BROOKFIELD DV-II+

PROGRAMMABLE VISCOMETER

Operating Instructions

Manual No. M/97-164-D1000

BROOKFIELD ENGINEERING LABORATORIES, INC. 11 Commerce Boulevard, Middleboro, MA 02346-1031 USA TEL 508-946-6200 or 800-628-8139 FAX 508-946-6262 www.brookfieldengineering.com

TABLE OF CONTENTS

1.	INTRO	DUCTION	3
	I.1	Components	4
	1.2	Utilities	4
	1.3	Specifications	4
	1.4	Installation	5
	l.5	Key Functions	6
	0		~
	GEIII	NG STARTED	8
	11.1	Autozero	ð
	II.Z	Spindle Selection	9
	11.3	Display Selection, Setting, Running	10
	11.4		11
	11.5 11.6	Autorange	12
	11.0	Tomporeture Dienley	10
	11. <i>1</i> 11.0	Drinting	14
	11.0	FILIULY	14
	II.9 II 10	Time Modes for Viscosity Measurement	10
	11.10		10
	OPTIC	NS	17
	III.1	Introduction to OPTIONS	17
	III.2	Setup	19
		III.2.1 Temperature Display	20
		III.2.2 Units of Measurement	20
		III.2.3 Motor Speed Set Selection	21
		III.2.4 Printer Output Port	22
		III.2.5 Data Averaging	22
	III.3	Time Modes	23
		III.3.1 Time to Stop	24
		III.3.2 Time to Torque	26
		III.3.3 Print Time Interval	28
		III.3.4 PC Program (On/Off)	29
		III.3.5 Download a Program	29
		III.3.6 Run a Program	30
13.7			~ ~
IV.		ADER SOFTWARE	33
	IV.1	B.E.V.I.S. Overview	33
	IV.Z	Description of B.E.V.I.S. Commands	34
	10.3	Developeding a B.E.V.I.S. Program	30
	1V.4	Downloading a B.E.V.I.S. Program	31
	17.5	Example Programs	38
Ap	pendix	A - Cone/Plate Viscometer Set-Up	40
Ap	pendix	B - Viscosity Ranges	44
Ap	pendix	C - Variables in Viscosity Measurements	47
Ap	pendix	D - Spindle and Model Codes	49
Ap	pendix	E - Calibration Procedures	52
Ap	pendix	F - Speed Sets	59
Ap	pendix	G - Communications	60
Ap	pendix	H - Laboratory Stands	63
Ap	pendix	I - DVE-50 Probe Clip	67
Ap	pendix	J - Fault Diagnosis and Troubleshooting	68
Ap	pendix	K - Warranty Repair and Service	72

I. INTRODUCTION

The Brookfield Programmable DV-II+ Viscometer measures fluid viscosity at given shear rates. Viscosity is a measure of a fluid's resistance to flow. You will find a detailed description of the mathematics of viscosity in the Brookfield publication "*More Solutions to Sticky Problems*" a copy of which was included with your DV-II+.

The principal of operation of the DV-II+ is to drive a spindle (which is immersed in the test fluid) through a calibrated spring. The viscous drag of the fluid against the spindle is measured by the spring deflection. Spring deflection is measured with a rotary transducer. The measurement range of a DV-II+ (in centipoise or milliPascal seconds) is determined by the rotational speed of the spindle, the size and shape of the spindle, the container the spindle is rotating in, and the full scale torque of the calibrated spring.

There are four basic spring torque series offered by Brookfield:

	Spring 7	Forque
Model	<u>dyne-cm</u>	milli Newton - m
LVDV-II+	673.7	0.0673
RVDV-II+	7,187.0	0.7187
HADV-II+	14,374.0	1.4374
HBDV-II+	57,496.0	5.7496

The higher the torque calibration, the higher the measurement range. The measurement range for each torque calibration may be found in Appendix B.

All units of measurement are displayed according to either the CGS system or the SI system.

- 1. Viscosity appears in units of centipoise (shown as "cP") or milliPascal-seconds (shown as "mPa•s") on the DV-II+ Viscometer display.
- 2. Shear Stress appears in units of dynes/square centimeter ("D/cm²") or Newtons/square meter ("N/m²").
- 3. Shear Rate appears in units of reciprocal seconds ("1/SEC").
- 4. Torque appears in units of dyne-centimeters or Newton-meters (shown as percent "%" in both cases) on the DV-II+ Viscometer display.

Note: To change CGS to SI units on the display - see Section III.2.2.

The equivalent units of measurement in the SI system are calculated using the following conversions:

	<u>SI</u>		<u>CGS</u>
Viscosity:	1 mPa•s	=	1 cP
Shear Stress:	1 Newton/m ²	=	10 dyne/cm ²
Torque:	1 Newton-m	=	10 ⁷ dyne-cm

References to viscosity throughout this manual are done in CGS units. The DV-II+ Viscometer provides equivalent information in SI units.

I.1 Components

Component	Part Number	Quantity
DV-II+ Viscometer	varies	1
Model S Laboratory Stand	MODEL S	1
Spindle Set with Case LVDV-II+ set of four spindles or RVDV-II+ set of seven spindles or HA/HBDV-II+ set of seven spindles	varies (SSL) (SSR) (SSH)	1 1 1 1
For Cone/Plate versions: a spindle wr Part No. CPE-44Y replace the spindle	ench, one cone spindle and set.	d sample cup,
Power Cord DVP-65 for 115 or DVP-66 for 230		1
RTD Temperature Probe	DVP-94Y	1
Guard Leg: LVDV-II+ RVDV-II+	B-20Y B-21Y	1
Carrying Case	DVE-7Y	1
DVLOADER Software Disk (3-1/2")	DVLOADER	1
Interconnecting Cable	DVP-80Y	1
Operating Manual	M/97-164	1
Plassa chack to be sure that you have r	acaived all components a	ad that thora is

Please check to be sure that you have received all components, and that there is no damage. If you are missing any parts, please notify Brookfield Engineering or your local Brookfield agent immediately. Any shipping damage must be reported to the carrier.

I.2 Utilities

	Input Input Powe	Voltage: Frequency: r Consumption:	115 VAC or 230 VA 50/60 Hz Less than 20 WATT	AC ГS
	Powe	er Cord Color Code		
	Hot (Neutr	live) ral	United States Black White	Blue
	Grou	nd (earth)	Green	Green/Yellow
I.3	Specificatio	ons		
	Speeds:	Interleaved: LV/ Sequential: LV/I	RV (18 speeds) RV (18 speeds)	

Custom: 54 speeds, user selectable

Note: Refer to Appendix F for detailed list of all speeds.

Brookfield Engineering Labs., Inc.

Weight:	Gross Weigh Net Weight Carton Volum	t ne	23 20 1.65	lbs. lbs. cu. ft.	10.5 kg. 9 kg. 0.05 m ³
Temperature se	ensing range:	-100°C	to 300)°C (-148°F to :	572°F)
Analog Torque	Output:	0 - 1 Vo	olt DC	c (0 - 100% Tor	que)
Analog Temper	rature Output:	0 - 4 Vo	olts D	C (10mv / °C)	
RS232 Compat	tible Serial Por	t for use wi	th an	attached printe	r or PC.
Centronics Cor	npatible Parall	el Port for u	ise wi	th an attached	printer.
Viscosity Accu	iracy:	±1.0% of f	ull sca	ale range	
Viscosity Repe	atability:	±0.2%			
Temperature A	ccuracy:	$\pm 1^{\circ}C$: -10 $\pm 2^{\circ}C$: +1	00°C 50°C	to +149°C to +300°C	
Electrical Certi	fications:	CUL (expe	cted b	oy April 2000),	CE

I.4 Installation

- 1) Assemble the Model S Laboratory Stand (refer to assembly instructions in Appendix H).
- 2) Connect the RTD probe to the socket on the rear panel of the DV-II+.
- 3) The Viscometer must be leveled. The level is adjusted using the two leveling screws on the base. Adjust so that the bubble level on top of the DV-II+ is centered within the circle.

Note: Check level periodically during use.

- 4) Remove the white shipping cap which secures lower coupling nut on Viscometer to pivot cup.
- 5) Make sure that the AC power switch at the rear of the DV-II+ is in the OFF position. Connect the power cord to the socket on the back panel of the instrument and plug it into the appropriate AC line. *The AC input voltage and frequency must be within the appropriate range as shown on the name plate of the Viscometer.*

Note: The DV-II+ must be earth grounded to ensure against electronic failure!!

- 6) Turn the power switch to the ON position and allow to warm up for 10 minutes before performing autozero.
- 7) For Cone/Plate models, refer to Appendix A.
- 8) If appropriate, connect interconnecting cable to serial port for connection of DV-II+ to PC or printer.
- 9) If appropriate, connect interconnecting cable to parallel port for connection of DV-II+ to printer.
- 10) If appropriate, connect interconnecting cable to analog (serial) port for connection of DV-II+ to chart recorder.

I.5 Key Functions

Figure 1 shows the control keys on the face of the DV-II+ Viscometer. The following describes the function of each key.

UP ARROW

This key is used to scroll UP (in an increasing value direction) through the available speed, spindle and Option menu tables.

DOWN ARROW

This key is used to scroll DOWN (in a decreasing value direction) through the available speed, spindle and option menu tables.

MOTOR ON/OFF/ESCAPE

Turns the motor ON or OFF. **ESCAPE** exits the *Options* menu.

SET SPEED

Causes the DV-II+ to begin running at the currently selected speed. This function works only when the motor is ON. Also used to select custom speeds when in the *Custom Speed* option.

SET SPEED

SELECT DISPLAY

Selects the data parameter to be displayed:

- **cP** Viscosity (cP or mPa·s)
- **SS** Shear Stress (dynes/cm² or Newtons/m²)
- **SR** Shear Rate (1/sec)

ENTER/AUTO RANGE

ENTER:Used to execute the currently flashing option.AUTO RANGE:Presents the maximum (100% torque) viscosity attainable using the
selected spindle at the current viscometer spindle speed.

SELECT SPINDLE

Initiates spindle selection on the first press and then selects the currently scrolled-to spindle when pressed a second time.

PRINT

Selects printing and non-printing modes when a printer is attached.

OPTIONS/TAB

OPTIONS:Presents the *Options* menu, flashing the last escaped option.TAB:Toggles between selectable items when indicated, as shown in Figure 2.

Note: Inverted text (black background with white lettering) indicates that the information is flashing on the viscometer display.

II. GETTING STARTED

II.1 Autozero

Before readings may be taken, the Viscometer must be Autozeroed. This action is performed each time the power switch is turned on. The display window on the Viscometer will guide you through the procedure as follows:

Turn the power switch (located on the rear panel) to the **ON** position. This will result in the screen display shown in Figure 3. The viscosity measurement range is indicated by the information in the lower left, in this case RV. For most DV-II+ Viscometers, this information will be either "LV" or "RV".

BROOKF	IELD I	DV-2+
RV	VISCO	METER
ŀ	Figure 3	

After a few seconds, the following screen appears:

No key press is required at this point. After a short time, the display will clear and the following will be displayed:

Figure 5

After removing the spindle and pressing any key, the **DV-II+** begins its Autozero. The screen will flash "Autozeroing."

After approximately 15 seconds, the display shows the screen in Figure 6:

REPLACE	SPI	NDLE		
PRESS	ANY	KEY		
Figure 6				

Pressing any key at this point results in the display of the **DV-II+** default screen:

CP 0.0 OFFRPM	20.10 % 0.0	00
Figu	re 7	

The display will vary depending upon the selection of temperature (°F or °C) and units of viscosity (cP or mPa•s).

II.2 Spindle Selection

LVDV-II+ Viscometers are provided with a set of four spindles and a narrow guardleg; RVDV-II+ Viscometers come with a set of seven spindles and a wider guardleg; HADV-II+ and HBDV-II+ Viscometers come with a set of seven spindles and *no guardleg*. (See Appendix E for more information on the guardleg.)

The spindles are attached to the viscometer by screwing them onto the lower shaft. Note that the spindles have a **left-hand thread**. The lower shaft should be secured and slightly lifted with one hand while screwing the spindle to the left. The face of the spindle nut and the matching surface on the lower shaft should be smooth and clean to prevent eccentric rotation of the spindle. Spindles can be identified by the number on the side of the spindle coupling nut.

The DV-II+ must have a Spindle Entry Code number to calculate Viscosity, Shear Rate and Shear Stress values. The DV-II+ memory contains parameters for all standard Brookfield spindles including custom spindles and the two digit entry code for each spindle (the complete list of entry codes may be found in Appendix D).

Note: The DV-II+ will remember the Spindle Entry Code which was in use when the power was turned off.

Pressing the SELECT SPINDLE key will display the current selected spindle code instead of temperature and cause the character **S** to begin to *blink*. It will blink for about three seconds. If the UP or DOWN ARROW keys are pressed (while **S** is blinking) the two character spindle value to the right of the **S** character will begin to change (in either an increasing or decreasing direction depending upon which ARROW key is pressed) for each press of the key. If the ARROW key is pressed and held, the display will scroll through the spindle codes for as long as the ARROW key is depressed. When it reaches the last item in the list (either at the *top* or *bottom* of the list) the spindle code displayed will "roll-over" to either the first or last spindle code and the scroll action will continue.

When the desired spindle code is displayed, release the ARROW key to halt further scrolling. Press the SELECT SPINDLE key once again. This will cause the **S** character to cease *blinking* and the new spindle code will be accepted for use in viscometer calculations.

Note: You have approximately three seconds in which to press the SELECT SPINDLE key before the *blinking* stops. If you fail to press the SELECT SPINDLE key before the *blinking* stops you will have to repeat the above steps and re-select the desired spindle.

The DV-II+ will begin to calculate using the new spindle parameters as soon as the SELECT SPINDLE key *is pressed the second time*.

Note: The number 99 spindle is for use with special spindles when using Brookfield's WINGATHER computer program. Refer to the WINGATHER operator manual for further information on using "99" spindles.

