

Customer Training Workshop: Introduction to PSoC 4

Featuring the PSoC 4 M-Series Pioneer Kit

Replace Legacy 8-/16-Bit Platforms With the World's Most Flexible 32-Bit ARM[®] Cortex[®]-M0 One-Chip Solution

001-96819 Owner: JFMD (JHNW, GOPA, GHR, DSG, GMRL, JMY) Rev ** Tech lead: PMAD PSoC Creator 2.0 [C:\Creator\Detector\Detector.cyds

Header Files

Workshop Objectives

By the end of this workshop, you will

Understand the PSoC[®] 4 Programmable System-on-Chip architecture

Learn how to use Cypress's solutions and integrated development environment (IDE) to implement:

Digital designs with PSoC 4

CapSense® touch-sensing user interface designs with PSoC 4

One-chip, sensor-based system designs with PSoC 4

Workshop Agenda

Time	Page	Торіс	
0:00 (15 min)	<u>4</u>	Set Up and Install Software	
0:15 (10 min)	<u>5</u>	PSoC Terms	
0:25 (15 min)	<u>9</u>	Demo #1: PSoC Creator ^{™1} Overview	
0:40 (30 min)	<u>11</u>	Lab #1: PSoC 4 M-Series ² Pioneer Kit Overview and Blinking LED	
1:10 (20 min)	<u>14</u>	PSoC 4 Architecture	
1:30 (10 min)	<u>20</u>	Demo #2: Micrium µC/Probe ³ Overview	
1:40 (10 min)	<u>22</u>	Session Break	
1:50 (30 min)	<u>23</u>	Lab #2: Digital System Design	
2:20 (45 min)	<u>25</u>	Lab #3: CapSense Touch-Sensing Design	
3:05 (45 min)	<u>30</u>	Lab #4: Sensor-Based System Design	
3:50 (10 min)	<u>35</u>	Wrap-up	
4:00		End of workshop	

¹ PSoC 3, PSoC 4 and PSoC 5 Integrated Design Environment (IDE) software that installs on your PC
 ² A PSoC 4 with up to 128KB flash, 55 I/Os, Direct Memory Access, 2x CAN, 12 Programmable Analog Blocks and 16 Programmable Digital Blocks
 ³ A firmware development tool by Micrium that installs on your PC and helps debug system designs

Set Up and Install Software

Required software and initial steps

Copy the contents of the provided USB drive onto your laptop and install the software listed in the table below Follow the on-screen instructions to complete the installation in approximately 15 minutes

Software	Version	File Name
PSoC Creator ¹ Installer	3.2	"PSoCCreatorSetup_3.2_es100"
Micrium µC/Probe ²	3.5 (or newer)	"Micrium-uC-Probe-Setup-Release-3.5.15.300.exe"
PSoC 4 M-Series ³ Pioneer Kit Installer	1.0 (or newer)	"CY8CKIT044PIONEERKITSetupOnlyPackage_RevSS.exe"
PSoC 4 M-Series ³ Lab Exercise Files	1.0	"PSoC_4_M-Series_Workshop.zip"

Required hardware:

PSoC 4 M-Series³ Pioneer Kit (CY8CKIT-044), shown at right

Raise your hand if you need help!

¹ PSoC 3, PSoC 4 and PSoC 5 Integrated Design Environment (IDE) software that installs on your PC
 ² A firmware development tool by Micrium that installs on your PC and helps debug system designs
 ³ A PSoC 4 with up to 128KB flash, 55 I/Os, Direct Memory Access, 2x CAN, 12 Programmable Analog Blocks and 16 Programmable Digital Blocks

PSoC Terms

PSoC

PSoC is the world's only programmable embedded system-on-chip integrating an MCU core, Programmable Analog Blocks, Programmable Digital Blocks, Programmable Interconnect and Routing¹ and CapSense

Programmable Analog Block

A hardware block that is configured using **PSoC Components**² to create Analog Front Ends (AFEs), among other capabilities Includes **Continuous Time Blocks**, analog-to-digital converters (ADCs) and digital-to-analog converters (DACs)

Continuous Time Block (CTB)

A **Programmable Analog Block** that is used to implement continuous time analog circuits such as opamps and programmable gain amplifiers (PGAs)

Programmable Digital Block

A hardware block that is configured using **PSoC Components**² to implement custom digital peripherals and glue logic

Includes Universal Digital Blocks, Serial Communication Blocks (SCBs) and TCPWMs³

Universal Digital Block (UDB)

A PSoC **Programmable Digital Block** that contains: two programmable logic devices (PLDs), one programmable data path with an arithmetic logic unit (ALU), one status register and one control register

