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CASE STUDY I - A TWO-TANK LIQUID

LEVEL CONTROL SYSTEM

10

10.1 INTRODUCTION

Systems involving tanks containing liquid
are found in many industrial situations.
Examples include blending and reaction
vessels in chemical processes and boiler
systems in electrical power stations. The
design of automatic control systems for the
regulation of liquid level is thus of consider-
able practical importance and requires an
appropriate mathematical model of the plant
(the system to be controlled) as a starting
point. This chapter is concerned with the
modeling of hydraulic systems of this kind
and with discussion of methods for the verifi-
cation and validation of a simulation model
of a laboratory-scale system involving two
interconnected vessels.

The primary variables for hydraulic
systems are pressure, mass and mass flow
rate. For any vessel holding a mass of fluid M,
the rate of change of mass in the container
must equal the total mass inflow rate (Q)
minus the total mass outflow rate (Q ). That is

dM

_‘_‘_Qi_Qo

= 1
T, (10.1)

The mass of fluid, M, is related to the volume
of fluid in the vessel, V, by the equation

M=pV (10.2)

where p is the fluid density. For an incom-
pressible fluid pis constant and thus

M=pV (10.3)

Figure 10.1 shows a typical vessel of rectan-
gular cross-section. If A is the surface area of
the tank, it is possible to relate the mass of
liquid, M, to the liquid height, H, through an
equation

M = pAH (10.4}
The hydrostatic pressure at the base of the
vessel is then

P=pgH (10.5)

where g is the gravitational constant. For the
system of Fig. 10.1, if the pressure at the
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Fig. 10.1 A tank of rectangular cross-section con-

taining liquid and having an inflow rate (), and an
outflow rate ), for liquid depth H.
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surface of the liquid and at the outlet are
the same and equal to P, (say, atmospheric
pressure) the pressure difference between
the tank base and the outlet is given by
(P, + P) - P,, which is simply P. The output
flow rate Q, is dependent on P and, for the
case of laminar flow, is conventionally
described by an equation of the form

Q= (10.6)

=~

where R is the fluid resistance.

Assume now that Q, is known (as a func-
tion of time) and that we want to be able to
predict the system behavior in terms of the
liquid height H. From equations (10.1), (10.4),
(10.5) and (10.6) one may write

pgH
—= = 10.7
g7 Q R (10.7)
so that
dH _Q gH
A——==-2_ 10.8
dt p R ( )

It should be noted here that (. is the mass
flow rate and thus Q,/p is the volume flow
rate. Let Q, denote this quantity, so that

sH

dH
T Qi — (10.9)

It is important to note that the relationship
describing the flow at the outlet of the vessel
is not always that shown in equation (10.6)
and the form of expression which is appropri-
ate depends upon the nature of the outlet. For

example, if the outlet is simply a hole in the
side wall of the tank, a condition known as
orifice flow occurs. In this case, if the size of -
the orifice is small, and the pressure variation
over the orifice area is thus negligible com-

pared with the average orifice pressure, it can  the extent of the couphng may be ad)usted

be shown (by using the principle of conserva-
tion of energy) that the mass flow rate
through the orifice is given by

2P

] = Cya,(2gH)*  (10.10)
p

Q. Cda(

where a, is the orifice area and C, is the dis-
charge coefficient. If, on the other hand, the
outlet is through a pipe with turbulent flow,
the appropriate relationship is

_ P 1/2
Q- = (R—J

where R;is a constant. Practical hydraulic
components, such as valves, can be described
by equation (10.6) for small pressure drops
but have to be described by equation (10.11)
in many cases owing to turbulence at typical
operating conditions.

(10.11)

10.2 MODELING OF A PAIR OF
INTERCONNECTED TANKS

When a hydraulic system incorporates more
than one liquid storage vessel the principle of
conservation of mass, equation (10.1), may be
applied to each element in turn. However,
there is coupling between the vessels, and the
nature of this coupling depends upon:the
precise configuration of the vessels and upon
the operating conditions. The interconnected
tanks being modeled in this chapter are
bench-top systems intended for use in teach-
ing the principles of automatic control engin-
eering [1]. ;

Figure 10.2 is a schematic diagram of the -
system being considered. It consists of a con- ¢
tainer of volume 6 1 having a center partition ., -

which divides the container into two sepa- |
rate tanks. Coupling between the tanks is::
~ provided by a number of holes of various *
~ diameters near the base of the partltlon, and
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Fig. 16.2 A pair of interconnected tanks.

