
as possible. 

Taking the controller parameters from (6) as initial values 
a set of I?-stabilizing controller parameters with larger band- 
width can be found by the parameter space approach. The 
( k ~ ,  kDD)-plane is used as cross section in parameter space to 
visualize the set of r-stabilizing controllers. It is known from 
controller (6) that it I?-stabilizes the entire plant, i.e., a set of 
simultaneously r-stabilizing controller parameters for the four 
vertex plants can be determined in the ( k ~ ,  koo)-plane. 

By small modification of the remaining parameters k p ,  k ; ~ ,  
and 11, one can find directions in this three-dimensional 
subspace for which the set of r-stabilizing controllers grows 
or shrinks. Once the largest set is determined, the controller 
parameter U, is increased stepwise and in each step the 
free parameters k p .  D.  and 121. are tuned such that the set 
of simultaneously I'-stabilizing controllers gets as large as 
possible. 

After each iteration step, some controllers from the simul- 
taneously 1'-stabilizing set are tested in simulations and the 
maximal velocity for entering the bay is determined. During 
the iterations one recognizes that no significant rise in the 
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maximal velocity for entering the bus stop bay occurs if the 
bandwidth is, increased beyond U,, = 100. The set K: of 
simultaneously r-stabilizing controllers for the four vertex 
plants for w,. = 100,11 = 0.5. k p  = 10. and k~ = 3,  is 
displayed in Fig. 8. 

The simul1:aneously r'-stabilizing set K: in Fig. 8 allows a 
wide range in the parameters X:D and X : D D .  Several controllers 
from this set are tested in simulations and it turns out that 
the control performance is best for larger k ~ .  Finally, the 
controller 

0.6? + 13s + 10 + 3 / s  
,f(.2( s) = loo3 (7)  ( 9  + 100s + 1 0 0 2 ) ( s  + 100) 

is selected. In an analysis of the closed loop r-stability can be 
proved for this controller, see [4], [ ? ]  for details about utilizing 
the parameter space approach for robustness analysis. 

With the controller (7) the maximum speed for entering the 
bus stop bay is 2.63 m s-'. Simulation results for the controller 
are displayed with solid lines in Figs. 9 and 10. The maneuver 
for entering the bay was simulated for 'U = 2.5 [ti H-', the other 
maneuvers at maximal speed 1' = 20 rIi s- ' .  Compared to the 
compensator (6) the deviations for crosswind and cornering 
are significantly reduced. It is surprising, however: that the 
deviation for switching from manual to automatic steering 
converges slower to the guideline than for controller (6) .  Due 
to the higher gains the controller makes use of the maximal 
steering angle rate of 23 deg s-' as shown in Fig. 10. The 
lateral accelerations at the sensor position are larger compared 
to the simulalion results of controller (7), but they are still in 
the admissible range. 

With the help of the parameter space approach it was possi- 
ble to find a set of simultaneously 1'-stabilizing controllers for 
the four vertex plants for a given bandwidth L J ~ , .  A compromise 
solution for uc has to be determined weighing between slow 
responses and low velocity for entering the bus stop bay at 
low controller bandwidth (6) and larger lateral acceleration 
and higher natural frequency of the lateral motion at high 
controller bandwidth (7). The lateral acceleration in Fig. I0 
shows that the "tight" control by (7) requires faster motions 
at higher frequencies than the "soft" control by (6). 

The hand-tuning procedure provides good initial values for 
fine-tuning by optimization in Section V. 

IV. DESIGN OF A NONLINEAR CONTROLLER 

In this section, we describe a different approach to design 
a robust controller for automatic steering of the city bus 
0 305. The control methodology is based on sliding mode 
control theory and robust state observation. A suitable cas- 
caded controller structure is developed step-by-step, including 
a stability analysis. The nonlinear control design procedure, 
in contrast to linear controller design methods, accounts for 
actuator conslraints and provides adaptation to changing op- 
erating conditions via state and uncertainty observation. The 
control parameters are first hand-tuned using simulations and 
then optimized with the control design package ANDECS, 
developed at DLR. 