Configured in PSoC Creator⁴ using PSoC Components², or the graphical state machine editor or Verilog code

Serial Communication Block (SCB)

A PSoC Programmable Digital Block that is configurable as a UART, SPI or I²C interface

 1 Connects the Programmable Analog Blocks, Programmable Digital Blocks and I/Os 2 Free embedded ICs represented by an icon in PSoC Creator software

Illustration of a PSoC Device Being Flexibly

PSoC Terms

Timer, Counter, PWM (TCPWM) Block

A PSoC Programmable Digital Block that is configurable as a 16-bit timer, counter, PWM or quadrature decoder

CapSense[®]

Cypress's third-generation touch-sensing user interface solution that "just works" in noisy environments and in the presence of water The industry's No. 1 solution in sales by 4x over No. 2

Programmable Interconnect and Routing

Connects the Programmable Analog Blocks, Programmable Digital Blocks and I/Os Enables flexible connections of internal analog and digital signals to internal buses and external I/Os

PSoC Creator[™]

PSoC 3, PSoC 4 and PSoC 5 Integrated Design Environment (IDE) Software that installs on your PC that allows: Concurrent hardware and firmware design of PSoC systems, or PSoC hardware design followed by export to popular IDEs

Components

Free embedded ICs represented by an icon in PSoC Creator software Used to integrate multiple ICs and system interfaces into one PSoC Dragged and dropped as icons to design systems in PSoC Creator

Component Configuration Tools

Simple graphical user interfaces in PSoC Creator embedded in each Component Used to customize Component parameters

CapSense is used to create touch buttons and sliders

Component Icon CapSenseCSD

Component Configuration Tool

PSoC Terms

PSoC 4

A PSoC with an ARM® Cortex®-M0 MCU

PSoC 4 "Base-Series"

A PSoC 4 with up to 32KB flash, 36 I/Os, 8 Programmable Analog Blocks and 10 Programmable Digital Blocks

The original PSoC 4 family introduced in 2013 with over 2 million units in the field

PSoC 4 M-Series

A PSoC 4 with up to 128KB flash, 55 I/Os, DMA¹, 2x CAN², 12 **Programmable Analog Blocks** and 16 **Programmable Digital Blocks**

PSoC 4 L-Series

A PSoC 4 with up to 256KB flash, 98 I/Os, DMA¹, 2x CAN², USB, 13 **Programmable Analog Blocks** and 20 **Programmable Digital Blocks**

PSoC 4 BLE

A PSoC 4 with up to 256KB flash, 36 I/Os, 10 **Programmable Analog Blocks**, 10 **Programmable Digital Blocks** and an integrated BLE⁴ radio with a royalty-free BLE⁴ Protocol Stack 100+ Components available

IDAC³ Component used to create custom Analog Front Ends

Component Icon Component Configuration Tool

DAC	Configure 'IDAC_P4' ? ×				
	Name: IDAC Configure Built-in Polarity Positive (Source) Positive (Source)	4 Þ			
	Datasheet OK Apply (Cancel			

¹ Direct Memory Access ² Controller Area Network

³Current-output digital-to-analog converter

⁴ Bluetooth Low Energy wireless solution designed for short-range, low-power wireless applications

Additional Terms

Analog Front End (AFE)

An analog signal-conditioning circuit that uses opamps, filters and comparators to interface to an analog-to-digital converter (ADC)

Coprocessor

A specialized hardware block designed to offload compute-intensive tasks, such as signal processing or communication interfaces, from the main processor

Simplifies the application firmware design in the main processor by moving functions to specialized hardware blocks

Direct Memory Access (DMA)

A method to transfer data directly between memory and input/output subsystems Allows fast data transfers, bypassing the CPU during the read/write operation

Controller Area Network (CAN)

A serial communication standard designed to provide highly reliable communication between devices Swipe Gesture

CapSense Gesture Pad

A set of capacitive sensors designed in a pattern on a PCB to implement touch-based swipe and circular gestures, as shown to the right

Micrium[®] µC/Probe[™]

A firmware development tool by Micrium that installs on your PC and helps debug system designs A free 30-day Professional Edition License is available with the purchase of a PSoC 4 M-Series Pioneer Kit

Circular Gesture

Rev **

Introduction to PSoC 4 DEMO #1: PSoC CREATOR OVERVIEW

Demo #1: PSoC Creator Overview

Objectives:

- Learn about the PSoC Creator workflow:
- Create a new project
- Find 100s of example projects
- Place and configure a Component
- Open a datasheet
- Assign signals to pins
- Build and debug a design