The DV-II+ may also be programmed at Brookfield Engineering for "special" user spindles. These "special" spindles will appear on the spindle scroll list starting with designation "**AA**" and continuing through "**AZ**". Contact Brookfield Engineering regarding your needs for special spindles.

II.3 Speed Selection, Setting, Running

There are 54 speeds programmed into the DV-II+. These speeds correspond to the standard LVT, RVT, HAT, HBT, LVF and RVF dial models (18 possible speeds altogether) plus 36 additional speeds.

The DV-II+ comes with the Sequential Speed Set already selected (see Appendix F). The speed set will start at speed 0.0. It will then scroll up through the LV speeds, pass through speed 0.0 again, and then scroll up through the RV speeds, pass through speed 0.0 again and then repeat the above sequence.

The DV-II+ can also be configured by the operator to *interleave* the LV and RV speeds. See Section III.2.3 on Setup for a description of how to install the Interleave Speed Set.

A complete list of speed sets and custom speeds is included in Appendix F. The DV-II+ can be programmed to select up to 19 of the 54 speeds for use at any one time. Speed 0.0 is the 20th speed and is automatically included. See Section III. 2.3.2 on Setup for a description of how to install a Custom Speed Set.

To *select* a Viscometer speed first press either the UP or DOWN arrow keys which will cause the area to the right of RPM to display the currently *selected* speed. Figure 8 shows the DV-II+ is operating at 6.0 RPM, and the current *selected* speed is 6.0 RPM.

Figure 8

If the ARROW key is pressed *just once* and then released, the characters "RPM" will blink for three seconds, then will cease *blinking* resulting in no change to the speed entry.

Note: The speed selection process *remembers* the last value of scrolled-to speed so that the next time you initiate a speed change (by pressing an ARROW key), the DV-II+ will begin its scroll display from the *last* entered value.

The last-scrolled-to speed does not necessarily have to be the same as the speed at which the DV-II+ is currently running. The user may operate at a given speed and pre-set the DV-II+ to the next desired speed before that speed will be used. For example, if the DV-II+ is currently running at 6.0 RPM and was previously scrolled to 12 RPM, a single press of either ARROW key would result in the Figure 9 screen display:

Pressing the SET SPEED key would cause the DV-II+ to begin running at 12 RPM.

If the user did not press the SET SPEED key, the DV-II+ would continue to run at its current speed of 6 RPM. In fact, you may scroll to a new speed (12 RPM in this example) and press the SET SPEED key at any future time (*without* further pressing an ARROW key) to immediately cause the DV-II+ to run at the new speed. Pressing the ARROW key at any time reminds the operator of what was

selected for the next speed.

If an ARROW key is pressed and held the DV-II+ will scroll up (or down) through the speed table. When it reaches the last speed in the list (either at the top or bottom of the list) the speed displayed will "roll-over" to either the first or last speed in the table and the scroll action will continue.

When the required speed is displayed, release the ARROW key to halt further scrolling. You have approximately two seconds (before the blinking RPM stops) in which to press the SET SPEED key to *immediately* begin rotation at the new speed.

Pressing the MOTOR ON/OFF/ESCAPE key stops the Viscometer spindle rotation. Pressing this key sets the DV-II+ to 0.0 RPM and causes the screen display to change as shown in Figure 10:

cP 0.0 OFFRPM	20.1C % 0.0	
Figur	re 10	

Pressing the MOTOR ON/OFF/ESCAPE key again immediately starts the DV-II+ running at the *last scrolled-to-speed*. If you had been running at 12 RPM, pressed MOTOR ON/OFF/ESCAPE and then re-started the DV-II+ by pressing MOTOR ON/OFF/ESCAPE once again, you would again be running at 12 RPM. However, if while the motor was off you had scrolled to a new speed of 0.5 RPM, pressing the MOTOR ON/OFF/ESCAPE key would start the DV-II+ running at 0.5 RPM.

Note: During both spindle or speed selection and scrolling operations, the DV-II+ will continue to calculate and display Viscometer data as selected.

II.4 Display Selection

Viscosity (displayed in units of cP or mPa•s), *Shear Stress* and *Shear Rate* are displayed on the left side of the top line. You may "step" through the three display options by pressing the SELECT DISPLAY key. For example, the DV-II+ is currently displaying *Viscosity* as shown in Figure 11:

cP 123e3 6.0RPM	2	20.1C 15.6		
Figure 11				

If the viscosity value exceeds 99,999 scientific notation is used. In Figure 11, the viscosity value is 123,400 cP.

The first press of the SELECT DISPLAY key would display *Shear Stress (SS)* in Dynes/cm² (or Newtons/m²), see Figure 12:

Figure 12

If the shear stress value exceeds 99,999, scientific notation is used.

The next press of the SELECT DISPLAY key would display *Shear Rate (SR)* in 1/Sec; see Figure 13.

SR 40.0	20.1C		
6.0RPM	% 15.6		
Eigene 12			

Figure 13

One more press of the SELECT DISPLAY key would result in a return to the viscosity screen, as shown in Figure 11.

- Notes: 1. You may step through the display at any time. This will not interrupt any Viscometer calculations that are in progress.
 - 2. Display of shear rate and shear stress requires selection of appropriate spindles. Otherwise, values displayed will be zero (0).

Units of Measurement

The DV-II+ Viscometer can be configured using the SETUP option (Section III.2.2) to display/ print in either the CGS or SI system of units.

The ENTER/AUTO RANGE key functions as auto range and allows you to determine the maximum calculated viscosity (full scale reading) possible with the current spindle/speed setting only when in the default screen. Pressing the key *at any time* will cause the current viscosity display to change and show that *maximum* viscosity. The screen area displaying % (torque) will now display a flashing "% 100.0" to indicate this special condition. This maximum viscosity and flashing % 100.0 value will be displayed for as long as the ENTER/AUTO RANGE key is depressed. Figure 14 shows the AUTO RANGE function for the situation where the No. 1 LV spindle is rotating at 60 rpm. The full scale range is 100.0 cP (or 100.0 mPa·s).

- Notes: 1. If the RPM is 0.0, the maximum viscosity displayed will be 0.0 cP (or 0.0 mPa·s).
 - 2. While the Viscometer is in the Auto Range mode, any data sent to an attached printer or computer reflects the displayed values (i.e. Auto Range values).
 - 3. This function is only available when in the default screen.

II.6 Out of Range

The DV-II+ gives indications for out-of-range operation. When % (Torque) readings exceed 100% (over-range), the display changes to that shown in Figure 15; EEEE will also appear in the display for % and viscosity or shear stress:

Figure 15

You must change either speed or spindle to correct this condition. If you operate at spindle speeds that produce % (Torque) below 10.0 %, the DV-II+ flashes the % (Torque), **cP** (Viscosity), **SS** (Shear Stress) and **SR** (Shear Rate) as shown in Figure 16:

Figure 16

Negative % (Torque) will be displayed as shown in Figure 17:

Figure 17

Figure 18 is an example of the printed output of each of the above conditions.

Normal Operati	on:				
RPM=50 M=RV	S=29 %=51.4	cP=10280	D/CM2=1285	1/SEC=12.3	T=20.1C Z00:30
Over-Range Op	eration (>100% to	rque) (see Fig.	15):		
RPM=50 M=RV	S=29 %=EEEE	CP=EEEE	D/CM2=EEEE	1/SEC=12.3	T=20.1C Z00:30
Under-Range O	peration (<10% to	rque) (see Fig.	16):		
?RPM=50 M=R	V S=29 %=5.2	cP=1040	D/CM2=130	1/SEC=12.3	T=20.1C Z00:30
Negative Torque	e Operation (see F	ig. 17) :			
RPM=50 M=RV	S=29 (%=-0.1	CP=	D/CM2=	1/SEC=12.3	T=20.1C Z00:30
	M = Torque Ran	ge T	= Temperature	Z = Time	

Figure 18

II.7 Temperature Display

The DV-II+ displays the temperature measured by its RTD temperature probe. Temperature may be displayed in either **C** (Centigrade) or **F** (Fahrenheit) units, depending upon selection from the Options menu. As received, the default temperature display will be in **C** (Centigrade) units as shown in the Figure 19:

If you turn on the DV-II+ with the temperature probe disconnected, or remove the temperature probe at any point after power-up, the display will indicate "----C". The four "dashes" indicate the absence of the probe. If you were displaying temperature in Fahrenheit units the C would be replaced by an **F**. Accuracy of temperature measurement for the DV-II+ is shown in Table 1.

Table 1

Temperature Accuracies for Programmable DV-II+ Viscometer				
Temperature Range	Temperature Accuracy			
-100°C to +149°C +150°C to +300°C	±1.0°C ±2.0°C			

II.8 PRINT Printing

The DV-II+ will print data to an attached Serial (RS232) or Parallel (centronics) printer. The printer must be attached to the appropriate rear panel output connector. See Appendix G for configuration and connection requirements.

Data may be printed in two ways:

- 1. Pressing the PRINT key once (for less than three (3) seconds) will result in the printing of one standard print line.
- 2. If the PRINT key is pressed and held for more than three (3) seconds, the DV-II+ will then begin *continuous* printer output at a print rate interval selected via the Options menu (see Section III.4). The display will show a flashing P in front of the % sign. See Figure 20.

To stop continuous printing, press the PRINT key for one (1) second. The flashing P will disappear on the viscometer display.

Figure 21 is an example of the print strings for CGS and SI units.

For the case of CGS	units with noi 20	n-exponential 30	results: 40	50	60	70	80
RPM=XXX M=XXXXX	S=XX %=XX	X.X cP=XXXX	X D/CM2:	XXXXX	1/SEC=XXXXX	T=XX.XC	ZXX=XX
and CGS units with e	xponential re	sults.					
1 10	20	30	40	50	60	70	80
RPM=XXX M=XXXXX	S=XX %=XX	X.X cP=XXXe	X D/CM2:	=XXXeX	1/SEC=XXXXX	T=XX.XC	ZXX=XX
Cimilarly, for Clumito	with non-over	an antial readily					
1 10	20	30	40	50	60	70	80
RPM=XXX M=XXXXX	S=XX %=XX	X X mPas=XX	XXX N/M2	=XXXXX	1/SEC=XXXXX	T=XX_XC	
and SI units with expo	onential resul	ts.					
1 10	20	30	40	50	60	70	80
RPM=XXX M=XXXXX	S=XX %=XX	X.X mPas=XX	XeX N/M2	=XXXeX	1/SEC=XXXXX	T=XX.XC	ZXX=XX
	M =	= Torque T =	Temperat	ure Z=	Time		

Figure 21

When printing via the parallel port, please note that if a printer is not attached to the viscometer, the following screen appears:

Figure 22

II.9 Making Viscosity Measurements

The following general procedure is used for making viscosity measurements. Brookfield recommends the use of a 600 ml Low Form Griffin beaker when using LV/RV/HA/HB spindles.

- 1. Mount the guardleg on the DV-II+ Viscometer (LV and RV series).
- 2. Insert and center spindle in the test material until the fluid's level is at the immersion groove on the spindle's shaft. With a disc-type spindle, it is necessary to tilt the spindle slightly while immersing to avoid trapping air bubbles on its surface. Attach the spindle to the lower shaft of the viscometer. Lift the shaft slightly, holding it firmly with one hand while screwing the spindle on with the other (note left-hand thread). Avoid putting side thrust on the shaft. Verify the proper spindle immersion depth and that the viscometer is level.
- The process of selecting a spindle and speed for an unknown fluid is normally trial and error. An appropriate selection will result in measurements made between 10-100 on the instrument % torque scale. Two general rules will help in the trial and error process.
 - 1) Viscosity range is inversely proportional to the size of the spindle.
 - 2) Viscosity range is inversely proportional to the rotational speed.

To measure high viscosity, choose a small spindle and/or a slow speed. If the chosen spindle/ speed results in a reading above 100%, then reduce the speed or choose a smaller spindle.

Experimentation may reveal that several spindle/speed combinations will produce satisfactory results between 10-100%. When this circumstance occurs, any of the spindles may be selected.

Non-Newtonian fluid behavior can result in the measured viscosity changing if the spindle and/ or speed is changed. See our publication, "More Solutions to Sticky Problems," for more detail.

Allow time for the indicated reading to stabilize. The time required for stabilization will depend on the speed at which the Viscometer is running and the characteristics of the sample fluid. For maximum accuracy, readings below 10% should be avoided.

- 4. Press the MOTOR ON/OFF/ESCAPE key and turn the motor "OFF" when changing a spindle or changing samples. Remove spindle before cleaning.
- 5. Interpretation of results and the instrument's use with non-Newtonian and thixotropic materials is discussed in the booklet, *"More Solutions to Sticky Problems"*, and in Appendix C, Variables in Viscosity Measurements.

II.10 Time Modes for Viscosity Measurement

The **Time Modes** allow the viscometer user to implement the unattended Time to Stop and Time to Torque capabilities of the DV-II+ Viscometer. These features will allow the user to set up the viscometer (i.e. select spindle and speed) and then record readings for a fixed period of time (Time to Stop) or until a set torque value is attained (Time to Torque). When timing begins, a message will be displayed showing time remaining (or time elapsed) and the appropriate display item (viscosity or torque) will be updated continuously during the event. Upon completion, the viscometer will stop and display a screen stating that the test is complete and will also display the final recorded value for the viscosity in the first case, or the time in minutes and seconds to reach the torque limit in the second case. Pressing the UP or DOWN ARROW keys will allow additional viscometer data to be examined. Pressing any other key (except the PRINT or ENTER/AUTORANGE key) will bring the user back to the default (normal) viscometer display with the motor OFF. Refer to the Time Modes in Section III.3.

III. OPTIONS

III.1 Introduction to OPTIONS

The OPTIONS/TAB key provides access to the configuration (Setup) of the DV-II+ Viscometer as well as special functions that can enhance the user's ability to make viscosity measurements.

The Options menu, shown in Table 1, gives a complete picture of the various configuration choices and special functions.