ACKERMANN e /  a/ LIYEAR AND NONLINEAR CONTROLLER DESIGN FOR ROBUST AUTOMATIC STEERING I37 

I Enle- a narmw busslop bay 
I 
1 f E-1 

0 8  ‘ 0 4  
- 

5 g 0 0  
0 

-0 4 

- 0 8  

-1 2 1 -16 

-2 0 

I 

,, 

0.25 ’ 0.75 ’ 1.25 ’ -k 
Tracklenglh[mj 

E-2 

0 0  

2 -16 

-2 4 

-3 2 

-4 0 

-4 8 

’ -56  

d 

- >  . ! ,  
( 1  + 
\I 

0 0  0 1  0 2  03 0 4  0 5  0 6  0 7  0 8  0 9  1 0  E? 
Tracklmgth[ml + 

Crosswind 

,’ ’ 
1 1  , ’  

I . . - - -  (I ,-- -- 
\ I  

‘L’ 

0’1 0’2 0’3 0 4  0 5  06 0’7 OS 0’910 U 
Track Isnglh [ml > 

ManuaUaulomalr sleemg 

+ E l l  1r- . ~ - -  - 

2.4 

1.6 - 
9 0.8 

8 0.0 
E 

0 

-0.8 

.: -1.6 

P 
-2.4 

Fig. 9. Simulation results: Deviation from the guideline (dashed: controller (6) ,  solid: controller (7)). 
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Fig. 10. Simulation results: Steering angle rate (dashed: controller ( 6 ) .  solid: controller (7)). 

A .  Brief Introduction to Sliding Mode Control 

Sliding mode control is known to enable implementation 
of (theoretically) infinitely high gains with bounded control 
actions, resulting in robustness with respect to plant uncer- 
tainty and extemal disturbances. The basic idea is to restrict 
the state space trajectories of the dynamic system to a manifold 
called “sliding manifold,” denoted by S ( T )  = 0. This is 
achieved by directing the system trajectories towards this 
manifold “from both sides” (see Fig. 11) using two different 
controls U+ and U - .  Consequently, the control is switched 
discontinuously each time the trajectory crosses the manifold 
S(z) = 0, resulting in a variable structure of the system 
equations. The main benefits of sliding mode control are 

its invariance properties and the ability to decouple high 
dimensional problems into subtasks of lower dimensionality. 
The interested reader is referred to IS] for a more detailed 
introduction to sliding mode and variable structure systems. 

An inherent disadvantage of high gain feedback is its 
tendency to excite unmodeled dynamics, for example those of 
actuators. In particular, discontinuous switching of the control 
along the sliding manifold leads to the so-called “chattering 
problem,” inhibiting direct implementation of sliding mode 
control. A well-studied, reliable remedy is the utilization of 
observers as a by-pass for the high-frequency component in 
the control signal. The introduction of an observer preserves 
the properties of sliding mode control, the system performance 
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would be determined a5 

1 
l ’d  = - - ( / I ( / j + A ~ l ) + K y ) .  K>O (9) 

1, 

where K determines the desired rate of decay of y. However, 
both the states A and A2\c/1 and the velocity 71 are unknown. 

In order to obtain an estimate of the term q := v(/3 + AT/)), 
dynamic estimation via an observer is utilized, assuming fGg. 1 I .  State velocity vector!, in the vicinity of the sliding manifold. 

4 NN 0. The observer equation is defined to be 

Fig. 12. Nonlinear controller structure with observer 

being close to the “ideal” case, but exhibiting no oscillatory 
behavior or chattering [6]. 

At first sight, the design of an observer, for example of 
Luenberger-type, requires knowledge of the plant parame- 
ters. However, assuming slowly time-varying uncertainties 
(in comparison to the observer dynamics), an observer-like 
compensator can be used to estimate the uncertainty-terms. 
The sensitivity to uncertain parameters may be decreased by 
high observer gains. However, a compromise is needed to 
prevent excitation of unmodeled dynamics. The estimation 
observer proved to be an efficient tool to provide the necessary 
adaptation to changes in operating conditions. 

The proposed cascaded nonlinear control strategy requires 

where ;Y = :y - ij is the observation error for the lateral 
displacement. 

The observation errors II and Q can be made small even for 
(J # 0 by choosing L‘, and & such that the observer dynamics 
are at least one order of magnitude faster than those of q .  The 
observer ( I O )  has the structure of a Kalman-filter and, thus, 
can be expected to exhibit advantageous filtering properties in 
the presence of measurement noise. 