through the insertion of plugs into one or
more of these holes. The system is equipped
with a drain tap, under manual control, and
the flow rate from one of the tanks can be
adjusted through this. The other tank has an
inflow provided by a variable-speed pump,
which is electrically driven. Both tanks are
equipped with sensors which measure the
pressure at the base of each tank and thus
provide an electrical output voltage propor-
tional to the liquid level. -

10.21 A NONLINEAR MATHEMATICAL
MODEL

Following the approach used in section 10.1
the equation describing tank 1 in Fig. 10.2 has
the form

d

HI _th l.QvI. j (10‘12)

where H, is the height of liquid in tank 1, Q,
is the input volume flow rate and Q,, is the
volume flow rate from tank 1 to tank 2 and A,

o

is the cross-sectional area. Similarly for tank 2
we can write

de

- Qv] Qvn (I O-] 3)

where H, is the height of liquid in tank 2 and
Q.. is the flow rate of liquid out of tank 2.
Considering the holes connecting the two
tanks and the drain tap all as simple orifices
allows the flow rates to be related to the
liquid heights by the following two equations
-H,))"”

Qn =Cyay (Zg(H1 (10.14)

and

Qu =Com(2g(H, - H))*  (10.15)
where a, is the cross-sectional area of the
orifice between the two tanks, a, is the cross-
sectional area of the orifice representing the
drain tap, H, is the height of the drain tap
above the base of the tank and 8 is the gravi-

tational constant.
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10.2.2 LINEARIZATION OF THE MODEL

For control system design studies it is appro-
priate to consider a linearized model in
which the model variables represent small
variations about steady-state values. Thus,
the input flow variable is g,, representing
small variations about a steady flow rate Q...
Similarly, the other variables represent small
variations about steady values g, in Q,,, 4.,
in Q,,, h, in H, and h,in H,. In the steady
state

Qvi = Qvl = Qvo (1016)
Il A C‘lihl (10.17)
dh,
vi ™ Hvo A 10.1
Gvi—1q 2 (10.18)

From equation (10.14) it is clear that (,, is a
function of both H, and H,. Hence, in deriv-
ing a linearized representation, the small
variation in flow, g,,, must depend on the
steady levels H, and H, about which the
system is operating. In general, one may
therefore write

8Qvl h] anl hz

oH, oH, (10.19)

qv'l

Differentiating equation (10.14) partially with
respect to H, and H, in turn gives

- Cd1a1 (28)]/2

" —m(hn - hy) (10.20)
1 2
Similarly
3Qvo Cyt(29)"?
o G R (02D

Substituting for g,, and q,,, in equations (10.17)
and (10.18) gives

dh
dt

A _qvi "'d](h] "hz) (10.22)

A, d”; = -hy)—eh,  (1023)
where
a, = % (10.24)
and
)= 2((:;;2_(25:):; (10.25)

Reorganization of equations (10.22) and
(10.23) gives a second-order state-space
model as follows

- _% o ! | L

WI_TA 4 LA

I IR AT Y| PR I
Az Az

(1026)

Taking Laplace transforms it is possible, in a-

few steps, to obtain the transfer function:
descriptions relating the depth h, and the -

depth i, to the input flow rate q,,. These are as.g
follows: 0

_]_
ha(s) _ o g
g (s) 1+ (A, + Aoy + Ayay) s+ A Sz
o a,ax,
1027
and
h,(s) _ 040 a+a; )
g4 (8) 1+ (Ao, + A+ Azaz) A1A2 2
o, a1a2
(10 28)

These : transfer functions both mvolve a
pair of simple real poles and the charac-
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teristic equation may be written in both
cases as

1+sT)A+sTy) = 1+ (A + Ay +A2a2)s

o,
Ao (1029
alaz
or
1+s(Ty+T,) +s*TiT, =0 (10.30)
where
T, = A (10.31)
xqU,
and
T+T, = A, + A, + A, (10.32)

L&

10.3 PROGRAMS FOR SIMULATION OF
THE NONLINEAR COUPLED-TANK
SYSTEM

Figure 10.3 shows part of a simulation

program for the nonlinear model of the
coupled-tank system based on equations
(10.12) to (10.15). This program is written
using the SLIM language and the complete

157

source program is included as a .SLI file
(TANKS. SLI) on the diskette. Nominal para-
meter values corresponding to a real labora-
tory-scale coupled-tank system are as shown
in Table 10.1. A data file is provided on the
diskette for this nominal set of parameters.
Figure 10.4 shows an XANALOG block
diagram for this simulation model.