Table 2 **Options Menu** SETUP: °F or °C Temperature Units CGS or SI * Speed Sets Sequential, Interleave, Custom Printer Port Serial (RS232) or Parallel Data Averaging Display Only * TIME TO STOP * TIME TO TORQUE **SET PRINT TIME:** Set the Printing Time PC PROG (ON/OFF): Enables/Disables Communication of Serial (RS232) Port * DOWNLOAD A PROGRAM: Link to PC to Receive a B.E.V.I.S. Program (B.E.V.I.S. = **B**rookfield **E**ngineering **V**iscometer **I**nstruction **S**et) * **RUN A PROGRAM:** Execute a B.E.V.I.S. Program *Not available when motor is ON

Quick References to Options

Pressing OPTIONS/TAB places you into the Options menu at the *last* option selected. The following keys are active and perform as follows:

	- Scrolls up through menu or selects new value from list.
DOWN ARROW	- Scrolls down through menu or selects new value from list.

	-	Toggles between options.
ENTER/AUTORANGE	-	Accepts the currently flashing option and moves user to next level (if applicable) of the selected option.
MOTOR ON/OFF/ESCAPE	-	Cancels current operation and backs user out <i>one</i> menu level. Repeated pressing will back the user out to the default screen. <i>While in the</i> Options <i>menu, the</i> MOTOR ON/OFF/ESCAPE <i>key does not</i> <i>cause the viscometer motor to turn on or off!</i>

The Options menu screens will appear as shown in Figure 23 if you cycle through the possible options using the UP/DOWN arrows.

On entry to the Options menu, the following rules regarding current viscometer operation are in force:

- 1. Printer output will be suppressed when in the Custom Speed option, the Time to Torque and Time to Stop options, the Download A Program and Run A Program options. It will be continued when any other option is selected.
- 2. If the motor is ON when the user enters the Options menu, choices will be limited to: CGS/SI units (under SETUP), °F/°C units (under SETUP), PRINTING SELEC-TIONS and PC PROG.
- 3. The *last* selected menu option will be flashing.

Selecting an Option

The following is a quick reference for entering and using the **OPTIONS** menu:

Press	To enter Options Menu
Press or V	To scroll to a specific option
For Options:	
Press	To toggle between the choices available for a specific option when indicated
Press Auto	To select the flashing option
III.2 Setup	

From the main Options screen, the user scrolls up or down until the following screen is displayed:

Figure 24

A press of the ENTER/AUTORANGE key takes you into the Setup sub-menu (Figure 25). As in the main Options menu, you can scroll up or down through the various Setup options. In order to access all options, the motor must be turned off.

Figure 25

III.2.1 Temperature Display

The DV-II+ viscometer can display temperature in either degrees Centigrade or degrees Fahrenheit. On entry (assuming the viscometer is currently displaying °F) you will be presented with:

A press of the OPTIONS/TAB key at this point will "toggle" between the two available temperature scale options as shown in Figure 27:

Figure 27

To select the temperature display mode, press the ENTER/AUTORANGE key. You automatically exit the Setup menu with the viscometer displaying temperature in the selected scale. You must press the ENTER/AUTORANGE key to select the flashing option.

III.2.2 Units of Measurement

Selecting units of measurement is identical to that for temperature described above. The screen display shows:

Brookfield Engineering	g Labs., Inc.
-------------------------------	---------------

Figure 28

A press of the OPTIONS/TAB key at this point allows the user to "toggle" between the two available data display units as shown in Figure 29:

Pressing the ENTER/AUTORANGE key selects the display units, which are flashing, followed by an exit of the Setup menu. You must press the ENTER/AUTORANGE key to select the flashing option.

III.2.3 Motor Speed Set Selection

This selection must be done with the motor off. Scrolling in the Setup options menu to the speed set selection option yields the following screen display:

Figure 30

The last selected speed set option is displayed, in this case, *Sequential*. For each press of the OPTIONS/TAB key, the display shows selectable options (Figure 31). You must press the ENTER/ AUTORANGE key to select the flashing option.

Figure 31

The speeds available in each of the above options are listed in Appendix F. The DV-II+ is initially set up with the Sequential Speed Set at Brookfield prior to shipment.

III.2.3.1 LV/RV Speeds

In the case of Sequential or Interleave, a press of the ENTER/AUTORANGE key immediately selects that option and exits the SETUP option menu.

III.2.3.2 Custom Speeds

Pressing the ENTER/AUTORANGE key when *Custom Speeds* is displayed results in the following screen display:

Fifty-four (54) speeds are available for custom speed set selection (see Appendix F). You are allowed to select up to nineteen (19) of these 54 available speeds. Speed 0.0 is automatically included as one of the nineteen (19) speeds. Selecting a speed (or deleting a speed) is accomplished by pressing the SET SPEED key while the desired speed is blinking. This will cause an asterisk to appear (or to disappear if the speed is being cleared) to the left of the speed. Trying to select more than nineteen (19) speeds will result in a "beep" for each press of the SET SPEED key when over this limit. You may scroll up or down through the speed set in selecting speeds. When done, a press of the ENTER/AUTORANGE key will take you back to the default screen with the asterisked speeds now comprising the custom speed set. Regardless of order chosen, speeds will appear in ascending order for run selection, beginning with speed 0.0 RPM.

III.2.4 Printer Output Port

Scrolling to the printer port option presents the following:

Figure 33

Pressing the OPTIONS/TAB key "toggles" between the two port choices. To select a printer output port, press the ENTER/AUTORANGE key while the desired choice is blinking. This will cause the DV-II+ to direct all further printer output to the chosen port while remaining in the Setup menu. You must press the ENTER/AUTORANGE key to select the flashing option.

III.2.5 Data Averaging

This feature will perform a "rolling" average on the displayed % torque value and all other displayed viscometer data derived from % torque. You are allowed to select the number of readings over which averaging is being done, with ten (10) readings as the maximum. There will be an initial delay as the first average is performed and then no apparent delay as the following readings are averaged (the viscometer takes approximately 4 readings per second). The rolling average is described as follows given the selected reading number 'X':

- 1. The first X readings are collected, placed in the averaging buffer, averaged and displayed.
- 2. The first reading in the averaging buffer is dropped; the next reading (the X + 1 reading) is placed in the buffer and the buffer is again averaged and displayed.

Step 2 is repeated indefinitely until the viscometer is shut off or the user selects a different number of readings to average. The number of readings to be averaged will include zero (0) as an average so that this option may effectively be turned off without turning the viscometer off.

Notes: 1. The data averaging will only be applied to the data displayed by the viscometer. No data averaging will be applied to the torque analog output signal.

2. When data averaging is other than zero (0) or one (1), a flashing A will be displayed to the left of the % Torque sign as shown below.

Figure 34

You must press the ENTER/AUTORANGE key to select the flashing option.

III.3 Time Modes

The Time Modes are provided to allow more flexibility by unattended operating of the viscometer during data gathering. The last selected option (i.e. Time to Torque or Time to Stop) will be highlighted when scrolling to this option as shown in Figure 35:

Figure 35

A press of the OPTIONS/TAB key will "toggle" between the two available timed modes as shown in Figure 36:

To enter the time for either of these options, press the ENTER/AUTORANGE key while the selected option is blinking. Let's start with Time To Stop.

Note: These two modes are immediately executed when input is complete. They do not return to the default screen until running is complete. They can be stopped at any time by a press of the MOTOR ON/OFF/ESCAPE key.

III.3.1 Time to Stop

On entry, the user is presented with the following screen display:

Figure 37

Note: If a time interval has already been set, the user may skip the time interval input and go directly to the speed input screen (Figure 39) by pressing the ENTER/AUTORANGE key.

Using the UP and DOWN ARROW keys, the user enters a value for the minutes portion of the time ramp. This value can be as high as 59 minutes. When satisfied, the user presses the OPTIONS/TAB key again to enter the seconds setting display:

Using the UP and DOWN ARROW keys, the user enters a value for the seconds portion of the time ramp. This value will be from zero (0) up to fifty-nine (59) seconds. Press ENTER to accept the value.

Note: The value for either minutes or seconds must be other than zero or you cannot advance to the RPM input screen (Figure 39). Pressing the OPTIONS/ TAB or ENTER/AUTORANGE keys will cause the user to alternate between the minutes input screen (Figure 37) and the seconds input screen (Figure 38) until either minutes or seconds are anything but zero.

A press of the the ENTER/AUTORANGE key allows the user to input the RPM selection. At this point, the user will see a screen similar to Figure 39; using the UP and DOWN ARROW keys, the user sets the speed.

After selecting the speed, the user may review the values selected. If the user presses the OPTIONS/ TAB key, you will return to the minutes input screen of Figure 37 where you may change the minute input if so desired. Thereafter, continued pressing of the OPTIONS/TAB key will toggle between the minutes and seconds input screens and the motor input screen. A press of the MOTOR ON/OFF/ ESCAPE key will cancel the timed stop operation and take the user back to the screen of Figure 36. Pressing the ENTER/AUTORANGE key will cause the DV-II+ to accept the new values. That done, the user is presented with the following screen:

	TIMED ENTER TO	STOP START
--	-------------------	---------------

Figure 40

At this point the user must press the ENTER/AUTORANGE key to begin the timed stop operation. Any other key press will be ignored except the MOTOR ON/OFF/ESCAPE key which will cancel the process and take the user back to the screen of Figure 36 where you will have to begin all over again.

We will assume that the user pressed the ENTER/AUTORANGE key. You will now be presented with the following screen for the duration of the timed run:

Note: When this mode has begun, a press of the MOTOR ON/OFF/ESCAPE key will cance/the Timed Stop sequence and return the user to the screen of Figure 36. Also note that data will be displayed in the currently selected method i.e. CGS or SI units. Pressing the SELECT DISPLAY key allows display of alternate data values such as Shear Stress, Shear Rate or Torque.

The seconds display will decrement from fifty-nine (59) to zero (0) in one (1) second intervals. When seconds reaches zero (0), the minutes value will decrement by one (1) minute. This will continue until all of the time has elapsed at which point the viscometer will display the following screen:

TIMED STOP DONE	cP 123	Se6	
	TIMED	STOP	DONE

Figure 42

At this point the viscometer will stop the motor and continue to display this screen until any key except the UP or DOWN ARROW key, the PRINT key or the SELECT DISPLAY key is pressed. The user can, while this display is current, press the UP or DOWN ARROW keys to view the torque and speed that were current at the time the display was frozen. The display would appear as follows:

%=76.4	RPM=100
TIMED S	TOP DONE

Figure 43

The display will switch between that of Figures 42 and 43 for each press of the UP or DOWN arrow keys. A press of the PRINT screen would send one standard print line to the attached printer for each press of the PRINT key. As stated above, pressing any key (except the UP or DOWN ARROW keys, the PRINT key or the SELECT DISPLAY key) will cause the viscometer to exit the Time To Stop mode and resume operation with the screen of Figure 40 displayed awaiting another Timed Stop run.

The user can press the PRINT key while in either of these two screens (Figures 42 and 43) to send one

standard print string to the attached printer as many times as the user presses the PRINT key. In addition, the PRINT key can be pressed during the actual measurement to obtain instantaneous data. Pressing any other key will exit this mode and return the viscometer to normal operation.

III.3.2 Time to Torque

On entry to this mode, the user is presented with the following screen display:

Figure 44

Using the UP or DOWN ARROW keys, the user enters a value for the torque level that you wish to reach.

Note: The value for torque must be other than zero (0) and less than or equal to ninety-nine (99) percent or *you will not* be able to continue.

At this point, the user presses the OPTIONS/TAB key and the screen shown in Figure 45 appears:

Figure 45

Using the UP or DOWN ARROW keys, the user selects a speed from the currently selected speed set. If you had opted to use the LVRV sequential or interleaved speed sets, all those speeds would be available by pressing the UP or DOWN ARROW keys. Conversely, if the user had selected a custom speed set, you would be limited to those speeds comprising the custom speed set. After selecting the speed, the user may press any one of three keys to continue: the OPTIONS/TAB key, the MOTOR ON/OFF/ESCAPE key and the ENTER/AUTORANGE key. If the user presses the OPTIONS/TAB key you will return to the torque input screen of Figure 44 where you may change the torque input if so desired. Therefore, continued pressing of the OPTIONS/TAB key will toggle between the torque input screens and the motor input screen. A press of the MOTOR ON/OFF/ESCAPE key will cancel the time to torque operation and take the user back to the screen of Figure 35. Finally, pressing the ENTER/AUTORANGE key will cause the DV-II+ to accept and store in EEPROM the new values (only) for the torque level and the selected motor speed.

That done, the user is presented with the following screen:

At this point the user must press the ENTER/AUTORANGE key to begin the timed stop operation. Any other key press will be ignored except the MOTOR ON/OFF/ESCAPE key which will cancel the process and take the user back to the screen of Figure 44 where you will have to begin all over again.

We will assume that the user pressed the ENTER/AUTORANGE key. You will now be presented with

a screen similar to Figure 47 for the duration of the timed torque run:

TORQUE	= 24.2%
MIN: 15	SEC: 13

Note: When this mode has begun, a press of the MOTOR ON/OFF/ESCAPE key will cancel the time to torque sequence and return the user to the screen of Figure 35.

The seconds display will increment from zero(0) to fifty-nine (59) in one (1) second intervals and the current value of the viscometer torque will be updated continuously. When seconds reaches fifty-nine (59), the minutes value will increment by one (1) minute. This will continue until the user selected torque value is attained at which point the viscometer will display the following screen:

Figure 48

At this point the viscometer will stop the motor and continue to display this screen until any key (except the UP or DOWN ARROW keys, the PRINT key or SELECT DISPLAY key) is pressed. The user can, while this display is current, press the UP or DOWN ARROW keys to view the viscosity that was current at the time the display was frozen. The display would appear as follows:

Figure 49

The display will switch between that of Figures 48 and 49 for each press of the UP or DOWN ARROW keys. As stated above, pressing any key (except the UP or DOWN ARROW or PRINT keys) will cause the viscometer to exit the Time To Torque mode and resume operation with the screen of Figure 44 displayed awaiting another Timed Torque run.