The estimates ?j and ;i are used for the desired yaw rate (9) 
to yield 

1 
P S  

T<{ = - - (4  + A-$). ( 1  1 )  

The entire closed-loop error system (still assuming ‘r = ~d 

and i M 0) is given by 

-K  K 1 

-P2 0 
[!I - = [ ; -P1 [!I. (12) 

only measurement of the displacement y from the guiding 
wire and of the vehicle yaw rate I‘, as the linear controller 
of Fig. 6. Due to the estimation properties of the observer, the 
nonlinear controller is robust with respect to the desired range 
of operating conditions. 

Summarizing the first step of the control design procedure, 
we can state that good tracking of the guiding wire is provided 
if the yaw rate of the vehicle is equal (or close) to the desired 
yaw rate as defined in ( I  I ) .  Note that the calculation of 
~ , i  requires only measurement of the lateral displacement y 
from the reference trajectory and the vehicle yaw rate T .  No 
knowledge of the system parameters except for P, is required. 

2 )  Step II: Control of Steeritig Angle Rate: The second step 
in the design procedure concentrates on determining a suitable 
control command uf to drive the error 37. = T - 7.d to 
zero. The control algorithm is based on sliding mode 
theory. The sliding manifold is defined to be 

B. Cascadd Nonlinear Control Design 

output dynamics of the single track model ( I )  
To facilitate the analysis, control design is based on the 

s = c;a.r. + A,; (13) 14 = 7 i ( Y  + A$]) + 1,r. (8) 

The fundamental idea of cascaded nonlinear control design 
is to first determine a “feedback” law for the desired yaw rate 
r d  for (8) viewing the yaw rate ‘r as a “fictitious” control input. 
In a second step, the actual control uf is derived based on the 
dynamics of 7’ to drive the error a?. = r - T d  between the actual 
yaw rate and the desired yaw rate to zero. This decoupling of 
the design procedure is made possible by the availability of 
the yaw rate T measured by a gyroscope. The full cascaded 
nonlinear control algorithm is sketched in Fig. 12. 

I )  Step I: Desired Yaw Rate Controller: Following the 
lines of traditional feedback linearization, the desired yaw rate 

where o > 0 is a constant gain determining the system behavior 
once the motion of (13) has been restricted to the manifold 
s = 0. 

To suppress uncertainty due to unknown parameters and 
disturbance p p F  f , let 

us = -M,,sign(S) (14) 

where Mu > 0 is the available steering angle rate. 
In the first step of the design procedure in Section IV- 

B1 it was shown that good tracking of the guiding wire is 
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achieved under the assumption that the yaw rate r of the 
vehicle is equal to 7‘d of ( 1  1). The complete system is expected 
to exhibit satisfactory performance if the error AT is small. 
The stability of AT is analyzed using the positive definite 
Lyupunov-function candidate 

for S in (13). Differentiating (IS) along the system trajectories 
under the control (14) yields 

v =ss 
= S(h(,O. 7‘. A*, y. hf, /&f. Q, 4) + b 2 l U f )  

I -M,b21/SI + lW.)l IS1 (16) 
where h ( . )  is unknown, but upper bounded, and independent 
of the control n f .  

Since b21 > 11 in ( I ) ,  there exists a finite Mu such that 

for all operating conditions. Hence, (16) implies together with 
V in (15) 

for some positive scalar <. It was established in 151 that 
V. and consequently S, converge to zero after finite time. 
Consequently, the yaw rate error Ar tends to zero at a rate 
specified by parameter c in (13). Boundedness of lh(.)l is 
ensured by virtue of bounded states 8. I , ,  and 6 f ,  bounded 
parameters U,) and b t l ( i .  .j = 1, 2) in (l), and bounded 
continuous desired yaw rate r d  as defined in ( 1  1 ) .  

Control law (14) depends on AT and A+, in other words 
on r. t .  r d .  and f d .  While id could be calculated from (1 1) 
and ( I  0), + is unknown. Since the dynamics of r are relatively 
slow due to the inertia of the bus, the first idea is to obtain 
A+ by a differentiating filter. However, the dynamics of a 
differentiator prevent ideal sliding mode to occur [5] and may 
lead to chattering and, thus, to unsatisfactory performance. A 
remedy is to use an observer to estimate the time-derivative 
of Ar as will be illustrated in the next section. 