A Heart Rate Monitor Example Project in PSoC Creator

Introduction to PSoC 4

LAB #1: PSoC 4 M-SERIES PIONEER KIT OVERVIEW AND BLINKING LED

001-96819 Owner: JFMD Rev ** Tech lead: PMAD Introduction to PSoC 4 Customer Training Workshop with PSoC 4 M-Series

11

PSoC 4 M-Series Pioneer Kit Overview

\$25 PSoC 4 M-Series Pioneer Kit (CY8CKIT-044)

Is form-factor compatible with the Arduino[™] and Raspberry Pi hobbyist kit ecosystems

Features a CapSense Gesture Pad and proximity¹ headers

Includes on-board sensors such as an ambient light sensor, an accelerometer and a PWM temperature sensor

Contains a PSoC 5 for programming and debugging

 1 A method to detect the presence of approaching objects without a physical touch 2 Ferroelectric RAM with an I²C serial interface

Lab #1: Blinking LED

Objectives:

Learn how to use PSoC Creator to implement and debug PSoC designs Implement a simple blinking LED design

Software tool:

PSoC Creator

Component:

Pin Component (configured as a digital output)

Lab 1: Block Diagram

Introduction to PSoC 4 **PSoC 4 ARCHITECTURE**

14

PSoC 4 Architecture

¹ Current-output digital-to-analog converter ² Universal Digital Block ³ Timer, Counter, PWM block

⁴ Serial Communication Block; programmable as I²C/SPI/UART

Owner: JFMD Tech lead: PMAD Introduction to PSoC 4 Customer Training Workshop with PSoC 4 M-Series

Programmable Digital Blocks Used for Coprocessors and Serial Interfaces

PSoC 4 implements Coprocessors and serial interfaces without increasing cost, size or power with: Universal Digital Blocks (UDBs) that can be configured as:

Timing-critical Coprocessors that simplify firmware and interrupt handling by replacing "bit-banging" firmware¹ Custom serial communication interfaces for emerging standards that replace external glue logic ICs (e.g., Microwire²) Serial Communication Blocks that can be configured as serial communication interfaces like I²C, UART, SPI or LIN TCPWM Blocks that can be configured as timers, counters, PWMs or quadrature decoders

Three Design Methods Used to Create Custom Digital Logic Using UDBs in PSoC Creator

1. Use digital logic Components in the PSoC Creator schematic...

3. Or Verilog code in the code editor...

To program the UDB

³ Programmable logic device (12C4 = 12 inputs with 4 combinatorial outputs)

⁴ A technique used to combine elements of a UDB to form wider elements

⁵ Product term: A logical conjunction of Boolean inputs

⁶ A programmable element of a UDB that contains an arithmetic logic unit

¹ A technique using firmware to directly control the state of I/Os ² A serial communication interface based on a subset of the SPI protocol

Programmable Analog Blocks Used for Custom AFEs and Sophisticated UIs

PSoC 4 enables custom AFE designs and sophisticated UIs without increasing cost, size or power with:

- A differential 1-Msps, 12-bit SAR ADC and high-performance opamps with ±1-mV-input offset voltage and 6-MHz gain bandwidth that offer discrete analog performance
- A 1- to 55-channel analog multiplexer that can be used to create custom AFE designs
- A 5-V input voltage that provides over 50% more analog input signal range than 3.3-V input voltages in most ARM[®] Cortex[®]-M0 MCUs
- A CapSense hardware block for sophisticated, capacitive touch-sensing user interfaces with advanced features such as proximity sensing¹, water tolerance² and SmartSense[™] AutoTuning³

PSoC 4 M-Series Programmable Analog Blocks

? Configure 'CapSense_CSD_P4' CapSenseCSD Widgets Config Scan Order Advanced Tune Helper Built-in 4 Þ General 🖶 Add button 🛛 🔣 Remove Buttons Linear sliders Radial sliders Matrix buttons Touchpads CapSense drag-and-drop Proximity sensors Generics design Component icon Õ S The CapSense graphical \square **Component Configuration** Tool simplifies parameter configuration OK Datasheet Apply Cancel

¹ A method to detect the presence of approaching objects without a physical touch ² The ability of a capacitive sensing solution to work in the presence of water droplets or mist

³ A Cypress algorithm that automatically sets parameters for optimal performance after the design phase and continuously compensates for system, manufacturing and environmental changes ⁴ Current-output digital-to-analog converter

CapSense Component With Configuration Tool in PSoC Creator

Programmable Interconnect and Routing Enables Flexible Hardware Designs

PSoC 4 enables flexible hardware designs with:

Programmable Interconnect and Routing that connects internal analog and digital signals to any I/O Programmable I/Os that support:

Eight drive modes¹ to interface with a variety of analog and digital peripherals such as analog and digital sensors MCU interrupts on the rising edge, falling edge or both edges of a digital input signal

PSoC Creator simplifies designs by:

Providing Pin Components to configure the programmable I/Os

Automatically routing signals between the system bus, Programmable Analog Blocks, Programmable Digital Blocks and I/Os

Pin Components Pin Component Configuration Tool PSoC Creator Design Using Programmable I/Os and in PSoC Creator Routing to Provide Internal Test Signals to the System Bus Multiplexer for Analog Test Signals AnalogTestMux 2 X Opamp Configure 'cy_pins' Opamp Name: Digital Input Channel 1 Preamp_In_1 Analog Pin X-E Differential -X AnalogTestPoin Pins Mapping Clocking Built-in Preamp Number of pins: 1 × 🗛 🔹 刘 [All nins] General Input Output Digital_Input_Pin ⋈→→ --- Digital Input Туре Drive mode Initial drive state ADC Analog High (1) Resistive pull up ADC SAR Seq Digital input Min. supply voltage Gain = 10.09 HW connection sdone Out_2 eoc Digital output Hot swap Inv 2 -Min <1-Bidirectiona Preamp_In_2 External terminal SAR Opamp H2 Opamp 2 12-bit Differential_In_1 Channel 2 Differentia Differential_In_2 Input_3 Datasheet ОК Apply Cancel Vss Channel 3 Input_4 Channel 4 Ground for Channels 3,4 ¹ The eight drive modes are: Strong Drive, Open-Drain High Drive, Open-Drain Low Drive, Resistive Pull-up, Resistive Pull-down, Resistive Pull-up/down, High-Impedance Digital, Vss Programmable I/Os High-Impedance Analog. Refer to the product datasheet for more information on these modes.

PSoC[®] 4 Portfolio ARM[®] Cortex[®]-M0 | CapSense[®]

	PSoC MCU PSoC 4000	Intelligent Analog PSoC 4100		F	Programmable Analog PSoC 4400		
			BL = BLE-Series	M = M-Series	L = L-Series		
			Q215 CY8C4128-BL 24 MHz, 256K/32K ¹ , 36 I/O, CMP ² , Opamp, ADC ³ , SCB ⁴ , IDAC ⁵ , TCPWM ⁶ , BLE ⁷		NEW CY8C4248-L Q315 48 MHz, 256K/32K ¹ , 53-98 I/O, CMP ² , Opamp, ADC ³ , SCB ⁴ , IDAC ⁵ , TCPWM ⁶ , UDB ⁸ , CAN ⁹ , USB	CY8C4248-BL 48 MHz, 256K/32K ¹ , 36 I/O, CMP ² , Opamp, ADC ³ , SCB ⁴ , IDAC ⁵ , TCPWM ⁶ , BLE ⁷ , UDB ⁸	
		NEW CY8C4127-M C215 24 MHz, 128K/16K ¹ , 51-55 I/O, CMP ² , Opamp, ADC ³ , SCB ⁴ , IDAC ⁵ , TCPWM ⁶ , CAN ⁹	NEW CY8C4127-BL 24 MHz, 128K/16K ¹ , 36 I/O, CMP ² , Opamp, ADC ³ , SCB ⁴ , IDAC ⁵ , TCPWM ⁶ , BLE ⁷	NEW Q215 48 MHz, 128K/16K ¹ , 51-55 I/O, CMP ² , Opamp, ADC ³ , SCB ⁴ , IDAC ⁵ , TCPWM ⁶ , UDB ⁸ , CAN ⁹	NEW CY8C4247-L Q315 48 MHz, 128K/16K ¹ , 38-98 I/O, CMP ² , Opamp, ADC ³ , SCB ⁴ , IDAC ⁵ , TCPWM ⁶ , UDB ⁸ , CAN ⁹ , USB CAN ⁹ , USB CAN ⁹ , USB	NEW 48 MHz, 128K/16K ¹ , 36 I/O, CMP ² , Opamp, ADC ³ , SCB ⁴ , IDAC ⁵ , TCPWM ⁶ , BLE ⁷ , UDB ⁸	
ormance		NEW Q215 CY8C4126-M 24 MHz, 64K/8K ¹ , 38-51 I/O, CMP ² , Opamp, ADC ³ , SCB ⁴ , IDAC ⁵ , TCPWM ⁶		NEW Q215 CY8C4246-M 48 48 MHz, 64K/8K1, 38-55 I/O, CMP ² , Opamp, ADC ³ , SCB ⁴ , IDAC ⁵ , TCPWM ⁶ , UDB ⁸ IDAC ⁵	NEW CY8C4246-L Q315 48 MHz, 64K/8K ¹ , 38-57 I/O, CMP ² , Opamp, ADC ³ , SCB ⁴ , IDAC ⁵ , TCPWM ⁶ , UDB ⁸ , CAN ⁹ , USB		CY8C44x6 48 MHz, 64K/16K ¹ Concept Only Contact Sales
- Perf		CY8C4125 24 MHz, 32K/4K ¹ , 22-36 I/O, CMP ² , Opamp, ADC ³ , SCB ⁴ , IDAC ⁵ , TCPWM ⁶		CY8C4245 48 MHz, 32K/4K ¹ , 22-36 I/O, CMP ² , Opamp, ADC ³ , SCB ⁴ , IDAC ⁵ , TCPWM ⁶ , UDB ⁸			CY8C44x5 48 MHz, 32K/8K1 Concept Only Contact Sales
	CY8C4014 16 MHz, 16K/2K ¹ , 5-20 I/O, CMP ² , I ² C, IDAC ⁵ , TCPWM ⁶	CY8C4124 24 MHz, 16K/4K ¹ , 22-36 I/O, CMP ² , Opamp, ADC ³ , SCB ⁴ , IDAC ⁵ , TCPWM ⁶		CY8C4244 48 MHz, 16K/4K ¹ , 22-36 I/O, CMP ² , Opamp, ADC ³ , SCB ⁴ , IDAC ⁵ , TCPWM ⁶ , UDB ⁸			
	CY8C4013 16 MHz, 8K/2K ¹ , 5-13 I/O, CMP ² , I ² C, IDAC ⁵ , TCPWM ⁶						
1 2 (3 /	Flash KB/SRAM KB Comparator Analog-to-digital converter	⁴ Serial Communication B ⁵ Current-output digital-to- ⁶ Timer, counter, PWM blo	lock; programmable as I ² C/S analog converter ock	Integration SPI/UART ⁷ Bluetooth Lov ⁸ Universal Dig ⁹ Controller Are	v Energy ital Block a Network Ava	Production Sampli Status ailability QQYY QQYY	ng Development Concept
00 R	001-96819 Owner: JFMD Introduction to PSoC 4 Customer Training Workshop with PSoC 4 M-Series 19						