The user can press the PRINT key while in either of these two screens (Figures 48 and 49) to send one standard print string to the attached printer as many times as the user presses the PRINT key. In addition, the PRINT key can be pressed during the actual measurement to obtain instantaneous data. Pressing any other key will exit this mode and return the viscometer to normal operation.

Note: For both of the methods of Sections III.3.1 and III.3.2 the following apply:

- 1. For the Timed Stop method, the DV-II+ viscometers will retain the last value for the time interval so that it will become the default the next time the user elects to use this method.
- 2. For the Time To Torque method, the DV-II+ viscometers will retain the last entered torque value for use when next the user elects to perform a time to torque test.
- 3. The user can set up a desired print interval time, then set the viscometer to the continuous print mode and finally initiate either of the timed modes of operation. While setting up the timed mode parameters, continuous print operation will cease.

However, upon starting the timed operation, the DV-II+ will output an initial data string to the printer and then continue printing data strings (at the user defined time interval) for the duration of the timed run. At the end of the timed run, continuous printing will again be disabled and the user may print single strings (of the final data point) at your option until you exit the timed mode. Upon returning to the default operation mode, continous printing will again resume at the user selected time interval. In a similar manner, if you are in the once-per-PRINT -key-press mode, when you enter the timed mode of operation you will be able to print data strings at any time during the timed mode by pressing the PRINT key.

III.3.3 Print Time Interval

This option is used to set the print time interval to the selected printer. Scroll to Set Print Time, as shown in Figure 50:

 + T	I٢	Ε	Т	0	Т	0	R	Q	UE	₹
SE	T	PR	I	ΝT		T	I	M	Ε	¥

Figure 50

Press the ENTER/AUTORANGE key. On entry, Figure 51 is displayed:

PRI	NT	Ι	NTE	RUF	۹Ľ.
SET	MIN	2	S:	00	†↓

Figure 51

Using the UP and DOWN ARROW keys, enter a value for the minutes between successive print strings. This value can be as high as fifty-nine (59) minutes and as low as 00.

When satisfied, press the OPTIONS/TAB key to enter the seconds setting display:

PRI	NT	Ι	NTE	RVA	L
SET	SEC	2	S:	00	†↓

Figure 52

Using the UP and DOWN ARROW keys, enter a value for the seconds portion of the print interval. This value can be between zero (0) and fifty-nine (59) seconds.

Note: The value for minutes or seconds *must* be other than zero (0) or you will print continuously when you exit this mode. A press of the MOTOR ON/ OFF/ESCAPE key would exit this option and take you back to the screen of Figure 50.

Continued pressing of the OPTIONS/TAB key will toggle between the minutes and seconds input screens. Press the ENTER/AUTORANGE key to accept the new values for print interval in minutes and seconds. You will now be in the screen display of Figure 50 where you may re-enter the print interval mode, or exit to the default screen (Figure 7) by pressing the MOTOR ON/OFF/ESCAPE key.

Activating print selections in the Print mode can only be done by exiting to the main menu and pressing the PRINT key for four (4) seconds. "P%" will flash in front of the torque reading, confirming that you are now in the Print Interval mode. Pressing PRINT for one (1) second thereafter will disable the Print mode and remove the "P%" from the display.

III.3.4 PC Program (On/Off)

This option causes the serial port of the DV-II+ viscometer to go into a high speed output mode (approximately 3 print lines per second) for use with Brookfield WINGATHER® Version 1.1 software program. When ON, you may enter the Options menu but will not be allowed to make any option selections until the PC PROG is turned OFF. All front panel keys will function normally when you turn the option ON and return to normal viscometer operation by pressing the MOTOR ON/OFF/ESCAPE key. When OFF, the DV-II+ will return to the last set print time interval when printing is resumed.

From the Options menu, scroll to the screen shown in Figure 53:

↓	SET	PRINT TIME	∱
	‡PC	PROG OFF	¥

Figure 53

Press the OPTIONS/TAB key to display Figure 54:

Figure 54

Pressing the OPTIONS/TAB key would return you to the screen display of Figure 53. Repeated pressing of the OPTIONS/TAB key would cause you to toggle back-and-forth between the displays of Figure 53 and Figure 54.

To turn high speed output ON, press the ENTER/AUTORANGE key when the appropriate screen is displayed. Then press the MOTOR ON/OFF/ESCAPE key to exit the Setup mode. This returns you to the default screen display and resumes normal viscometer operation with high speed output enabled and normal printer operation using the last entered print time interval.

Note: For access to B.E.V.I.S. option, PC PROG must be OFF.

III.3.5 Download a Program

Please refer to Section IV for details on how to create a program before proceeding with this section.

In the Options menu, scroll to the screen shown in Figure 55:

Figure 55

Refer to Section IV for information on how to create B.E.V.I.S. programs on a PC which can be downloaded to the DV-II+ Programmable Viscometer.

Press the ENTER/AUTORANGE key to download a B.E.V.I.S. program as shown in Figure 56:

Figure 56

Select a number from one (1) to four (4) using the UP/DOWN ARROW keys assign a storage location for the program to be downloaded.

Note: Remember to keep track of what program is in what slot. If you elect to download a new program to an active slot, you will overwrite the program currently residing in that slot. The programs are saved automatically when the viscometer is turned off.

After selecting the slot number, press the ENTER/AUTORANGE key and the screen shown in Figure 56 changes as follows: the top line flashes while the bottom line disappears. This flashing screen will be displayed for as long as it takes to download the program. At the end of the download, Figure 57 is displayed:

DOWNL	OAD	DO	ΝE	ΤO
EXIT	PRES	S	Α	KEY

Figure 57

If a **PC** is not attached, Figure 58 will be displayed:

Figure 58

A press of any key (except the MOTOR ON/OFF/ESCAPE key) will take the user back a level to Figure 56 where you may elect to download another program or, with a press of the MOTOR ON/OFF/ESCAPE key, return to the screen of Figure 55.

III.3.6 Run a Program

In the Options menu, scroll to the screen shown in Figure 59:

Press the ENTER/AUTORANGE key to run a B.E.V.I.S. program as shown in Figure 60:

	RUN PGM PRESS	SLOT#1 ∱ ↓ ENTER
--	------------------	----------------------------

Figure 60

Using the UP/DOWN ARROWkeys, select one of the four (4) stored programs. Press the ENTER/ AUTORANGE key. Any attempt to select a program slot that does not contain a program will result in a double beep for each key press. When a valid program slot is selected, the screen in Figure 61 is displayed:

PRINT	KEY	=	LIST
ENTER	KEY	=	RUN

Figure 61

At this point, you may elect to print the B.E.V.I.S. program by pressing the PRINT key or start the program immediately by pressing the ENTER/AUTORANGE key (remember: pressing the MOTOR ON/ OFF/ESCAPE key will stop the current operation and bring you back one menu level). You may elect to print the program, to confirm the slot choice as correct or simply to have it available later when reviewing data. If you elect to print the program, you will return to the screen of Figure 60 after the program is finished printing. Pressing the ENTER/AUTORANGE key exits the screen of Figure 60 and the program will start running.

On program start, the screen could be any of the screens possible when running a B.E.V.I.S. program. A typical screen might be:

Figure 62

where the operator is instructed to mount a spindle 31 and then press a key to continue. Or you might see:

SET	TEMP	Γ		100C
Pf	RESS	Α	С	EY
Figure 63				

followed by:

Figure 64

Here, the B.E.V.I.S. program is waiting for the temperature to reach one hundred (100) $^{\circ}$ C before it continues to the next program step. Also displayed is the program number (P1), the step number and the total program steps (S00/12) and the elapsed time since the program (or step) began (00:14). While in this "wait state" you can press the OPTIONS/TAB key to see the viscometer default screen in Figure 65; the PGM will be flashing.

СР	123.	4	55.	1(2
10	RPM	PGM%	63		7

Figure 65

The DVLOADER Software is used to create, save, print, and down load programs to the DV-II+ Programmable Viscometer. The next section explains how to use the DVLOADER software.

IV. DVLOADER SOFTWARE

The DVLOADER software is a WINDOWS-based program provided on a 3-1/2" diskette which comes with the Programmable DV-II+ Viscometer.

IV.1 B.E.V.I.S. Overview

DVLOADER utilizes B.E.V.I.S. (Brookfield Engineering Viscometer Instruction Set), a scripting language that allows for the creation of programs to control the Programmable DV-II+ Viscometer. Programs are created on a PC, then loaded into the viscometer using the DVLoader software. Some testing capabilities that are possible include the following:

- Repeatedly run the same test program for quality control purposes.
- Wait for a specific condition before continuing with the test (i.e. a torque value, a temperature value, a key press, etc.).
- Run the viscometer at any of the speeds in the Custom Speed menu.
- Display messages to the screen or an attached printer to aid the operator.
- An internal clock that keeps time between each printed data line (this time is displayed as the last parameter on each printed line). This provides a consistent time base for the collected data.

IV.2 Description of B.E.V.I.S. Commands

Command	l Code	Required Parameter Command Description
WTI	Time	The program waits at this step until the specified time
	(MM:SS)	elapses.
WPT	% Torque value	The program waits at this step until the current % torque
	(%)	equals the specifed value.
WTP	Temperature value	The program waits at this step until the current temperature
	(°C)	equals the specified value.
WKY	16 character (or less)	The specified message is displayed on the top line of the DV-
	text message	II+ display while PRESS A KEY is displayed on the bottom
		line of the DV-II+. The program waits at this step until a
		viscometer key is pressed. While waiting at this step, the
		viscometer produces a beep every few seconds to remind the
		operator that a keypress is required to continue.
		If a print interval was enabled (see SPI) at the time this
		command is executed, the data print timer continues to count
		up. If the print interval elapses and a key has not yet been
		pressed, a line of data displaying the time since the last data
		print is printed as soon as a key is pressed.
SSN	Speed value	The DV-II+ begins rotating at the specified speed. This can
	(RPM)	be any of the speeds listed in the Speed list of the DVLoader
		software. These speeds are the same as those listed in the
CDI	 .	Custom Speeds list in the viscometer's Options menu.
SPI	Time	The DV-II+ begins printing data to the selected printer (serial
	(MM:SS)	or parallel; as selected in the DV-II+ menus) at the rate
GGD		specified. MM:SS is minutes:seconds.
SSP	Two digit spindle code	Calculations of viscosity, shear stress, and shear rate are
		performed based on the specified spindle code. This
		command overrides the spindle currently entered via the
0T7	NI / A	Reypad off the DV-II+.
DDN SIZ	IN/A N/A	The DV II immediately prints a data string to the selected
run	1N/FX	printer (serial or parallel: as selected in the DV II - menue)
DI N	16 character (or loss)	The DV Π_{\perp} prints the specified message to the selected
rlin	text message	printer (serial or parallel: as selected in the DV II - manual
	text message	printer (serial of paraller, as selected in the DV-II+ menus).

By using various combinations of the above commands, programs are created that automatically control the viscometer and collect data (via an attached printer) from the Programmable DV-II+ Viscometer.

IV.3 Creating a B.E.V.I.S. Program

Start the DVLOADER software by clicking on its associated icon or by using the File|Run option of the Windows 3.1 Program Manager. For Windows 95, click the Start button; select Run; enter the name of the program to execute {dvloader.exe}; then click OK.

The B.E.V.I.S. commands are displayed in a list box on the main screen. This list box displays the commands available for creating programs. Clicking on the Insert button inserts the highlighted command (WTI, as shown in Figure 66) into the selected line in the program grid. Double-clicking on a line in this list box also inserts the command into the grid shown in Figure 67.

😵 WTI	Wait for time interval
🚱 чрт	Wait for % torque
WTP 🚱	Wait for temperature
🚱 чкч	Wait for a keypress
ing sea	Set viscometer speed
THI SSP	Set spindle
THI STZ	Reset data timer
🅎 261	Set print interval
🕎 PDN	Print data point now
🕎 PLN	Print text now

Figure 66

The icons to the left of the command descriptions indicate the type of command:

A command to wait for a condition.

A command to set a program parameter.

A command to send information to an attached printer.

1	SSN	50.0
2	WTI	00:30
3	SPI	00:05
4	WPT	75.0
5	SSN	25.0
6	WTI	00:10
7	WPT	75.0
8	SSN	0.0
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

Figure 67 shows the grid where the operator programs are created. It is used to view and edit the B.E.V.I.S. programs. When the software starts, an empty grid appears on the left of the screen. You can choose up to 25 commands for your program. Highlight each command in the list box to the right of this grid, then click on the Insert button to insert that same command into the highlighted line of the grid. This same insertion task can also be accomplished by double-clicking on the appropriate command in the list box to the right.

In the case of a speed command (SSN), the Speeds

list box becomes enabled when the cursor is placed in the parameter column for an SSN command. Click on the down arrow to display a list of available speeds. Click on the desired speed, and it will be inserted into the appropriate parameter column in the program grid. The same applies to the spindle command (SSP).

Figure 67

The buttons shown on the main screen are explained below.

Select the COM (RS-232) port the Programmable DV-II+ viscometer is connected to from the COM Port drop down list.

Click the Open File button to load existing B.E.V.I.S. programs.

Click the Save File button to save the B.E.V.I.S. program displayed in the grid.

Click the Print button to print the B.E.V.I.S. program displayed in the grid.

Click the Insert button to insert the B.E.V.I.S. command selected in the Commands box into the selected row in the program grid.

Click the Delete button to delete the B.E.V.I.S. command in the selected row of the program grid.

Click the Up button to move the B.E.V.I.S. command in the selected row of the program grid up one row.

Click the Down button to move the B.E.V.I.S. command in the selected row of the program grid down one row.

Click the Clear button to clear the grid of all B.E.V.I.S. commands. Once cleared, the commands cannot be retrieved.

Downloads a B.E.V.I.S. program from the PC to the DV-II+

<u>,</u>
E <u>×</u> it

Exits the DVLOADER software program and returns the user to the WINDOWS Program Manager.