3)  Step I l l :  Design of Robust Observer: For convenience, 
denote z1 = Ar and z2 = A+. The goal is to design an 
observer for the system 

z1 = 2 2  

32 = f ( i j ,  T ,  Sf. / ) r e f .  Uf) (19) 
where f ( . )  is bounded since all states, all parameters, and 
control uf are bounded. 

We define an observer as follows 

with M I  >> A42  > 0:21 = z1 - 21 = h r  - AT, and f(.) 
being an estimate of f ( . ) .  In general, the estimate f(.) depends 
on the modeling effort and on the computational complexity 
allowable in the observer realization. In the particular case 
studied in this paper, the accuracy of f(.) is limited by the 

parametrrc uncertainty in the model and the absence of state 
measurements except for T d ,  +d ,  r ,  y, and i L f .  

Subtracting (20) from (19) leads to the observer error- 
system 

(21) 

(22) 

- -  z1 =z2  - MlZl 
~2 = , f ( . )  - M2MiZi 
. -  - 

where T( .) = f (  .) - f (  .) is an estimation error. 
It has been shown in [SI that 21 % z1 = Ar and S2 M 

z2 = A+. This result follows from the equivalent control 
method 151 and the equivalency of high-gain systems and 
variable structure systems [7]. Explicitly, Z l  -+ 0 in (21) 
for large M I .  According to [5] ,  171, the resulting behavior 
can be analyzed by formally setting $1 = 0. Thus, F2 = 
MlZl .  which is substituted into (22) to obtain $2 = J ( . )  - 
MzFz. and consequently ZZ -+ 0 for large M 2 .  Condition 
M I  >> establishes motion rate hierarchy and sequential 
convergence to zero of the observation errors in (21) and 
(22). 

The estimates 21 and 22  replace the exact term Ar and the 
differentiated term A+ in (13), respective!y, and ideal sliding 
mode occurs in the observed variable S = cbl + 2 2 .  The 
behavior of the true system (19) will differ from the observer 
system (20) by the order of the observation errors (21) and 
(22), which can be arbitrarily adjusted by sufficiently high 
gains Ad1 and A 4 2 .  Little knowledge o,f plant parameters is 
required, in other words, the estimate f(.) can be composed 
of a few simple terms. For finite gains M,,  I = 1.2.  it can 
be shown that the resulting observation error is of (3( l / M t )  
order. Since observer (20) has a Kalman filter structure similar 
to (lo), filtering of measurement noise can be achieved for 
appropriate finite M,. This leads to a design cohflict between 
the need to suppress the uncertainty in J ( . )  with high gains 
and the desire to enhance noise filtering properties with low 
gains. A possible remedy is to use a third order observer 
instead of (20) with 23 = f ( . ) ,  assuming f(.) 0. see also 
[81, PI. 

Summarizing the controller design, we can conclude that the 
interconnected control system ( 11) and (14), in combination 
with the observer (20) exhibits good performance for sufficient 
amplitude Mu of control. Practical considerations on the 
choice of control parameters in the face of actuator constraints 
will be discussed in the following section. 

The controller is independent of all plant parameters except 
for the length I ,  and it only requires measurement of the yaw 
rate T and the lateral displacement from the guiding wire, y. 
Due to the estimation properties of the sliding mode observer, 
the control algorithm is robust with respect to all “reasonable” 
operating conditions. Fig. 12 illustrates the complete nonlinear 
control algorithm. 

4 )  Hierarchy of Gains for Nonlinear Controller: The plant 
as described in (1) is a dynamic system of fifth order. It is 
important to maintain the resulting hierarchy of time scales 
when determining the gains of the cascaded control loops: The 
outermost loop in y has to be kept “slower” than the middle 
loop in 8 ,  r. and AI), whereas the innermost loop in df can 
be made arbitrarily fast, being constrained only by limitations 
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Fig. 13. Lateral displacement for nonlinear controller 

In contrast to linear control systems, a high controller 
bandwidth actually tending to infinity for ideal switching in 
(14), does not lead to a high closed loop bandwidth. In fact, it 
was shown in [ 5 ]  that "in sliding mode" (e.g., when S O), the 
average of control is close to the equivalent control obtained 
by setting S = 0. Consequently, the closed loop behavior 
is solely determined by the controller gains A / €  and c and 
the observer gains 11,12.12.r, ,  and M 2 .  This enables analytical 
examination of the closed loop eigenvalues of the automatic 
steering system under the discontinuous control (14). 