Some preliminary results based on the sim-
ulation program of Fig. 10.3 and the given

DYNAMIC
DERIVATIVE
IF(H1-H3)4,2,2

4 IF(H2-H3)3,5,5
3 Q1=0.0
GOTO 7
5 Q1=-CD1*A1*SQRT (2.0*G*(H2~H1))
GOTO 10
2 IF(H1-H2)5,6,6
6 Q1=CD1*A1#*SQRT(2.0%G*{H1-H2)})
GOTO 10
10 IF(H2-H3)7,7,8
7 Q0=0.,0
GOTO 20
8 QO=CD2*A2*SQRT( 2, 0*G*(H2~H3))
GOTO 20
20 CONTINUE
DH1=(1.0/A}*(QI-Q1)
DH2={1.0/A}*(Q1-00)
H1=INTEG(DH1,H10)
H2=INTEG(DH2,H20)
DERIVATIVE END
TYPE T, H1SS,H2SS, H1,H2
IF(T-TMAX)50,50,60
50 DYNAMIC END
60 sSTOP

Fig. 10.3 Listing of part of a SLIM program
{(TANKS. SLI) for simulation of the two-tank system
described by equations (10.12) to (10.15).

Table 10.1 Parameter values for the coupled-tank system

Parameter Symbol Value

Cross-sectional area, tank no. 1 A, 0.0097 m?

Cross-sectional area, tank no. 2 A, 0.0097 m*

Orifice area, between tanks a, 0.00003956 m’

Orifice area, outlet from tank no. 2 a, 0.0000385 m’ :

Coefficient of discharge, C, 075 . v +n v L nae
intertank orifice R .

Coefficient of discharge, C, 05
outlet orifice from tank no. 2

Gravitational constant g 981 ms™

Pump calibration constant © G, 0.0000072 m’s™ V'_ (

Depth sensor calibration constant G, 3333 Vm™

Height of outlet above : H, 003m+« -, =

base of tank
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Fig. 104 XANALOG block diagram for simulation of the two tank system. Note the use of: submodels

and their associated icons.

parameter set are shown in Fig. 10.5. These
show the changes of depth h, and h, versus
time for a number of different initial condi-
tions. Are these results meaningful? Is the
mathematical model adequate and does the
simulation program represent the model to a
sufficient degree of accuracy? In order to
answer these questions in a satisfactory way
one must first consider carefully how this
simulation can be verified and how the model
can be validated.

10.3.1 INTERNAL VERIFICATION OF THE
SIMULATION PROGRAM

The simulation program for the coupled-tank

system is a very simple one. The first stage of

internal verification is concerned with check-
ing that the structure of the simulation
program is consistent with the mathematical
model. This involves working backward from
the statements in the program, especially
those within the derivative section, to ensure
that when translated back to the form of dif-
ferential equations they are the same as those
of the original model. Checks should also be
made of the parameter values used ‘in the
program or in the parameter input file to
ensure that they correspond exactly to the
parameter set of the model itself.
The second stage of internal verlflcatxon is
concerned with numerical accuracy. In the
case of fixed-step integration methods, com-

parisons can be made of results obtained with
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Fig. 10.5 Simulation results (from SLIM) for the two-tank system model for three sets of initial condi-
tions. The input flow rate was the same in all the cases, with a value of 16.67E-06 m’ s™ (1000 cm’ min™).
The continuous line represents the depth H, and the dashed line denotes H,. Note particularly the case
where the two tanks are both initially empty. Can you explain the behavior of the system, on physutal

grounds, during the first part of the response?

a number of different sizes of integration
steplength and with different integration
techniques. This provides the user with some
understanding of the sensitivity of results to
the steplength and of the overall suitability of

the numerical methods chosen. In the case of .
variable-step integration algorithms, tests can-

be carried:out to compare results:with differ-

El

ent settings of the relative and absolute error
limits and with different values..of the
minimum integration ‘step to be allowed. In
both cases, some comparisons can be made
using a number of different values of the
communication interval to.ensure that inter-
esting events in the simulation model are not

‘being hidden from the user simply because of
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an inappropriate choice of this parameter to checking a mathematical model which can
which determines the interval between provide a basis for any definitive statement

output samples.

