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Abstract 
This paper proposes an experienced self-tuning PID control method to the position 

control of slider-crank mechanism. The mathematical model of a slider crank mechanism 
coupled with PM actuator is described, firstly. By the Hamilton principle and Lagrange 
multiplier method, the mathematical formula is derived. Secondly, according to the 
experience of engineers, the initial PID parameters under normal operating condition can be 
found out. By the same way, the best parameters of PID controller under full-load condition 
can be found, too. The proposed self-tuning PID controller will automatically tune its 
parameters under these ranges according to the position error and error derivation. Moreover, 
the PC-based controller is implemented to control the position of the motor mechanism 
coupling system. The simulation and experimental results will show the potential of the 
proposed controller. 
 
1. Introduction 

The slider crank mechanism is a basic structure in mechanical application. It is also 
widely used in practical application. For examples, fretsaws, petrol and diesel engines are the 
typical application of velocity control. Due to its mechanical coupling, the physical sense is 
not enough to derive its dynamic equations. Jasinski et al. [1], Zhu and Chen [2] and Badlani 
et al. [3] have solved the steady state solutions of a slider crank few years ago. According to 
reference [4], the response of slider crank is dependent on length, mass, damping, external 
piston force and frequency. Based on the viewpoints of the ratios, length and speeds of the 
crank to the connecting rod, the transient responses have been investigated [5]. Mostly, the 
slider crank mechanisms are actuated by the field oriented control PM synchronous [6-8]. The 
slider crank mechanism driven by PM synchronous is to transfer motion to translation motion. 
Hence, the computed torque based robust and adaptive controllers are designed to control the 
motor mechanism [8]. With Hamiliton principle and Lagrange multiplier method, model 
equations of the slider crank mechanism coupling with PM synchronous are formulated [8-11]. 
Observing these dynamic equations, highly coupling is existed in these nonlinear equations. 
Hence, the traditional control scheme usually is not suitable to this mechanism. 

The PID method is the most popular controller up to now. Despite the progression of 
many control theories, the PID controller is still the majority of industrial processes [12-14]. 
Due to the easily understanding of the physical sense for parameters of PID controller, 
engineers used to apply it to practical objects. However, the PID controller is not robust to 
wide parameter varying and large external disturbance. Especially for the highly coupling 
nonlinear system of slider crank mechanisms, the PID controller is lack of adaptive capability. 
Usually, the parameters of PID controller are manually tuned under ideal condition, that is the 
operating point without load. However, these parameters are mostly not suitable for the 
condition with full load. To achieve practical requirement, engineers have to adjust the 
parameters under different operating conditions. However, the robustness is limited with a 
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small range. A rule to overcome this disadvantage is called self-tuning rule. Many researches 
and reports of self-tuning PID have been published. The parameter tuning at any time instance 
is usually based on a structurally fixed mathematical model produced by on-line identification 
procedure [15-17]. Unfortunately, recent plants are mostly difficult to obtain their fixed 
mathematical models. However, experts easily obtain the most proper parameters for no-load 
and full load. This paper proposed an intelligent self-tuning PID controller. The tuning 
method is based on the skilled engineers’ experience. Engineers will easily accept the 
straightforward design procedure. At the same time, the robustness will be extended. 

This paper is arranged as follows. Firstly, the mathematical model of a slider crank 
mechanism coupled with a PM synchronous is derived. Second, the tuning method of the 
proposed controller will be discussed. Section 4 will show simulation results. In section 5, the 
PC-based controller is set up for experimental. The proposed controller is applied to position 
control of a slider crank. The experimental results are also presented in this section. 
 
2. Slider Crank Actuated by a PM Synchronous 
2.1 PM Synchronous 
 A model of a PM synchronous motor can be simplified to the following block diagram. 
 

 
Fig 1 Block Diagram of a PM synchronous motor 

 
Usually, the PM synchronous motor is coupled with a gear speed reducer with a gear ratio of 

. Hence, the applied torque can be described as n
( )rmrmqt nBnJiKn θθτ &&& −−=             (1) 

where τ  is the torque in the direction of ,  is the torque constant,  and  are 
the inertia and viscous damping ration, respectively. 

rω tK mJ mB

 
2.2 Slider Crank Mechanism 
 In this section, Hamilton's principle and Lagrange multiplier are used to derive the 
differential equation for the slider-crank mechanism. The slider crank mechanism system is 
shown in Fig. 2. 
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Fig 2 A Slider Crank Mechanism System 

 
The slider-crank mechanism consists of three parts: crank, rod and slider. The holomonic 
constraint equation [12] is 

0=sinsin)( φθ lr −=ΨΦ             (2) 
where . [ ]Tφθ=Ψ
The kinematic velocity is obtained by the first derivation of eq. (2), as 
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0coscos =−=ΨΦΨ φφθθ &&& lr            (3) 
The kinematic acceleration is obtained by the second derivatives of eq. (2), as 