Introduction to PSoC 4 DEMO #2: MICRIUM μC/PROBE

Introduction to PSoC 4 Customer Training Workshop with PSoC 4 M-Series

20

Demo #2: Micrium µC/Probe Overview

Objectives:

Learn about the Micrium μ C/Probe Tool and workflow:

Create a new project

Place and map Micrium virtual controls¹ and indicators¹ to the internal registers and memory locations in a PSoC 4 device Debug a PSoC 4 design by monitoring internal PSoC 4 registers

Software tools:

Micrium µC/Probe PSoC Creator

Micrium µC/Probe Debug Tool Enables Visual Debugging of Systems

A design created in **PSoC Creator**...

¹ Graphical representation of firmware parameters using buttons, gauges, charts and numeric indicators

Is graphically debugged with $\ensuremath{\text{Micrium}}\xspace\mu\ensuremath{\mathsf{C}}\xspace/\ensuremath{\mathsf{Probe}}\xspace$

Introduction to PSoC 4 SESSION BREAK

22

Introduction to PSoC 4 LAB #2: DIGITAL SYSTEM DESIGN

001-96819 O Rev ** Te Introduction to PSoC 4 Customer Training Workshop with PSoC 4 M-Series

23

Lab #2: Digital System Design

Objectives:

Measure the ambient temperature of the PWM temperature sensor using a TMP05¹ Component that is implemented using UDBs Implement a breathing LED using the TCPWM and XOR Digital Logic Components

Debug a system design with the Micrium $\mu C/\text{Probe Tool}$

¹ A digital temperature sensor that generates a pulse-modulated signal based on the temperature

Introduction to PSoC 4 LAB #3: CapSense TOUCH-SENSING DESIGN

CapSense Touch Sensing

CapSense replaces mechanical buttons

A capacitive sensor is used to measure the change in capacitance between a pin and ground CapSense algorithms and analog circuitry convert the measured capacitance to a raw count A finger touch increases the capacitance of the system, which in turn increases the raw count An increase in the raw count above a user-defined threshold registers a touch

Refer to the Getting Started With CapSense Guide for details on CapSense algorithms

 C_{χ} = Total Capacitance on the capacitive sensor node

 C_P = Parasitic capacitance

 C_F = Capacitance added by a finger touch

 C_F is dependent on the overlay material, overlay thickness and the dimensions of the finger (typical = 9mm) and sensor capacitances