10.3.2 EXTERNAL VALIDATION OF THE

SIMULATION MODEL

about the overall validity of that model
Statements about model validity must be
made in the context of an intended applica-
tion. In the case of the coupled-tank system,
the computer simulation is to be used as a

The discussion of validation in Chapter 9 basis for the design of an automatic control
shows clearly that there is no single approach ~ system which will ensure that a given level is

Table 10.2 Comparisons between system and simulation model
variables under steady-state conditions for a number of operating

points
Q, H, H, H, H,
measured model measured model
(cm’min’™) (cm) (cm) (cmi) (cm)
1000 5.0 8.4 34 6.8
1500 13.1 15.2 9.7 11.6
2000 25.0 24.7 18.9 18.3

214

0 100 200 300 400 500 800
- t
)

Fig. 10.6 Simulatim.n results for H, (dashed line) and the corresponding measured response of the real
sys}tem' fgr an experiment involving c_loubling of the input flow rate from Q,, = 1000 cm’ min™ to Q,, = 2000
cm’ min” at time ¢ = 50 s. Note the initial steady-state difference between the measured and simulated

responses.
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maintained in one of the tanks. There is par-
ticular interest therefore in the accuracy of the
model in predicting steady-state conditions
and in predicting the form of small transients
about any given steady operating point. Such
comparisons are very easily made in the case
of small-scale laboratory equipment of this
kind, and agreement between steady-state
measurements and steady-state model predic-
tions is generally quite good for upper parts
of the operating range. Table 10.2 shows some
typical results obtained from measurements
on the real system and corresponding tests on
the simulation model. Differences between
the steady-state liquid levels in the simulation
model and in the real system, for smaller
values of input flow rate, are significant and
vary slightly with operating point. Figures
10.6 and 10.7 show some comparisons in
terms of dynamic tests. In Fig. 10.6 discrepan-
cies between the model and system results
are shown for a test involving quite a large

16]

change in operating conditions. Figure 10.7
shows measured response data for small-
perturbation step tests carried out about one
chosen operating point. Time constants esti-
mated from measured step responses such as
these, from which the error plots of Fig. 10.7
were derived, can also be compared with
values determined from the linearized model
in the form of equations (10.27) and (10.28).
The discrepancies in the model exposed by
the steady-state tests, and the large perturba-
tion responses, are believed to arise mainly
because of the limitations of equations (10.14)
and (10.15) in describing the relationships
between output flow and the liquid level in
each tank. These equations apply to an ideal
simple orifice and the actual physical effects
at the tank outlets do not agree exactly with
this simplified model.

With closed-loop control added to the real
system, and to the simulation model, the
agreement can be shown to be significantly

' E
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Fig. 10.7 Plots showing differences between model predictions and measured values for H, and H, for
small perturbation step tests carried out at one chosen operating point. The step input was applied at time
t=250s. Note the initial steady-state errors between the simulation model variables and the corresponding
measurements and the increased steady-state error value for H, after the transient has died away.
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closer. This is important since the equipment
is intended to be used for investigations of
closed-loop control. In simulation studies
involving control system design applications
there is always particular interest in the
overall robustness of the control system and
the effect which modeling errors and uncer-
tainties may have on the performance of the
closed-loop system. Although control systems
are normally designed using linearized
models, simulation studies carried out on a
proposed closed-loop system using a non-
linear model of the plant can often be highly
illuminating. Such an investigation may
reveal problems with the proposed design
which would otherwise only come to light
during the commissioning and testing of the
real system.

104 DISCUSSION

This case study provides an illustration of a
relatively simple nonlinear system which can
be modeled in a classical way using physical
laws and principles. The simulation model is
easily implemented using either equation-
oriented or block-oriented tools. The rela-

tively simple nature of the system, and the
variables which are accessible for measure-
ment in the real hardware, make this
an interesting but straightforward system
for the application of external validation
methods.

Possibilities for using the simulation
program TANKS.SLI as a basis for further
investigations on your own fall into two main
areas. One obvious topic to consider would
involve investigation of the effect of changing
the form of relationship used to describe the
discharge nonlinearities. A second area for
independent study would involve adding
feedback control. Control system design
studies could be carried out using the linear-
ized form of the mathematical model and dif-
ferent controllers could then be compared in
terms of their sensitivity to changes in operat-
ing points or to changes in plant parameters,
such as the coefficients of discharge.
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