λφφθθ =−=ΨΦΨ sinsin 22 &&&& lr .           (4) 
where λ  is the Lagrange multiplier as 
              (5) φφθθλ sinsin 22 && lr −=
 The Lagrangian L , that is the total kinetic energy minus the potential energy, is 
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 The virtual work  includes the applied torque δW A τ  with the virtual angle δθ , the 
friction force  and the external force  with the virtual displacement FB FE δX B ,that is 

( ) ( )φδφθδθδθτδδθτδ sinsin  lrFXFFW BEBEB
A −−+=−+=     (7) 

where  and V  is the velocity of the slider B. ( BB VgmF sgn3µ−= ) B

Rewrite eq. (6) in terms of the generalized coordinate Ψ , then 
AQTΨ−= δδ AW               (8) 

where  is the generalized force and given as AQ
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The generalized constraint force can be formed in term of Lagrange multiplier as 
λT

ΨΦ=CQ                (9) 
where . [ ] cos    cos φθ lr −=ΦΨ

Thus, the virtual work by all constraint reaction forces is 
δ δψW C = T CQ               (10) 

 The general form of Hamilton's principle is 
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 The eq. (11) must hold for all Ψδ  and ( ) ( ) 021 =Ψ=Ψ tt δδ . Thus, according to the 
Euler-Lagrange equations of motion, the dynamic equation can be obtained as 

( ) ( ) ( ) 0=Ψ−−ΨΨΨΨ Ψλ
TΦ+DBU,N+M &&&          (12) 

where 
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where ,  and  are the mass of crank, rod and slider, respectively, and r and l are m1 m2 m3
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length of crank and rod, and θ and φ  are angle of crank and rod. The translation position 
 can be obtained by transforming bX θ , that is 
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3. Self-Tuning PID controller 
 In most researches, the parameter tuning is based on known mathematical models. Even 
the models unknown, the on-line identification or parameter estimation is proposed to 
establish an estimated model. However, the modeling error usually causes the unexpected 
conditions. 
 Fortunately, for any complex system, the experienced engineers can easily obtain the 
most proper parameters under no-load and full-load conditions. Take the proportional 
controller for example. Under operating conditions between no-load and full load, the 
proportional gain should be in the range of the gains of full-load and no-load conditions. Let 
the proportional gains are respectively  and  for no-load and full-load conditions. 
The proportional gain should be decreased from  to  along with the error and error 
derivation. According the common sense [19], if the proportional (P) controller’s gain 
increases, then the rising time and steady state error will be reduced. Too large gain will make 
the great overshoot and extreme oscillation. Too small gain will make steady state error 
existed. While the absolutions of error and error derivation are large, the proportional gain 
should be working on largest number, that is . While the error and error derivation are 
small enough, the proportional gain should be  to reduce the steady state error. The 
relationship can be shown as figure 3. Hence, let the tuning rule is defined as 
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where ,  and min
0 PKP = minmax PPKP −=∆ γ  is the adjusting rate. E(t) is error function and 

E(t) is variety of the error function. 
 

Fig 3 Tuning Rule of Proportional Gain          Fig 4 Tuning Rule of Integral Gain 
 
 By the same conception, the integral controller is helpful for steady state and hurtful for 
transient state. Hence, the integral (I) controller’s gain should be increased along with the 
error and error derivation decreasing. The curve is shown as figure 4. Let the tuning rule is 
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defined as 
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Let ,  and  and  are the gains under no-load and 
full-load conditions respectively. E(t) is error function and 

min
0 IKI = minmax IIKI −=∆ maxI minI

∆ E(t) is variety of the error 
function. 

Large differential controller can increase the speed of response. At the same time, large 
differential controller will cause large steady state error. Therefore, the differential (D) 
controller’s gain should be decreased along with the error and error derivation decreasing. The 
tuning rule can be shown as following figure and equation. 
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Let ,  and  and  are the gains under full-load and 
no-load conditions respectively. E(t) is error function and 

min
0 DKD = minmax DDKD −=∆ maxD minD

∆ E(t) is variety of the error 
function. 
 

 
Fig 5 Tuning Rule of Differential Gain 

 
 Due to the proposed PID self-tuning method based on the engineer’s experience, the 
experienced engineers will easily accept it. 
 
4. Simulation Results 
 In this section, numerical simulation results are used to demonstrate the potential of the 
proposed control rule. To demonstrate the performance, the PID self-tuning method is 
compared with a fixed PID control. 
The actual slider crank mechanism dimensions are =3.64, =1.18, =1.8, r =0.1, 
R=0.12, l =0.305, =0.055, =0.6732, =0.00062 and =0.000153. The initial angle 

is 
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'l tK mJ mB

( ) rad
4
10 πθ = . The objective is to control the desired translation position to 0.1m. 