Discretisation of a controller structure similar to the above 
design can be found in [9] for automatic car steering. 

of the control amplitude. The dynamic observers, on the other 
hand, should have time constants about one order of magnitude 
higher than the respective closed loop. 

The derivation in the previous sections neglected the lim- 
itations of the actuator when imposing condition (17). In 
reality, M,, 5 23 deg s - ' ,  as outlined in the specifications. 
The constraints require to determine the control parameters 
in inverse order, starting from the outermost loop and then 
following the hierarchy described above. 

To improve passenger comfort, it proved to be advantageous 
to replace the linear term Kjj in ( 1  1) by a saturation function: 

C. Numerical Studies 

Simulations were used to determine "hand-tuned" param- 
eters for the nonlinear control algorithm introduced in the 
previous sections. The linearized model ( I )  was used for 
all studies. Studies for automatic car steering showed no 
significant deterioration when using a full-scale nonlinear 
model [8]. The hand-tuned controller (see Table 11) served as 
a starting point for optimization with the optimiz,ation module 
MOPS provided within the control design package ANDECS 
developed at DLR. The optimization procedure for both the 
linear and th,e nonlinear controller is summarized in Section 
V. 

Since the simulations for the nonlinear controller are more 
valuable after the optimization procedure, the results are 

The slope in the origin, A/(,  should be chosen appropriately 
in order to yield the desired system behavior. The small-signal 
behavior remains unchanged for K = X/F, but the amplitude 
of the feedback term is limited by A, resulting in a smoother 
transition in the face of an initial error in y. The price for 
improving the ride quality is a slightly slower convergence, 
especially for large deviations 14. 
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Fig. 14. Steering angle rate and lateral acceleration for the nonlinear controllers for entering a narrow bus stop bay. 

displayed in Section V. For the simulations, the discontinuous 
switching function in the sliding mode controller (14) was 
substituted by a continuous approximation 

(24) 
S 

U f  = -Mu 
Js2 + 0.0001. 

This results in a continuous control u f .  

v. TUNING OF CONTROLLER PARAMETERS BY 
OPTIMIZING A VECTOR PERFORMANCE INDEX 

Two different controller structures have been developed for 
automatic steering: The linear controller (7) and the nonlinear 
controller (23), (13), (14). The two controllers found so 
far by hand-tuning can be judged by Fig. 9 for the linear 
controller and by the dashed graphs of Fig. 13 for the non- 
linear controller. Both controllers guarantee robust stability 
for the data of a city bus 0 305 and show well behaved 
steering performance. Nevertheless, the controllers exhibit a 
slow transition from manual to automatic operation. 

The question arises whether controller coefficients can be 
found which result in a faster transition behavior without dete- 
rioration of the already gained control performance in the other 
maneuvers. For investigating such a specified design direction, 
manual tuning of controller coefficients is not practical. Rather, 
a design procedure is required which allows direct inclusion of 
the respective design specifications and which can be steered 
into the desired design direction. 

An efficient procedure is controller design based on optimiz- 
ing a vector performance index [lo], [3]. This approach allows 
direct inclusion of specific requirements into the design, for in- 
stance for the maximal displacement. The design requirements 
are formulated mathematically by criteria c, = c , (k)  with 
values depending on the controller coefficients k. For each 
criterion c, a design parameter d, is chosen in a systematic 
manner that allows to steer the design in a desired direction. 
The scalar function y(k) = rriax, c , ( k ) / d ,  is minimized over 
k resulting in a certain criterion compromise. In successive 
design iterations one moves in the set of compromise solutions 
in a desired direction until no significant improvement in y 
can be realized. 