CapSense algorithms use analog circuits to convert the capacitance to raw count, which is compared to the user-defined threshold to record a touch

SmartSense Auto-tuning

SmartSense Auto-tuning sets, monitors and continuously maintains optimal capacitive sensor performance

Reduces design effort by eliminating manual tuning (of baseline and threshold values) after the design phase

Adapts to manufacturing variations in PCB, overlay and paint that degrade touch-sensing performance

Adapts to changes in system environment due to RF noise sources

Allows a platform design approach that uses different overlays, button shapes and trace lengths with the same electronics

SmartSense Auto-tuning Cuts Design Cycle Time

SmartSense Auto-tuning eliminates timeconsuming manual tuning and the design iterations caused by it

CapSense Touch Sensing Enables Sophisticated User Interfaces

PSoC 4 tracks finger movements and touch-based gestures in two dimensions

Swipe gestures track up, down, left and right finger movements Circular gestures track clockwise and counter-clockwise finger movements Refer to the <u>PSoC 4 M-Series Pioneer Kit Guide</u> for details on touch-based gestures

CapSense maintains touch accuracy even in wet conditions

Refer to the Getting Started With CapSense Guide for details on liquid tolerance

Swipe Gesture: Up/Down

Swipe Gesture: Left/Right

Circular Gesture: Clockwise/ Counter-Clockwise

CapSense Gestures on the PSoC 4 M-Series Pioneer Kit (CY8CKIT-044)

CapSense Gesture Pad

Touch-sensing user interfaces are designed into end products that are exposed to liquids

Washing Machine With a Liquid-Tolerant UI

The PSoC 4 M-Series Pioneer Kit provides a platform to implement touch-based gestures rapidly

Lab #3: CapSense Touch-Sensing Design

Objectives:

Adjust the RGB LED color and intensity using three TCPWM Components Implement CapSense touch-based gestures using the CapSense Gesture Pad

Software tool:

PSoC Creator

Components:

TCPWM Components CapSense CSD Component

Lab 3: Block Diagram

Introduction to PSoC 4 LAB #4: SENSOR-BASED SYSTEM DESIGN

001-96819 Owner: JFMD Rev ** Tech lead: PMAD Introduction to PSoC 4 Customer Training Workshop with PSoC 4 M-Series

30

Sensor-Based System Design

Fitness monitors are examples of sensor-based system designs

Fitness monitors can have up to 8 or more analog and digital sensors to track activities To learn more about fitness monitors, download our <u>Wearables Solutions Catalog</u>

Fitness monitors require:

A heart rate monitor Activity monitoring and a step counter A touch-based user interface Maximum battery life A low system BOM cost

Designing a fitness monitor requires:

AFEs with opamps and an ADC to amplify, buffer and capture heart rate signals An accelerometer to capture changes in motion A touch-sensing IC to detect touches and gestures ICs with low-power modes to minimize system power consumption

PSoC 4 delivers a low-cost, single-chip solution for today's sensor-based system designs

Up3 Fitness Monitor by Jawbone

The newest Jawbone Up3 features a heart rate monitor and a touch-sensing interface to mobile devices

Microsoft Band Fitness Monitor

The new Microsoft Band includes a state-ofthe-art heart rate monitor and a touchsensing interface to mobile devices

PSoC 4 Integrates AFEs, Digital Logic and an MCU

PSoC 4 Delivers Five Flexible, Easy-to-Use Low-Power Modes

Power Mode	Current Consumption	Code Execution	Digital Peripherals Available	Analog Peripherals Available	Clock Sources Available	Wake-Up Sources	Wake-Up Time
Active	2.2 mA @ 6 MHz	Yes	All	All	All	-	-
Sleep	1.3 mA	No	All	All	All	Any interrupt source	0
Deep-Sleep	1.3 µA	No	WDT ¹ , LCD ² , I ² C/SPI	Comparator, opamps, POR ³ , BOD ⁴	WCO ⁵ , 32-kHz ILO ⁶	Comparator, GPIO ⁷ , WDT, SCB ⁸	25 µs
Hibernate	150 nA	No	No	Comparator, POR, BOD	No	Comparator, GPIO	2 ms
Stop	20 nA	No	No	No	No	Wake-Up pin, XRES ⁹	2 ms

PSoC 4 has best-in-class low-power modes

Consumes the lowest current in Stop mode with I/O-state retention Retains SRAM data in Hibernate mode

Retains complete system status, as well as opamp and comparator functionality, in Deep-Sleep mode

Immediate wake-up from Sleep mode, unlike some 8-/16-bit MCUs

PSoC Creator simplifies power optimization

Provides APIs to switch easily between low-power modes Provides APIs to control the power of PSoC Components