 Figures 6-7 show the response for system with the fixed PID controller. The parameters 
of PID controller is manually setup for optimal performance under no-load condition, where 

=3.5695, =2.9267 and =0.7727. The desired specifications are settling time 
=0.5sec, rising time t =0.25 sec, maximum overshoot <5% and steady state error 
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sse <1%. Figure 6 shows the responses of translation position and angular under no load 
condition. These curves show this PID controller can achieve the desired specification. 
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 (a) Response of Translation Position                (b) Response of Angular 
Fig 6 Simulation Response of Fixed PID Controller (No-Load Condition) 

 
Figure 7 shows the responses under different operating conditions. The parameter variation is 
appeared by the mass of slider crank  changed from 1.8Kg to 7.5Kg. The external force is 
changed from 0Nt to 5Nt. Obviously, the fixed PID obtained under no-load condition cannot 
achieve the robustness with parameter varying and load existed. 
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Fig 7 Simulation Response of Fixed PID Controller (No-Load Condition) 

 
 Let the parameters of PID controller is manually setup for optimization with full-load 
existed. The optimal parameters for PID controller with full-load are =4.1942, 

=1.2997 and =1.1313. The response of the system with full-load is shown in figure 
8. As see to this curve, the fixed PID controller can satisfy the request of parameter and 
external load. However, once the parameter varying and external load are removed, the 
responses will cause the large steady-state error and unexpected transient state shown in 
figure 9. 
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Fig 8 Simulation Response of Fixed PID Controller (Full-Load Condition) 
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Fig 9 Simulation Response of Fixed PID Controller (Full-Load Condition) 

 
 The proposed self-tuning PID controller is based on these two optimal parameters. Let 
the normal parameters are based on no-load condition, that is =3.5695, 

=2.9267, and =0.7727. The tuning ranges are selected as 
=0.6247, =1.6270 and =0.3586. 

Applying eqs (14)~(16), the responses of the proposed control rule are shown in figure 10. 
Obviously, the proposed self-tuning PID controller displays the robust characteristic. Under 
different operating conditions, it can still maintain the desired performance. 
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Fig 10 Simulation Response of Self-Tuning PID Controller 

 
5. Experimental Results 
In order to demonstrate the proposed control rule, a PC-based experimental equipment is 
setup in this paper. The experimental instrument of slider crank is divided into three parts: 
actuator, slider crank and controller. The photographic is shown in figure 11. The first part 
consists of a PM Synchronous motor, driver. The driver is worked on 3-phase, 220 V and 60 
Hz. The slider crank is coupled with the PM motor. The translation position is measured by a 
potentiometer. The output of potentiometer is 0~5V, which mapped to real translation position 
is 0~0.2m. The controller is based on a PC with Pentium-586 CPU. The data acquisition 
interface card (Advantech CO., PCL-1800) is installed in the ISA bus to handle the A/D and 
D/A process. The graphical software of Simulink is used to implement the proposed control 
rule. At the same time, the linear converts between the physical scale and voltage from 
sensors are also worked in this software. To carry out the parameter varying and external load 
is to add an external mass (7.4Kg) on slider. 

 
Fig 11 Experimental Instrument of Slider Crank 

 
Based on the same requirement of simulation, the experimental results are shown in figures 
12~17. Firstly, the fixed PID setup under no-load is experimented. Under no-load condition, 
the experimental result is shown in figure 12. However, the response shown in fig 13 has large 



overshoot when the load added. It shows the bad robustness of fixed PID controller. 
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Fig 12 Experimental Response of Fixed PID Controller (No-Load Condition) with No-Load 
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Fig 13 Experimental Response of Fixed PID Controller (No-Load Condition) 

With 7.5 Kg External Load 
The second experiment is fixed PID controller whose parameters are obtained under full-load 
condition. Figure 14 shows the experimental result. It shows the manually chosen parameters 
can achieve desired requirement under full-load condition. However, figure 15 shows the 
same controller applied when load removed. Obviously, the fixed PID controller cannot 
overcome the large change in operating situation. 
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Fig 14 Experimental Response of Fixed PID Controller (Full-Load Condition) 

With 7.5 Kg External Load 
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Fig 15 Experimental Response of Fixed PID Controller (Full-Load Condition) With No-Load 
 
Finally, applying the proposed self-tuning PID controller to the same experimental instrument. 
The responses of translation position and angular with no-load existed are shown in figure 16. 
It can achieve the same performance with the fixed PID controller under no-load condition. 
The response with load existed is shown in figure 17. The dynamic response is almost the 
same as the result of no-load. It also approves that the experienced self-tuning PID controller 
has the robustness to parameter variation and external load changed. 
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Fig 16 Experimental Response of Self-Tuning PID Controller With No-Load 
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Fig 17 Experimental Response of Self-Tuning PID Controller With 7.5 Kg External Load 



6. Conclusion 
 This paper proposed a self-tuning approach for PID controllers. Based on the 
experienced engineer, the nominal values and tuning ranges of PID parameters can be 
assigned. According to the common sense, an intelligent PID self-tuning rule is proposed in 
this paper. A PC-based controller is implemented and applied to the translation position 
control of a slider crank mechanism. Simulation and experimental results show that the 
proposed controller is more robust than the fixed PID controller.  
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