- 
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The primary objective in optimizing the controller parame- 
ters has been to improve regulation of the displacement error 
for the transition phase after switching from manual to au- 
tomatic steering. Simultaneously, the displacement regulation 
performance should not be impaired for the other maneuvers, 
especially with respect to maximal guideline deviation. These 
specifications were translated to the design procedure using 
criteria of the types 

In addition, eigenvalue criteria were used to guarantee 
robust I?-stability of the closed loop system with linear control. 
For sliding mode control, criteria to keep the eigenvalues of 
the linearized closed loop system stable, were included into 
the design specifications. For the linear controller design, the 
numerator coefficients k = [ ~ D D ,  k ~ ?  k p ,  k1IT were chosen 
free for optimization, whereas for the sliding mode controller 
the coefficients k = [c .  t. AIT were chosen for optimization. 
The observer parameters el. Ca.  M I ,  and M2 have to be 
determined according to measurement noise considerations as 
outlined in Section IV-B3. The starting values were taken from 
(7) for the linear controller and from Table I1 for the sliding 
mode controller. The optimization results in 

k = [ ~ L , D .  L D ,  k p ,  klIT = [1.108,10.912,24.024. 0.10241r 
(25) 

for the linear controller and in 

k = [c, t. A]' = [1.045,0.001,0.71]T 

for the sliding mode controller. 
Simulations were performed for the four reference ma- 

neuvers given in the benchmark problem [I], as listed in 
Section 11-B. For brevity only optimization results of the 
nonlinear controller will be shown. Fig. 13 shows the lateral 
displacement measured by the sensor at the front of the 
bus for the four maneuvers. The dashed lines mark the 
nonlinear controller with hand-tuned parameters, whereas the 
solid lines mark the optimization result. Fig. 13 displays 
the steering angle rate for the nonlinear controller using the 
approximation (24). It should be noted that in a microprocessor 
implementation, the adjustments derived in [8] are vital to 
avoid control chattering. 
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The figures show that the specifications given in Section 
11-B are met: The constraint on the steering angle rate is 
satisfied by the choice of Ad,, in (14). The limitation of the 
steering angle itself posed no problems in all given refer- 
ence maneuvers. The lateral displacement and acceleration 
requirements are also fulfilled (see Fig. I3 and Fig. 14). It 
is difficult to determine the natural frequency of the lateral 
motion analytically for the nonlinear controller and, thus, it 
cannot be included into the optimization procedure directly. 
The simulations with crosswind (see the left upper graph of 
Fig. 13) indicates a natural frequency of the closed loop system 
of approximately 1.6 Hz, which is only slightly higher than 
given in Section 11-B. The passenger comfort can be further 
improved by decreasing the parameters X and c. 

VI. CONCLUSION 
Two controllers for the automatic steering problem with 

feedback of the lateral displacement and yaw rate have been 
designed, a linear one and a nonlinear sliding mode controller. 
In both cases a main effort was to find feasible controller struc- 
tures with a few free controller parameters. These parameters 
were first hand-tuned and then refined by optimizing a vector 
performance index. The two entirely different designs (linear 
and nonlinear) uncover some of the inherent design conflicts 
that show LIP in both approaches. First there exists the conflict 
between smooth transients for passenger comfort and tight 
control for small lateral deviations from the guideline. The 
second requirement leads to faster control actions. A second 
design conflict is between the steering angle rate constraint 
and stability for the case of entering a narrow bus stop bay, 
where the admissible velocity should not be too low. 

Both controllers meet all specifications; there are, however, 
some general differences in all four maneuvers. The nonlinear 
controller yields smaller deviations from the guideline and it  
has a more oscillatory behavior that shows up particularly 
in the lateral acceleration and in the steering angle rate, but 
not in the deviations from the guideline. Regarding settling 
times, there are no significant differences between the two 
controllers. In both designs the initial considerations for fixing 
the controller structure and finding good starting values for 
the controller parameters by hand-tuning was important for 
the success of the final optimization. 

The reader, who has to solve an automatic steering problem 
may decide for himself if he prefers the linear or the nonlinear 
controller. Both of them do their task well and there is no big 
difference in the design effort and implementation cost. Both 
controllers can be improved by the use of additional sensors 
like lateral accelerometers at the front and rear axle. The gyro 
is, however, the more important sensor for the robust design 
and its signal is also less corrupted by noise. 
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