PSoC 4 Current Consumption in Different Power Modes

⁷ General-purpose input/output

⁸ Serial Communication Block

⁹ External reset

¹ Watchdog timer ² Liquid crystal display ³ Power-on-reset

Rev **

Introduction to PSoC 4 Customer Training Workshop with PSoC 4 M-Series

⁴ Brownout-detect

5 32-kHz watch crystal oscillator 6 32-kHz internal low-speed oscillator

¹ Trans-impedance amplifier using PSoC 4 Programmable Analog Blocks

Tech lead: PMAD

Lab #4: Sensor-Based System Design

Objectives

Measure ambient light intensity using an ambient light sensor Control the LED intensity based on the ambient light intensity

Software tools

PSoC Creator Micrium µC/Probe

Components

Rev **

SAR¹ ADC Component

Opamp Component

Lab 4: Block Diagram

Introduction to PSoC 4 WRAP-UP

References and Links

Product Webpages:

PSoC 4 Product webpage: www.cypress.com/PSoC4 PSoC 4100 datasheet: www.cypress.com/go/cy8c41datasheet PSoC 4200 datasheet: www.cypress.com/go/cy8c42datasheet PSoC 4100M datasheet: www.cypress.com/PSoC4100MDatasheet PSoC 4200M datasheet: www.cypress.com/PSoC4200MDatasheet PSoC 4 BLE datasheet: www.cypress.com/PSoC4200MDatasheet PSoC 4 BLE datasheet: www.cypress.com/PSoC4BLEDatasheet PSoC 7 Product roadmap: www.cypress.com/PSoCC80dmap PSoC 4 M-Series Pioneer Kit: www.cypress.com/CY8CKIT-044 PSoC Creator IDE: www.cypress.com/PSoCCreator Micrium µC/Probe: www.micrium.com/tools/ucprobe

Application Notes:

Getting Started With PSoC 4 (AN79953): www.cypress.com/go/AN79953 PSoC 4 Low-Power Modes and Power Reduction Techniques (AN86233): www.cypress.com/go/AN86233 PSoC 4 Intelligent Fan Controller (AN89346): www.cypress.com/go/AN89346 PSoC 4 I²C Bootloader (AN86526): www.cypress.com/go/AN86526 PSoC 4 and PSoC 5LP ARM[®] Cortex[®] Code Optimization (AN89610): www.cypress.com/go/AN89610 PSoC 3, PSoC 4, PSoC 5LP Digital Design Best Practices (AN81623): www.cypress.com/go/AN81623 PSoC 4100/4200 Hardware Design Considerations (AN88619): www.cypress.com/go/AN88619 Designing PSoC Creator™ Components With UDB Datapaths (AN82156): www.cypress.com/go/AN82156 Implementing Programmable Logic Designs With Verilog (AN82250): www.cypress.com/go/AN82250

Design Guides:

PSoC 4 CapSense Design Guide: www.cypress.com/go/AN85951

General Online Resources

Cypress Resources

- PSoC Product webpage: www.cypress.com/PSoC
- Cypress Roadmap: www.cypress.com/Roadmap
- Kits: www.cypress.com/kits
- Support: www.cypress.com/support
- Workshops: www.cypress.com/workshops
- Cypress Online Store: www.cypress.com/store
- Developer Community & Forums: www.cypress.com/forums
- App Notes: <u>www.cypress.com/AppNotes</u>

Cypress PSoC 4 M-Series Solutions: www.cypress.com/PSoC4

Cypress's PSoC 4 M-Series webpage is your one-stop-shop for everything, including product datasheets, development kits, app notes, software downloads, example projects and demo videos

Workshop Objectives Recap

You should now:

- Understand the architecture of the PSoC 4 Programmable System-on-Chip
- Know how to use the PSoC Creator IDE and the PSoC 4 M-Series Pioneer Kit to design with PSoC 4, to implement:
- Digital designs with PSoC 4
- CapSense touch-sensing user interface designs with PSoC 4
- One-chip, sensor-based system designs with PSoC 4