IV.4 Downloading a B.E.V.I.S. Program

Before down loading a B.E.V.I.S. program to the viscometer, ensure the following have been checked:

- The appropriate cable (BEL Part# DVP-80) is connected between the selected COM port of the PC and the viscometer.
- The DV-II+ motor must be OFF.
- Set PC PROG to "OFF."
- The Programmable DV-II+ is at the down load screen: **OPTIONS|DOWNLOAD A PROG|LOAD TO SLOT#x** where x is slot 1,2,3, or 4. See Section III.6.

With the **LOAD TO SLOT#x** screen displayed, choose a storage slot using the DV-II+ arrow keys then press the **ENTER/AUTO RANGE** key on the viscometer. If after 5 seconds, the viscometer cannot communicate with the DVLoader program, the **B.E.V.I.S. ERROR NO PC ATTACHED** message is displayed and a beeping sound is heard. If a connection is established, the Down Load button on the PC software becomes enabled , and the DV-II+ screen displays **DOWNLOAD PROG TO STORAGE SLOT #1**. Click on this button to down load the displayed program to the DV-II+. When the down load is complete, the DV-II+ displays **DOWNLOAD DONE TO EXIT PRESS A KEY**.

At this point the program in the DV-II+ can be printed and/or run from the viscometer.

Click on this button to exit the DVLOADER software.

Note: This is an important final step because it allows the RS232 port to be used for output from the DV-II+ to a serial printer or PC.

IV. 5 Example Programs

The following example programs can also be found on the DVLoader disk that was included with the DV-II+ Programmable Viscometer:

Program 1: Pre-shear

Command	Command Description	Parameter	Comments
PLN	Print text now	Preshearing now	print user message
SSN	Set viscometer speed	50.0	run at 50 RPM
WPT	Wait for % torque	90.0	wait unitl 90% torque is reached
PLN	Print text now	Collecting data	print user message
SPI	Set print interval	00:10	begin printing data at 10 second intervals
SSN	Set viscometer speed	10.0	run at 10 RPM
WTI	Wait for time interval	01:40	wait at this step for 1 minute and 40 seconds, effectively printing 10 data lines

Program 2: For use with an external temperature controller

Command	Command Description	Parameter	Comments
WTP	Wait for temperature	40.0	wait until temperature = 40° C (as
			an example, a
			Thermosel/Controller can be used
			for temperature control)
WTI	Wait for time interval	05:00	soak time; allow temperature to
			settle
SSN	Set viscometer speed	25.0	run at 25 RPM
SPI	Set print interval	00:30	begin printing data at 30 second
			intervals
WTI	Wait for time interval	06:00	wait at this step for 6 minutes,
			effectively printing 12 data lines

Program 3: Wait for cure (time to torque measurement)

Command	Command Description	Parameter	Comments
SSP	Set spindle	31	set to a number 31 spindle
SSN	Set viscomter speed	100.0	run at 100 RPM
SPI	Set print interval	00:05	begin printing data at 5 second intervals
WPT	Wait for % torque	85.0	wait until % torque = 85; a curing cycle

Program 4: Spring relax

Command	Command Description	Parameter	Comments
WKY	Wait for a keypress	Wind to 100%	tell operator to wind spindle until
			100% torque is reached
WPT	Wait for % torque	100.0	wait until 100% torque is reached
WKY	Wait for a keypress	Release spindle	tell operator to release the spindle
SPI	Set print interval	00:01	begin printing data at 1 second
			intervals
WPT	Wait for % torque	0.0	wait for spindle to completely
	_		unwind to 0% torque

Command	Command Description	Parameter	Comments
SSN	Set viscometer speed	5.0	run at 50 RPM
WTI	Wait for time interval	00:10	wait for 10 seconds
PDN	Print data point now		print one data point
SSN	Set viscometer speed	10	run at 10 RPM
WTI	Wait for time interval	00:10	wait for 10 seconds
PDN	Print data point now		print one data point
SSN	Set viscometer speed	20	run at 20 RPM
WTI	Wait for time interval	00:10	wait for 10 seconds
PDN	Print data point now		print one data point
SSN	Set viscometer speed	50	run at 50 RPM
WTI	Wait for time interval	00:10	wait for 10 seconds
PDN	Print data point now		print one data point

Program 5: Variable speed

Appendix A - Cone/Plate Viscometer Set-Up

This Cone/Plate version of the DV-II+ uses the same operating instruction procedures as described in this manual. However, the "gap" between the cone and the plate must be verified/adjusted before measurements are made. This is done by moving the plate (built into the sample cup) up towards the cone until the pin in the center of the cone touches the surface of the plate, and then by separating (lowering) the plate 0.0005 inch (0.013mm).

Programmable DV-II+ Cone/Plate Viscometers, S/N 50969 and higher, have an Electronic Gap Setting feature. This feature enables the user to easily find the 0.0005 inch gap setting that was established at Brookfield prior to shipment.

The following information explains how to set the Electronic Gap and verify calibration of the DV-II+ Viscometer.

A.1 ELECTRONIC GAP SETTING FEATURES

TOGGLE SWITCH allows you to enable/disable the Electronic Gap Setting Feature: left position is OFF (disabled), right position is ON (enabled).

PILOT LIGHT is the red (LED) light; when illuminated, it means the Electronic Setting Function is sensing (enabled).

CONTACT LIGHT is the yellow (LED) light; when it first turns on, the "hit point" has been found.

SLIDING REFERENCE MARKER is used after finding the "hit point;" it is the reference for establishing the 0.0005 inch gap.

MICROMETER ADJUSTMENT RING is used to move the cup up or down in relation to the cone spindle. Turning the ring left (clockwise) lowers the cup; turning it right (counterclockwise) raises the cup. Each line on the ring represents one scale division and is equivalent to 0.0005 inch movement of the plate relative to the cone.

A.2 SETUP

- Be sure that the Viscometer is securely mounted to the Laboratory Stand, leveled and zeroed with no cone or cup attached and 0% torque is displayed.
- 2. **Figure A2** shows a typical water bath setup. Connect the sample cup inlet/outlet ports to the water bath inlet and outlet and set the bath to the desired test temperature. Allow sufficient time for the bath to reach the test temperature.
- 3. The Viscometer has been sup-plied with a special cone spindle(s) which con-tains the Electronic Gap Setting feature. The "CPE" part number designation on the cone verifies the Electronic Gap Setting feature. Note: The "CPE" cone or cup cannot be used with earlier DV-II+ cone/plate Viscometers (below S/N50969) which do not have the electronic gap setting feature.
- 4. With the motor off, thread the cone spindle by using the spindle wrench to secure the viscometer coupling nut (see **Figure A3**); gently push up on the coupling nut and hold this securely with the wrench. Thread the cone spindle by hand. **Note:** Left Hand <u>Threads.</u>
- 5. Attach the cup, taking care not to hit the cone with the cup (**Figure A4**).

The viscosity of electrically conductive fluids may be affected if readings are taken with the Electronic Gap Setting feature "on". Be sure to shut the feature "off" before taking readings!

A.3 SETTING THE GAP

- 1. Move the toggle switch to the right; this will turn on (enable) the Gap Setting Feature. The Pilot (red) light will be illuminated.
- 2. If the contact light (yellow) is illuminated, turn the micrometer adjustment ring clockwise (as you look down on the instrument) until the light is just breaking contact; i.e. flickering. (see **Figure A5**).
- 3. If the yellow contact light is not illuminated, *slowly* turn the micrometer adjustment ring in small increments (one or two scale divisions) counter-clockwise.

Continue moving the micrometer adjustment ring *slowly* counter-clockwise until the contact light (yellow) turns on. Back off (rotate clockwise) until the light is just breaking contact (i.e. flickering).

- Adjust the sliding reference marker, right or left, to the closest full scale division mark (see Figure A6).
- Turn the micrometer adjustment ring one scale division to the left to meet the line on the sliding reference marker. THE YEL-LOW CONTACT LIGHT SHOULD GO OFF.
- 6. You have established the gap space needed for measurement. Now turn the toggle switch OFF (left); the red pilot light should go off.

7. Carefully remove the sample cup.

Notes

- 1. The cup may be removed and replaced without resetting the gap if the micrometer adjustment ring has not been moved.
- 2. Remove the spindle from the viscometer when cleaning.
- 3. Re-establish the hit point every time the spindle is attached/detached.

A.4 VERIFYING CALIBRATION

- 1. Determine the appropriate sample volume. Refer to Table A6 to determine the correct sample volume required for the spindle to be utilized.
- Select a Brookfield Viscosity Standard fluid that will give viscosity readings between 10% and 100% of full scale range. Refer to Appendix B for viscosity ranges of cone spindles; ranges listed apply to CPE cones.

Do not use a silicone viscosity standard fluid with a viscosity value greater than 5000 cP with a Cone/Plate. Brookfield offers a complete range of mineral oil viscosity standards suitable for use with Cone/Plates for viscosities above 5,000 cP or shear rates above 500 sec⁻¹; see Table E2 in Appendix E for a list of available fluids.

It is best to use a viscosity standard fluid that will be close to the maximum viscosity for a given cone spindle/speed combination.

Example: LVDV-II+ Viscometer, Cone Spindle CPE-42, Brookfield Silicone Viscosity Standard having a viscosity of 9.7 cP at 25°C

At 60 RPM, the full scale viscosity range is 10.0 cP. Thus, the Viscometer reading should be 97% torque and 9.7 cP viscosity \pm 0.197 cP. The allowable error (\pm 0.197 cP) is a combination of Viscometer accuracy and fluid tolerance (refer to **Interpretation of Calibration Test Results** in Appendix E).

3. With the motor off, remove the sample cup and place the viscosity standard fluid into the cup.

Table A1						
Cone Part No.	Sample Volume					
CPE-40 CPE-41 CPE-42 CPE-51 CPE-52	0.5 ml 2.0 ml 1.0 ml 0.5 ml 0.5 ml					

- 4. Attach the sample cup to the Viscometer and allow sufficient time for the sample, cup and cone to reach temperature equilibrium.
- 5. Turn the motor on. Set the desired speed(s). Measure the viscosity and record the reading in both % torque and centipoise (cP).

Note: The cone spindle must rotate at least five (5) times before a viscosity reading is taken.

- Verify that the viscosity reading is within the allowable 1% deviation, as explained earlier, for the specific viscosity standard fluid(s) that you are using.
- The CPE designation on the cone spindle indicates use with Electronic Gap Setting Cone/Plate Viscometers/ Rheometers only.

Appendix B - Viscosity Ranges

Viscosity ranges shown are for operational speeds 0.1 through 200 rpm.

LV Viscometer with LV spindles #1-4 and RV/HA/HB Viscometers with spindles #1-7

Viscosity Range (cP)							
Viscometer Minimum Maximum							
LVDV-II+	15	6,000,000					
RVDV-II+	100	40.000.000					
HADV-II+	200	80,000,000					
HBDV-II+	800	320,000,000					

Small Sample Adapter and Thermosel

SSA and	Viscosity (cP)				Shear
Spindle	LVDV-II+	RVDV-II+	HADV-II+	HBDV-II+	sec-1
SC4-14	58.6 - 1,171.00	625 - 12,500,000	1,250 - 25,000,000	5,000 - 100,000,000	.40N
SC4-15	23.4 - 468,650	250 - 5,000,000	500 - 10,000,000	2,000 - 40,000,000	.48N
^S SC4-16	60 - 1,199,700	640 - 12,800,000	1,280 - 25,600,000	5,120 - 102,400,000	.29N
SC4-18	1,5 - 30,000	16 - 320,000	32 - 640,000	128 - 2,560,000	1.32N
SC4-21	2.4 - 46,865	25 - 500,000	50 - 1,000,000	200 - 4,000,000	.93N
SC4-25	240 - 4,790,000	2,560 - 51,200,000	5,120 - 102,400,000	20,480 - 409,600,000	.22N
SC4-27	11.7 - 234,325	125 - 2,500,000	250 - 5,000,000	1,000 - 20,000,000	.34N
SC4-28	23.4 - 468,650	250 - 5,000,000	500 - 10,000,000	2,000 - 40,000,000	.28N
SC4-29	46.9 - 937,300	500 - 10,000,000	1,000 - 20,000,000	4,000 - 80,000,000	.25N
SC4-31	15 - 300,000	160 - 3,200,000	320 - 6,400,000	1,280 - 25,600,000	.34N
SC4-34	30 - 600,000	320 - 6,400,000	640 - 12,800,000	2,560 - 51,200,000	.28N

• This spindle used with Small Sample Adapter only

^① N represents speed in RPM. For example, spindle SC4-14 operated at 5 rpm has a shear rate of $0.40 \times 5 = 2.0 \text{ sec}^{-1}$

Range and spindle constant information for spindles 82 and 83 are listed on Brookfield Technical Sheet T95-954. Consult Brookfield or your Brookfield dealer for information on spindles 81 and 37.