Please help us improve this workshop by completing our feedback form

Introduction to PSoC 4 **APPENDIX**

PSoC® 4100 Intelligent Analog Family

Applications	Block Diagram
User interface for home appliances Digital and analog sensor hub MCU and discrete analog replacement	PSoC 4 One-Chip Solution MCU Subsystem Programmable Analog Blocks
Features	Opamp SAR ¹ GPIO x8 x2 ADC
32-bit MCU Subsystem 24-MHz ARM [®] Cortex [®] -M0 CPU Up to 32KB flash and 4KB SRAM	Cortex®-M0 24 MHz $\widehat{\operatorname{Hz}}$ $\widehat{\operatorname{CMP}}$ CSD $\widehat{\operatorname{By}}$ GPIO x8
CapSense [®] with SmartSense [™] Auto-tuning Cypress Capacitive Sigma-Delta [™] (CSD) controller CapSense supported on up to 36 pins	sng sng but tidaC ²
Programmable Analog Blocks Two comparators (CMP) Two opamps, programmed as PGAs, CMPs, filters, etc. One 12-bit, 1-Msps SAR ¹ ADC Two IDACs ² (2x 8-bit, 2x 7-bit)	Flash (16 to 32 KB) Junctric and a constraint of the second sec
Programmable Digital Blocks Four programmable 16-bit TCPWM ³ blocks Two SCBs ⁴ : I ² C master or slave, SPI master or slave, or UART	(4 КВ)
Packages: 28-pin SSOP, 40-pin QFN, 44-pin TQFP, 48-pin LQFP	Serial Wire Debug GPIO x4 Segment LCD Drive
Collateral	
Datasheet: PSoC 4100 datasheet	Availability Sampling: Now Production: Now
Successive approximation register	³ Timer, counter, PWM block ⁴ Serial Communication Block, programmable as I ² C/SPI/UART

1 2

Introduction to PSoC 4 Customer Training Workshop with PSoC 4 M-Series

PSoC[®] 4200 Programmable Digital Family

Introduction to PSoC 4 Customer Training Workshop with PSoC 4 M-Series

PSoC® 4100 BLE-Series

Intelligent Analog Family with Bluetooth Low Energy

Applications

Sports and fitness monitors, wearable electronics, medical devices, home automation solutions, game controllers, sensor-based low-power systems for the Internet of Things (IoT)

Features

32-bit MCU subsystem 24-MHz ARM® Cortex®-M0 CPU Up to 256KB flash and 32KB SRAM

Programmable Analog Blocks

Four opamps, configurable as PGAs, comparators, filters, etc. One 12-bit, 1-Msps SAR¹ ADC

CapSense[®] with SmartSense[™] Auto-tuning

One Cypress Capacitive Sigma-Delta™ (CSD) controller with touchpad capability

Programmable Digital Blocks

Four configurable TCPWM² blocks: 16-bit timer, counter or PWM Two configurable serial communication blocks (SCBs)³: I²C master or slave, SPI master or slave, or UART

Packages

56-pin QFN, 68-pin CSP

Bluetooth Smart connectivity with Bluetooth 4.1 2.4-GHz BLE radio with integrated Balun

Block Diagram

Collateral

Rev **

Datasheet: PSoC 4100 BLE datasheet

Sampling: Now Production: Now

¹ Successive approximation register

² Timer, counter, PWM block

³ Serial Communication Block, programmable as I²C/SPI/UART

PSoC[®] 4200 BLE-Series

Programmable Digital Family with Bluetooth Low Energy

Applications

Sports and fitness monitors, wearable electronics, medical devices, home automation solutions, game controllers, sensor-based low-power systems for the Internet of Things (IoT)

Features

32-bit MCU subsystem 48-MHz ARM[®] Cortex[®]-M0 CPU Up to 256KB flash and 32KB SRAM

Programmable Analog Blocks

Four opamps, configurable as PGAs, comparators, filters, etc. One 12-bit, 1-Msps SAR¹ ADC

CapSense[®] with SmartSense[™] Auto-tuning

One Cypress Capacitive Sigma-Delta[™] (CSD) controller with touchpad capability

Programmable Digital Blocks

Four Universal Digital Blocks (UDBs²): custom digital peripherals Four configurable TCPWM³ blocks: 16-bit timer, counter or PWM Two configurable serial communication blocks (SCBs⁴): I²C master or slave, SPI master or slave, or UART

Packages

56-pin QFN, 68-pin CSP

Bluetooth Smart connectivity with Bluetooth 4.1

2.4-GHz BLE radio with integrated Balun

Collateral

001-96819

Rev **

Datasheet: PSoC 4200 BLE datasheet

¹ Successive approximation register ² Universal Digital Block

³ Timer, counter, PWM block

⁴ Serial Communication Block, programmable as I²C/SPI/UART

Block Diagram

Owner: JFMD I Tech lead: PMAD

Introduction to PSoC 4 Customer Training Workshop with PSoC 4 M-Series

PSoC[®] 4100 M-Series

Intelligent Analog Family

Rev **

Introduction to PSoC 4 Customer Training Workshop with PSoC 4 M-Series

PSoC[®] 4200 M-Series

Programmable Digital Family