UL Adapter

	Viscosity (cP)					
UL Spindle	LVDV-II+ RVDV-II+ HADV-II+ HBDV-II+					
YULA-15 or 15Z	1 - 2,000	1 - 2,000 3.2 - 2,000 6.4 - 2,000 25.6 - 2,000				

DIN Adapter Accessory

	Viscosity (cP)				
DAA Spindle	LVDV-II+	RVDV-II+	HADV-II+	HBDV-II+	sec-1
85 86 87	0.6 - 5,000 1.8 - 10,000 5.7 - 50,000	6.1 - 5,000 18.2 - 10,000 61 - 50,000	12.2 - 5,000 36.5 - 10,000 121 - 50,000	48.8 - 5,000 146 - 10,000 485 - 50,000	1.22N 1.29N 1.29N

Spiral Adapter

Spiral	Viscosity (cP)				
Spindle	LVDV-II+	RVDV-II+	HADV-II+	HBDV-II+	sec-1
SA-70	98 - 98,500	1,050-1,050,000	2,100-2,100,000	8,400 - 8,400,000	.00677 - .67.7N (1-100 RPM)

Cone/Plate Viscometer

	Viscosity (cP)					
Cone Spindle	LVDV-II+	RVDV-II+	HADV-II+	HBDV-II+	sec-1	
CPE-40	.15 - 3,065	1.7 - 32,700	3.3 - 65,400	13.1 - 261,000	7.5N	
CPE-41 CPE-42	.58 - 11,510 .3 - 6,000	6.2 - 122,800 3.2 - 64,000	12.3 - 245,600 6.4 - 128,000	49.1 - 982,400 25.6 - 512,000	2.0N 3.84N	
CPE-51 CPE-52	2.4 - 47,990 4.6 - 92,130	25.6 - 512,000 49.2 - 983,000	51.2 -1,024,000 98.3 -1,966,000	205 - 4,096,000 393 - 7,864,000	3.84N 2.0N	

Helipath with T-Bar Spindle

TPor	Viscosity (cP)					
Spindle	LVDV-II+	RVDV-II+	HADV-II+	HBDV-II+		
T-A	156 - 187,460	2,000 - 2,000,000	4,000 - 4,000,000	16,000 - 16,000,000		
T-B	312 - 374,920	4,000 - 4,000,000	8,000 - 8,000,000	32,000 - 32,000,000		
T-C	780 - 937,300	10,000 - 10,000,000	20,000 - 20,000,000	80,000 - 80,000,000		
T-D	1,560 - 1,874,600	20,000 - 20,000,000	40,000 - 40,000,000	160,000 - 160,000,000		
T-E	3,900 - 4,686,500	50,000 - 50,000,000	100,000 - 100,000,000	400,000 - 400,000,000		
T-F	7,800 - 9,373,000	100,000 -100,000,000	200,000 - 200,000,000	800,000 - 800,000,000		

In taking viscosity measurements with the DV-II+ Viscometer there are two considerations which pertain to the low viscosity limit of effective measurement.

- 1) Viscosity measurements should be accepted within the equivalent % Torque Range from 10% to 100% for any combination of spindle/speed rotation.
- 2) Viscosity measurements should be taken under laminar flow conditions, not under turbulent flow conditions.

The first consideration has to do with the precision of the instrument. All DV-II+ Viscometers have a full scale range precision of (+/-) 1% of any spindle/speed rotation. We discourage taking readings below 10% of range because the potential viscosity error of (+/-) 1% is a relatively high number compared to the instrument reading.

Drookfield En	ainoorina	Laha	Inc
DIOOKIIEIO EN		Laus.	

The second consideration involves the mechanics of fluid flow. All rheological measurements of fluid flow properties should be made under laminar flow conditions. Laminar flow is flow wherein all particle movement is in layers directed by the shearing force. For rotational systems, this means all fluid movement must be circumferential. When the inertial forces on the fluid become too great, the fluid can break into turbulent flow wherein the movement of fluid particles becomes random and the flow can not be analyzed with standard math models. This turbulence creates a falsely high Viscometer reading with the degree of non-linear increase in reading being directly related to the degree of turbulence in the fluid.

For the following geometries, we have found that an approximate transition point to turbulent flow occurs:

- No. 1 LV Spindle: 15 cP at 60 RPM
 No. 1 RV Spindle: 100 cP at 50 RPM
- 3) UL Adapter: 0.85 cP at 60 RPM

Turbulent conditions will exist in these situations whenever the RPM/cP ratio exceeds the values listed above.

Appendix C - Variables in Viscosity Measurements

As with any instrument measurement, there are variables that can affect a Viscometer measurement. These variables may be related to the instrument (Viscometer), or the test fluid. Variables related to the test fluid deal with the rheological properties of the fluid, while instrument variables would include the Viscometer design and the spindle geometry system utilized.

Rheological Properties

Fluids have different rheological characteristics that can be described by Viscometer measurements. We can then work with these fluids to suit our lab or process conditions.

There are two categories of fluids:

- These fluids have the same viscosity at different Shear Rates (different RPMs) and are called Newtonian over the Shear Rate range they are measured.
- **Non-Newtonian** These fluids have different viscosities at different shear rates (different RPMs). They fall into two groups:
 - 1) Time Independent non-Newtonian
 - 2) Time Dependent non-Newtonian

The time dependency is the time they are held at a given Shear Rate (RPM). They are non-Newtonian, and when you change the Viscometer spindle speed, you get a different viscosity.

Time Independent

Pseudoplastic

- A pseudoplastic material displays a decrease in viscosity with an increase in shear rate, and is also known as "shear thinning". If you take Viscometer readings from a low to a high RPM and then back to the low RPM, and the readings fall upon themselves, the material is time independent pseudoplastic and shear thinning.

Time Dependent

Thixotropic - A thixotropic material has decreasing viscosity under constant shear rate. If you set a Viscometer at a constant speed recording cP values over time and find that the cP values decrease with time, the material is thixotropic.

Brookfield publication, "*More Solutions to Sticky Problems*" includes a more detailed discussion of rheological properties and non-Newtonian behavior.

Viscometer Related Variables

Most fluid viscosities are found to be non-Newtonian. They are dependent on Shear Rate and the spindle geometry conditions. The specifications of the Viscometer spindle and chamber geometry will affect the viscosity readings. If one reading is taken at 2.5 rpm, and a second at 50 rpm, the two cP values produced will be different because the readings were made at different shear rates. The faster the spindle speed, the higher the shear rate.

The shear rate of a given measurement is determined by: the rotational speed of the spindle, the size and shape of the spindle, the size and shape of the container used and therefore the distance between the

container wall and the spindle surface.

A repeatable viscosity test should control or specify the following:

- 1) Test temperature
- 2) Sample container size (or spindle/chamber geometry)
- 3) Sample volume
- 4) Viscometer model
- 5) Spindle used (if using LVDV-II+ (#1-4) or RVDV-II+ (#1-7) attach the guard leg)
- 6) Test speed or speeds (or the shear rate)
- 7) Length of time or number of spindle revolutions to record viscosity.

Appendix D - Spindle and Model Codes

Each spindle has a two digit entry code which is entered via the keypad on the DV-II+. The entry code allows the DV-II+ to calculate Viscosity, Shear Rate and Shear Stress values.

Each spindle has two constants which are used in these calculations. The Spindle Multiplier Constant (SMC) used for viscosity and shear stress calculations, and the Shear Rate Constant (SRC), used for shear rate and shear stress calculations. Note that where SRC = 0, no shear rate/shear stress calculations are done and the data displayed is zero (0) for these functions.

SPINDLE	ENTRY CODE	SMC	SRC
RV1	01	1	0
RV2	02	4	Õ
RV3	03	10	Õ
RV4	04	20	Õ
RV5	05	40	Õ
RV6	06	100	Õ
RV7	07	400	Õ
HA1	01	1	Õ
HA2	02	4	Õ
HA3	03	10	0
HA4	04	20	0
HA5	05	40	0
HA6	06	100	0
HA7	07	400	0
HB1	01	1	0
HB2	02	4	0
HB3	03	10	0
HB4	04	20	0
HB5	05	40	0
HB6	06	100	0
HB7	07	400	0
LV1	61	6.4	0
LV2	62	32	0
LV3	63	128	0
LV4	64	640	0
LV5	65	1280	0
Spiral	70	105	0.677
T-A	91	20	0
T-B	92	40	0
T-C	93	100	0
T-D	94	200	0
T-E	95	500	0
T-F	96	1000	0
ULA	00	0.64	1.223
DIN-81	81	3.7	1.29
DIN-82	82	3.75	1.29
DIN-83	83	12.09	1.29
DIN-85	85	1.22	1.29
DIN-86	86	3.65	1.29
DIN-87	87	12.13	1.29

Table D1

SC4-14	14	125	0.4
SC4-15	15	50	0.48
SC4-16	16	128	0.2929
SC4-18	18	3.2	1.32
SC4-21	21	5	0.93
SC4-25	25	512	0.22
SC4-27	27	25	0.34
SC4-28	28	50	0.28
SC4-29	29	100	0.25
SC4-31	31	32	0.34
SC4-34	34	64	0.28
SC4-37	37	25	0.36
CPE-40	40	0.327	7.5
CPE-41	41	1.228	2
CPE-42	42	0.64	3.8
CPE-51	51	5.12	3.84
CPE-52	52	9.83	2

Table D1 (continued)

Table D2 lists the model codes and spring torque constants for each Viscometer model.

MODEL	ТК	MODEL CODE ON DV-II+ SCREEN
LVDV-II+	0.09373	LV
2.5LVDV-II+	0.2343	2.5 LV
5LVDV-II+	0.4686	5 LV
1/4 RVDV-II+	0.25	1/4 RV
1/2 RVDV-II+	0.5	1/2 RV
RVDV-II+	1	RV
HADV-II+	2	HA
2HADV-II+	4	2 HA
2.5HADV-II+	5	2.5 HA
HBDV-II+	8	HB
2HBDV-II+	16	2 HB
2.5HBDV-II+	20	2.5 HB
5HBDV-II+	40	5 HB

Table D2

The full scale viscosity range for any DV-II+ model and spindle may be calculated using the equation:

Full Scale Viscosity Range $[cP] = TK * SMC * \frac{10,000}{RPM}$ where: TK = DV-II+ Torque Constant from Table D2 SMC = Spindle Multiplier Constant from Table D1

The Shear Rate calculation is:

Shear Rate (1/Sec) = SRC * RPM

where:

SRC = Shear Rate Constant from Table D1

Appendix E - Calibration Procedures

The accuracy of the DV-II+ is verified using viscosity standard fluids which are available from Brookfield Engineering Laboratories or your local Brookfield agent. Viscosity standards are Newtonian, and therefore, have the same viscosity regardless of spindle speed (or shear rate). Viscosity standards, calibrated at 25°C, are shown in **Table E1** (Silicone Oils) and **Table E2** (Mineral Oils).

Container size:	For Viscosity Standards < 30,000 cP, use a 600 ml Low Form Griffin Beaker having a working volume of 500 ml.				
	For Viscosity Standards \geq 30,000 cP, use the fluid container.				
	Inside Diameter: 3.25"(8.25cm) Height: 4.75"(12.1cm)				
	Note: Container may be larger, but may not be smaller.				
Temperature:	As stated on the fluid standard label: (+/-) 0.1°C				
Conditions:	The DV-I+ should be set according to the operating instructions. The water bath must be stabilized at test temperature. Viscometers with the letters " LV " or " RV " in the model designation must have the guard leg attached (see page 34 for more information on the guard leg).				

Normal 25°C St	andard Fluids	High Temperature Standard Fluids
Viscosity (cP)	Viscosity (cP)	Three Viscosity/Temperatures**
5 10 50 100 500 1,000	5,000 12,500 30,000 60,000 100,000	HT-30,000 HT-60,000 HT-100,000 **25°C, 93.3°C, 149°C Refer to Brookfield catalog for more information.

Table	E1
-------	----

MINERAL OIL VISCOS	SITY STANDARD FLUIDS
BEL Part No.	Viscosity (cP) 25°C
B31 B210 B750 B1400 B2000 B11000 B20000 B80000	$\begin{array}{c} 31\\ 210\\ 750\\ 1,400\\ 2,000\\ 11,000\\ 20,000\\ 80,000\\ \end{array}$
B200000	200,000
B420000	420,000

Brookfield Viscosity Standard Fluid General Information

We recommend that Brookfield Viscosity Standard Fluids be replaced on an annual basis, one year from date of initial use. These fluids are pure silicone and are not subject to change over time. However, exposure to outside contaminants through normal use requires replacement on an annual basis. Contamination may occur by the introduction of solvent, standard of different viscosity or other foreign material.

Viscosity Standard Fluids may be stored under normal laboratory conditions. Disposal should be in accordance with state, local and federal regulations as specified on the material safety data sheet.

Brookfield Engineering Laboratories does not recertify Viscosity Standard Fluids. We will issue duplicate copies of the Certificate of Calibration for any fluid within two years of the purchase date.Brookfield Viscosity Standard Fluids are reusable provided they are not contaminated. Normal practice for usage in a 600 ml beaker is to return the material from the beaker back into the bottle. When using smaller volumes in accessories such as Small Sample Adapter, UL Adapter or Thermosel, the fluid is normally discarded.

Calibration Procedure for LV(#1-4) and RV,HA,HB(#1-7) Brookfield Spindles

- 1) Place the viscosity standard fluid (in the proper container) into the water bath.
- 2) Lower the DV-II+ into measurement position (with guard leg if LV or RV series Viscometer is used).
- 3) Attach the spindle to the Viscometer. If you are using a disk-shaped spindle, avoid trapping air bubbles beneath the disk by first immersing the spindle at an angle, and then connecting it to the Viscometer.
- 4) The viscosity standard fluid, together with the spindle, should be immersed in the bath for a minimum of 1 hour, stirring the fluid periodically, prior to taking measurements.
- 5) After 1 hour, check the temperature of the viscosity standard fluid with an accurate thermometer.
- 6) If the fluid is at test temperature (±0.1°C of the specified temperature, normally 25°C), measure the viscosity and record the Viscometer reading. Note: The spindle must rotate at least five (5) times before readings are taken.
- 7) The viscosity reading should equal the **cP** value on the fluid standard to within the combined accuracies of the Viscometer and the viscosity standard (as discussed in the section entitled, Interpretation of Calibration Test Results) which appears later in this section.

Calibration Procedure for a Small Sample Adapter

When a Small Sample Adapter is used, the water jacket is connected to the water bath and the water is stabilized at the proper temperature:

- 1) Put the proper amount of viscosity standard fluid into the sample chamber. The amount varies with each spindle/chamber combination. (Refer to the Small Sample Adapter instruction manual).
- 2) Place the sample chamber into the water jacket.
- 3) Put the spindle into the test fluid and attach the extension link, coupling nut and free hanging spindle (or directly attach the solid shaft spindle) to the DV-II+.

- 4) Allow 30 minutes for the viscosity standard, sample chamber and spindle to reach test temperature.
- 5) Measure the viscosity and record the Viscometer reading. *Note: The spindle must rotate at least five (5) times before readings are taken.*

Calibration Procedure for a Thermosel System

When a Thermosel System is used, the controller stabilizes the Thermo Container at the test temperature.

- 1) Put the proper amount of HT viscosity standard fluid into the HT-2 sample chamber. The amount varies with the spindle used. (Refer to the Thermosel instruction manual).
- 2) Place the sample chamber into the Thermo Container.
- 3) Put the spindle into the test fluid and attach the extension link, coupling nut and free hanging spindle (or directly attach the solid shaft spindle) to the DV-II+.
- 4) Allow 30 minutes for the viscosity standard, sample chamber and spindle to reach test temperature.
- 5) Measure the viscosity and record the Viscometer reading. *Note: The spindle must rotate at least five (5) times before readings are taken.*

Calibration Procedure using UL or DIN UL Adapters

When a UL or DIN UL Adapter is used, the water bath is stabilized at the proper temperature:

- 1) Put the proper amount of viscosity standard fluid into the UL Tube. (Refer to the UL Adapter instruction manual).
- 2) Attach the spindle (with extension link and coupling nut) onto the DV-II+.
- 3) Attach the tube to the mounting channel.
- 4) Lower the tube into the water bath reservoir, or if using the ULA-40Y water jacket, connect the inlet/outlets to the bath external circulating pump.
- 5) Allow 30 minutes for the viscosity standard, sample chamber and spindle to reach test temperature.
- 6) Measure the viscosity and record the Viscometer reading. *Note: The spindle must rotate at least five (5) times before readings are taken.*

Calibration Procedure using a Helipath Stand and T-Bar Spindles

When a Helipath Stand and T-Bar spindles are used:

- 1) Remove the T-bar spindle and select a standard LV(#1-4) or RV,HA,HB(#1-7) spindle. Follow the procedures for LV(#1-4) and RV,HA,HB(#1-7) Brookfield spindles outlined above.
- 2) T-Bar spindles should not be used for verifying calibration of the DV-II+ Viscometer.

Calibration Procedure for Spiral Adapter

- 1) Place the viscosity standard fluid (in the proper container) into the water bath.
- 2) Attach the spindle to the viscometer. Attach chamber (SA-1Y) and clamp to the viscometer.
- 3) Lower the DV-II+ into measurement position. Operate the viscometer at 50 or 60 RPM until the chamber is fully flooded.

- 4) The viscosity standard fluid, together with the spindle, should be immersed in the bath for a minimum of 1 hour, stirring the fluid periodically (operate at 50 or 60 RPM periodically), prior to taking measurements.
- 5) After 1 hour, check the temperature of the viscosity standard fluid with an accurate thermometer.
- 6) If the fluid is at test temperature (+/- 0.1°C of the specified temperature, normally 25°C), measure the viscosity and record the viscometer reading. Note: The spindle must rotate at least five (5) times for one minute, whichever is greater before readings are taken.
- 7) The viscosity reading should equal the cP value on the viscosity fluid standard to within the combined accuracies of the viscometer and the standard (as discussed in the section entitled, Interpretation of Calibration Test Results).

Calibration Procedure for Cone/Plate Viscometers:

- 1) Follow the above procedures for mechanically adjusting the setting of the cone spindle to the plate.
- 2) Refer to Appendix A, Table A1, and determine the correct sample volume required for the selected spindle.
- 3) Select a viscosity standard fluid that will give viscosity readings between 10% and 100% of full scale range. Refer to Appendix B for viscosity ranges of cone spindles. Consult with Brookfield or an authorized dealer to determine which fluid is appropriate.

It is best to use a viscosity standard fluid that will be close to the maximum viscosity for a given cone spindle/speed combination.

Example:

LVDV-II+ Viscometer, Cone CP-42, Fluid 10 Having a viscosity of 9.7 cP at 25°C

At 60 RPM, the full scale viscosity range is 10.0 cP. Thus, the Viscometer reading should be 97% torque and 9.7 cP viscosity ± 0.197 cP (0.1 cP for the viscometer plus 0.97 cP for the fluid). The accuracy is a combination of Viscometer and fluid tolerance (refer to Interpretation of Calibration Test Results).

- 4) With the viscometer stopped, remove the sample cup and place the viscosity standard fluid into the cup, waiting 10 minutes for temperature equilibrium.
- 5) Connect the sample cup to the Viscometer. Allow sufficient time for temperature to reach equilibrium. Typically 15 minutes is the maximum time that you must wait. Less time is required if spindle and cup are already at test temperature.
- 6) Measure the viscosity and record the Viscometer reading in both % torque and centipoise (cP).
 - Notes: 1) The spindle must rotate at least five (5) times before a viscosity reading is taken.
 - 2) The use of Brookfield Viscosity Standard fluids in the range of 5 cP to 5000 cP is recommended for cone/plate instruments. Please contact Brookfield Engineering Laboratories or an authorized dealer if your calibration procedure requires more viscous standards.
 - 3) Select a viscosity standard fluid that will give viscosity readings between 10% and 100% of full scale range. Refer to Appendix B for viscosity ranges of cone spindles. Do not use a silicone viscosity standard fluid with a viscosity value greater than 5000 cP with a Cone/Plate Viscometer. Brookfield offers a complete range of mineral oil viscosity standards suitable for use with Cone/Plate Viscometers as shown in Table E2. Consult with Brookfield or an authorized dealer to determine which fluid is appropriate.

Interpretation of Calibration Test Results:

When verifying the calibration of the DV-II+, the instrument and viscosity standard fluid error must be combined to calculate the total allowable error.

The DV-II+ is accurate to (+/-) 1% of any full scale spindle/speed viscosity range.

Brookfield Viscosity Standards Fluids are accurate to (+/-) 1% of their stated value.

Example: Calculate the acceptable range of viscosity using RVDV-II+ with RV-3 Spindle at 2 RPM; Brookfield Standard Fluid 12,500 with a viscosity of 12,257 cP at 25°C:

1) Calculate full scale viscosity range using the equation:

Full Scale Viscosity Range $[cP] = TK * SMC * \frac{10,000}{RPM}$ Where: TK = 1.0 from Table D2 SMC = 10 from Table D1 Full Scale Viscosity Range $\frac{1 * 10 * 10,000}{2} = 50,000 cP$

The viscosity is accurate to (+/-) 500 cP (which is 1% of 50,000)

- 2) The viscosity standard fluid is 12,257 cP. Its accuracy is (+/-)1% of 12,257 or (+/-)122.57 cP.
- 3) Total allowable error is (122.57 + 500) cP = (+/-) 622.57 cP.
- 4) Therefore, any viscosity reading between 11,634.4 and 12,879.6 cP indicates that the Viscometer is operating correctly. Any reading outside these limits may indicate a Viscometer problem. Contact the Brookfield technical sales department or your local Brookfield dealer/distributor with test results to determine the nature of the problem.

The Brookfield Guardleg

The *guard leg* was originally designed to protect the spindle during use. The first applications of the Brookfield Viscometer included hand held operation while measuring fluids in a 55-gallon drum. It is clear that under those conditions the potential for damage to the spindle was great. Original construction included a sleeve that protected the spindle from side impact. Early RV guard legs attached to the dial housing and LV guard legs attached to the bottom of the pivot cup with a twist and lock mechanism.

The current guard leg is a band of metal in the shape of the letter U with a bracket at the top that attaches to the pivot cup of a Brookfield Viscometer/Rheometer. Because it must attach to the pivot cup, the guard leg cannot be used with a Cone/Plate instrument. A guard leg is supplied with all LV and RV series instruments, but not with the HA or HB series. It's shape (shown in *Figure 1*) is designed to accommodate the spindles of the appropriate spindle set; therefore, the RV guard leg is wider than the LV due to the large diameter of the RV #1 spindle. They are not interchangeable.

The calibration of the Brookfield Viscometer/Rheometer is determined using a 600 ml Low Form Griffin Beaker. The calibration of LV and RV series instruments includes the guard leg. The beaker wall (for HA/HB instruments) or the guard leg (for LV/RV instruments) define what is called the "outer boundary" of the measurement. The spindle factors for the LV, RV, and HA/HB spindles were developed with the above boundary conditions. The spindle *factors* are used to convert the instrument torque (expressed as the dial reading or %Torque value) into centipoise. Theoretically, if measurements are made with different boundary conditions, e.g., without the guard leg or in a container other than 600 ml beaker, then the spindle factors found on the Factor Finder cannot be used to accurately calculate an absolute viscosity. Changing the boundary conditions does not change the viscosity of the fluid, but it does change how the instrument torque is converted to centipoise. Without changing the spindle factor to suit the new boundary conditions, the calculation from instrument torque to viscosity will be incorrect.

Practically speaking, the guard leg has the greatest effect when used with the #1 & #2 spindles of the LV and RV spindle sets. Any other LV (#3 & #4) or RV (#3 - #7) spindle can be used in a 600 ml beaker with or without the guard leg to produce correct results. The HA and HB series Viscometers/Rheometers are not supplied with guard legs in order to reduce the potential problems when measuring high viscosity materials. HA/HB spindles #3 through #7 are identical to those spindle numbers in the RV spindle set. The HA/HB #1 & #2 have slightly different dimensions than the corresponding RV spindles. This dimensional difference allows the factors between the RV and HA/ HB #1 spindles to follow the same ratios as the instrument torque even though the boundary conditions are different.

The recommended procedures of using a 600 ml beaker and the guard leg are difficult for some customers to follow. The guard leg is one more item to clean. In some applications the 500 ml of test fluid required to immerse the spindles in a 600 ml beaker is not available. In practice, a smaller vessel may be used and the guard leg is removed. The Brookfield Viscometer/Rheometer will produce an accurate and repeatable torque reading under any measurement circumstance. However, the conversion of this torque reading to centipoise will only be correct if the factor used was developed for those specific conditions. Brookfield has outlined a method for recalibrating a Brookfield Viscometer/Rheometer to any measurement circumstance in <u>More Solutions to Sticky Problems</u>, Section 3.3.10. It is important to note that for

many viscometer users the true viscosity is not as important as a repeatable day to day value. This repeatable value can be obtained without any special effort for any measurement circumstance. But, it should be known that this type of torque reading will not convert into a correct centipoise value when using a Brookfield factor if the boundary conditions are not those specified by Brookfield.

The guard leg is a part of the calibration check of the Brookfield LV and RV series Viscometer/ Rheometer. Our customers should be aware of its existence, its purpose and the effect that it may have on data. With this knowledge, the viscometer user may make modifications to the recommended method of operation to suit their needs.

Appendix F - Speed Sets

The following speed sets and custom speeds are selectable from the SETUP menu option. All speeds are in units of RPM.

Interleave			Sequ	ential			Custom	
Speed	From		Speed	From		Speed	Speed	Speed
Speed 0.0 0.3 0.5 0.6 1.0 1.5 2.0 2.5 3.0 4.0 5.0 6.0 10.0 12.0 20.0 30.0 50.0 60.0 100.0	From LVT RVT LVT RVT LVT RVF RVT LVT RVT LVT RVT LVT RVT LVT RVT	OR	Speed 0.0 0.3 0.6 1.5 3.0 6.0 12.0 30.0 60.0 0.5 1.0 2.0 2.5 4.0 5.0 10.0 20.0 50.0 100.0	From LVT LVT LVT LVT LVT LVT LVT LVT RVT RVT RVT RVT RVT RVT RVT RVT RVT	OR	Speed 0.0 0.01 0.03 0.05 0.07 0.09 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.4 1.5 1.8 2.0	Speed 3.0 4.0 5.0 6.0 7.5 8.0 10.0 12.0 15.0 17.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 60.0 70.0 75.0 80.0	Speed 100.0 105.0 120.0 135.0 140.0 150.0 160.0 180.0 200.0

The DV-II+ has the sequential speed set installed at Brookfield prior to shipment. The DV-II+ can be programmed to select up to 18 of the above speeds for use at any one time. Speed 0.0 is automatically included as the 19th speed.

Appendix G - Communications

When using the Brookfield Computer Cable (Brookfield part # DVP-80), the DV-II+ will output a data string at a rate of approximately 3 times per second. When using the Brookfield Printer Cable (Brookfield Part No. DVP-81), the output rate is 1.0 times per second. The DV-II+ uses the following RS-232 parameters to output these strings:

Baud Rate	9600
Data Bits	8
Stop Bits	1
Parity	None
Handshake	None

The following formulas should be used to calculate and display the Viscometer data after <u>each</u> packet of data is obtained from the DV-II+.

Viscosity (cP)	$= \frac{100}{\text{RPM}} * \text{TK} * \text{SMC} * \text{Torque}$
Shear Rate $(1/Sec)$	= RPM * SRC
Shear Stress (Dynes/Cm ²)	= TK * SMC * SRC * Torque

Where:

RPM = Current Viscometer spindle speed in RPM TK = Viscometer torque constant from Appendix D, Table D2. SMC = Current spindle multiplier constant from Appendix D, Table D1. SRC = Current spindle shear rate constant from Appendix D, Table D1. Torque = Current Viscometer torque (%) expressed as a number between 0 and 100.

As an example, consider an LV Viscometer using an SC4-31 spindle, running at 30 RPM and currently displaying a Torque of 62.3 (%). First we list all of the given data and include model and spindle constants from Appendix D, Tables D1 and D2:

RPM	=	30 from the example statement.
TK	=	0.09373 from Appendix D for an LV Viscometer.
SMC	=	32.0 from Appendix D for a type SC4-31 spindle.
SRC	=	0.34 from Appendix D for a type SC4-31 spindle.
Torque	=	62.3 from the example statement.

Applying this data to the above equations yields:

Viscosity (cP)	$= \frac{100}{RPM} * TK * SMC * Torque$		
	$= \frac{100}{30} * 0.09373 * 32.0 * 62.3$		
	= 622.9 cP		
Shear Rate $(1/Sec)$	= RPM * SRC		
	= 30 * 0.34		
	= 10.2 ¹ / _{Sec}		

Shear Stress (
$$^{Dynes}/_{Cm}^2$$
) = TK * SMC * SRC * Torque
= 0.09373 * 32.0 * 0.34 * 62.3
= 63.5 $^{Dynes}/_{Cm}^2$

DV-II+ Serial and Analog Outputs

Notes:

Figure G1

- 1. Placing a jumper across pins 4 and 9 causes the DV-II+ to output printer data at a 3 line-per-second rate. No jumper across pins 4 and 9 retains the once-per-second printer output rate.
- 2. This is a 0-1 volt d.c. output where 0 volts corresponds to 0% torque and 1 volt corresponds to 100 % torque with a resolution of 1 millivolt (0.1%).
- 3. This is a 0-4 volt d.c. output where 0 volts corresponds to -100°C and 4 volts corresponds to +300°C with a resolution of 1 millivolt (0.1°C).

Analog Output:

The analog outputs for temperature and % torque are accessed from the 9-pin connector located on the rear panel of the DV-II+. The pin connections are shown in Figure G1.

The output cable (Part No. DVP-96Y) connections are:

Red Wire:	Temperature Output		
Black Wire:	Temperature Ground		
White Wire:	% Torque Output		
Green Wire:	% Torque Ground		

Note:	Please contact Brookfield Engineering Laboratories or your local				
	distributor for purchase of the DVP-96Y analog output cable.				

Appendix H - Laboratory Stands

Model S Laboratory Stand*

*Provided with instruments shipped after October 1, 1999

Figure H1

Unpacking

Check carefully to see that all the components are received with no concealed damage.

- 1 Base, VS-2, with 2 Leveling Screws, VS-3, packed in a cardboard carton
- 1 Upright Rod, VS-34, with attached Clamp Assembly, VS-35Y

Assembly (Refer to Figure H1)

- 1. Remove the base assembly from the carton.
- 2. Remove the screw and washer from the upright rod. Place the rod and clamp assembly into the hole in the top of the base.

Note: The "Front" designation on the clamp assembly should face the opening of the legs, i.e., parallel to the leveling feet.

- 3. Rotate the rod/clamp assembly slightly until the slot on the bottom of the rod intersects the pin located in the base.
- 4. While holding the rod and base together, insert the slotted screw and washer as shown and tighten securely.

Viscometer Mounting

Insert the Viscometer mounting rod into the hole (with the cut-away slot) in the clamp assembly. Adjust the instrument level until the bubble is centered from right to left and tighten the clamp knob (clockwise). Use the leveling screws to "fine" adjust the viscometer level. *Note: If the Digital Viscometer cannot be leveled, check to insure that the rod is installed with the gear rack facing forward.*

Note: If the clamp is taken off the upright rod, the tension insert (Part No. VS-29) must be properly aligned for the clamp to fit back onto the upright rod. When the tension insert (Part No. VS-29) is inserted, its slot must be in the vertical position parallel to the upright rod. If the slot is not in the correct position, the clamp will not slide down over the upright rod. Use a small screwdriver or pencil to move it into the correct position. The VS-29W Belleville spring washers must face each other as illustrated. Adjust the VS-28 tension screw so that the clamp assembly is not loose on the upright rod.

Caution: Do not tighten the clamp knob unless the viscometer mounting rod is inserted in the clamp assembly.

Center the Viscometer relative to the stand base and retighten the jam nut as required. Referring to the Viscometer bubble level, adjust the leveling screws until the instrument is level.

Model A Laboratory Stand**

**Provided with instruments shipped before October 1, 1999

Figure H2

Unpacking

Check carefully to see that all the components are received with no concealed damage.

1 base 3 leveling screws 1 upright rod 1 jam nut 1 clamp assembly

Remove the three (3) leveling screws from the base and discard the packing material. Remove the jam nut from the upright rod.

Assembly (Refer to Figure H2)

Screw the leveling screws into the base. Insert the threaded end of the upright rod into the hole in the top of the base and attach the jam nut to the rod on the underside of the base. With the rod gear rack facing forward (toward the "V" in the base), gently tighten the jam nut.

Viscometer Mounting

Insert the Viscometer mounting rod into the hole (with the cut-away slot) in the clamp assembly. Adjust the instrument level until the bubble is centered from right to left and tighten the Clamp Screw (clockwise).

Note: The small clamp adjusting screw (Figure H1) on the clamp assembly should be loosened or tightened as necessary to provide smooth height adjustment and adequate support for the Viscometer.

Center the Viscometer relative to the stand base and retighten the jam nut as required. Referring to the Viscometer bubble level, adjust the leveling screws until the instrument is level.

Operation

Rotate the Gear Screw to raise or lower the viscometer.

Appendix I - DVE-50 Probe Clip

Probe Clip DVE-50 is supplied with all model DV-II+ Viscometers, DV-III Rheometers, and Digital Temperature Indicators. It is used to attach the RTD temperature probe to the LV Guard Leg (Part No. B-20Y) or 600 ml low form Griffin beaker. Figure H1 is a view of the Probe Clip, showing the hole into which the RTD probe is inserted, and the slot which fits onto the LV guard leg. When inserting the RTD probe into the Probe Clip, the upper part of the Clip is compressed by squeezing the points shown in Figure H1. **Note:** All Viscometer/Rheometer models — except LV — use the Probe Clip as shown in Figure H3.

Figure H1

Figure H2 shows the Probe Clip (with RTD temperature probe installed) mounted on the LV guard leg.

Figure H3 shows the Probe Clip mounted in a 600 ml low form Griffin beaker. This mounting may be used with LV, RV, HA and HB series instruments.

Brookfield Engineering Labs., Inc. Page 67 Manual No. M/97-164-D1000

Appendix J - Fault Diagnosis and Troubleshooting

Listed are some of the more common problems that you may encounter while using your Viscometer.

Spindle Does Not Rotate

- \checkmark Make sure the viscometer is plugged in.
- \checkmark Check the voltage rating on your viscometer (115, 220V); it must match the wall voltage.
- \checkmark Make sure the motor is ON and the desired rpm is selected.

Spindle Wobbles When Rotating or Looks Bent

- \checkmark Make sure the spindle is tightened securely to the viscometer coupling.
- ✓ Check the straightness of all other spindles; replace if bent.
- ✓ Inspect viscometer coupling and spindle coupling mating areas and threads for dirt; clean threads on spindle coupling with a 3/56 left-hand tap.
- ✓ Inspect threads for wear; if the threads are worn, the unit needs service (see Appendex K). Check to see if spindles rotate eccentrically or wobble. There is an allowable runout of 1/32inch in each direction (1/16-inch total) when measured from the bottom of the spindle rotating in air.
- ✓ Check to see if the viscometer coupling appears bent; if so, the unit is in need of service (see Appendix K, "How to Return Your Viscometer").

If you continue to experience problems with your viscometer, follow this troubleshooting section to help isolate potential problems.

Perform an Oscillation Check

- \checkmark Remove the spindle and turn the motor OFF; select display to % torque mode.
- \checkmark Gently push up on the viscometer coupling.
- \checkmark Turn the coupling until the digital display reads 10-15 on the % display.
- \checkmark Gently let go of the coupling.
- ✓ Watch the digital display; you should see a "run" of numbers next to the %; the "run" of numbers should ultimately stop at 0.0 (+/- 0.1).

If the digital display does not return to ZERO, the unit is in need of service (see Appendix K, "How to Return Your Viscometer").

□ Inaccurate Readings

- \checkmark Verify spindle, speed and model selection.
- ✓ If % readings are under-range (less than 10%), the display will flash; change spindle and/or speed.
- ✓ "EEE" on the digital display means the unit is over-range (greater than 100%); reduce speed and/or change spindle.
- ✓ Verify test parameters: temperature, container, volume, method. Refer to:
 - "More Solutions to Sticky Problems", Section III
 - "DV-II+ Programmable Viscometer Operating Instructions, Appendix C, "Variables in Viscosity Measurements.
- \checkmark Perform a calibration check; follow the instructions in Appendix E.
- ✓ Verify tolerances are calculated correctly.
- \checkmark Verify the calibration check procedures were followed exactly.

If the unit is found to be out of tolerance, the unit may be in need of service. See Appendix K for details on "How to Return Your Viscometer".

□ Viscometer Will Not Return to Zero

- ✓ Viscometer is not level
 - Check with spindle out of the sample
 - Adjust the laboratory stand
- ✓ Pivot point or jewel bearing faulty
 - Perform calibration check
 - Contact Brookfield Engineering Laboratories, Inc. or your Brookfield dealer for repair

Display Reading Will Not Stabilize

- \checkmark Special characteristic of sample fluid. There is no problem with the viscometer.
 - Refer to Appendix C
- ✓ Check for erratic spindle rotation.
 - Verify power supply
 - Contact Brookfield Engineering Laboratories, Inc. or your Brookfield dealer for repair
- ✓ Bent spindle or spindle coupling.
 - Contact Brookfield Engineering Laboratories, Inc. or your Brookfield dealer for repair
- ✓ Temperature fluctuation in sample fluid
 - Use temperature bath control.

□ No Recorder Response

- ✓ Be Sure the viscometer is not at ZERO reading.
- \checkmark Be sure the recorder is ON and not on STANDBY.
- ✓ Verify the range settings.
- \checkmark Check cable leads for clean connection.

Recorder Pen Moves in Wrong Direction

- ✓ Output polarity reversed
 - Reverse leads

□ Viscometer Will Not Communicate with PC

- \checkmark Check the comm port and make sure the correct port is being utilized.
- \checkmark Check the interconnecting cable for proper installation
- ✓ Check the Options menu and make sure the PC PROG is set to either "ON" or "OFF" in accordance with the operating instructions for the program/procedure in use.

If the above do not rectify the problem, do the following:

- ✓ Shut off viscometer
- ✓ Attach printer.
- ✓ Press and hold the MOTOR ON/OFF and ENTER/AUTORANGE keys simulanteously while turning the viscometer power on. Figure J1 appears on the viscometer display.

Figure J1

✓ Press ENTER/AUTORANGE key and Figure J2 appears.

Figure J2

✓ Scroll to YES and press the ENTER/AUTORANGE key. Figure J3 appears.

Figure J3

✓ Press ENTER/AUTORANGE. Information similar to Figure J4 will appear on your printer output.

Timed Stop	Minutes Seconds		01 30
Time to Torque	RPM Torque % RPM		50 60 50
Print Interval	Minutes Seconds		00 05
Printer Port Last Spindle Used Special Spindle Special Spindle Special Spindle Special Spindle Special Spindle Special Spindle Display Units Temperature Scale Speed Set Viscometer Model Last BEVIS Program Raw Temps Tangua Scale	Parallel of AA SMC AA SRC BB SMC BB SRC CC SMC CC SRC DD SMC DD SRC	or Serial	Parallel 05 0000.000 00.000 0000.000 0000.000 0000.000 0000.000 0000.000 CGS C INTERLEAVE RV 1 2E0C 00FE
		F '	- T 4

Figure J4

- ✓ Call Brookfield to review the information on your printer output.
- \checkmark Figure J5 next appears on the viscometer display. Turn the viscometer power off.

Figure J5

Appendix K - Warranty Repair and Service

Warranty

Brookfield Viscometers are guaranteed for one year from date of purchase against defects in materials and workmanship. They are certified against primary viscosity standards traceable to the National Institute of Standards and Technology (NIST). The Viscometer must be returned to **Brookfield Engineering Laboratories, Inc.** or the Brookfield dealer from whom it was purchased for no charge warranty service. Transportation is at the purchaser's expense. The Viscometer should be shipped in its carrying case together with all spindles originally provided with the instrument.

For repair or service in the **United States** return to:

Brookfield Engineering Laboratories, Inc. 11 Commerce Boulevard Middleboro, MA 02346 U.S.A.

Telephone: (508) 946-6200 FAX: (508) 946-6262 http://www.brookfieldengineering.com

For repair or service **outside the United States** consult **Brookfield Engineering Laboratories, Inc.** or the dealer from whom you purchased the instrument.

For repair or service in the United Kingdom return to:

Brookfield Viscometers Limited 1 Whitehall Estate Flex Meadow Pinnacles West Harlow, Essex CM19 5TJ, United Kingdom

Telephone: (44) 27/945 1774 FAX: (44) 27/945 1775

For repair or service in Germany return to:

Brookfield Engineering Laboratories Vertriebs GmbH Barbarossastrasse 3 D-73547 Lorch, Germany

Telephone: (49) 7172/927100 FAX: (49) 7172/927105
Packaging Instructions to Return a Viscometer for Repair or Calibration

- Remove and return all spindles (properly packed for shipping).
- □ Clean excess testing material off the instrument.
- □ Include MSDS sheets for all materials tested with this instrument.
- □ Support pointer shaft with white, nylon shipping cap, as shown in Figure K1, or with white plastic shipping cap originally supplied with instrument.
- Pack the instrument in its original case. Cases are available for immediate shipment from Brookfield. If the case is not available, take care to wrap the instrument with enough material to support it. Avoid using foam peanuts or shredded paper.
- DO NOT send the laboratory stand unless there is a problem with the upright rod, clamp or base. If there is a problem with the stand, remove the upright rod from the base and individually wrap each item to avoid contact with the instrument. Do not put lab stand in viscometer carrying case.
- □ Fill out a copy of the Viscometer Information Sheet (on page 74) with as much information as possible to help expedite your service. If you do not use this form, please include a memo indicating the type of problem you are experiencing or the service you need performed. Please also include a purchase order number for us to bill against.
- Package the instrument and related items in a strong box for shipping. Mark the outside of the box with handling instructions.

Example: "Handle with Care" or "Fragile - Delicate Instrument"

For cone/plate instruments, please remove the cone spindle and carefully pack in place in the shipping case. If available, use the original foam insert or roll up one sheet of tissue paper (or similar) and place between the spindle coupling and cup assembly (see Figure K2). This will help prevent damage in shipping. Providing us with the following information will help us to service your equipment more quickly and efficiently. Please photocopy, fill out and return a copy of this form with your instrument.

Brookfield recommends that all viscometers be returned for annual calibration to ensure that your equipment continues to provide the same accuracy you have come to expect from Brookfield products.

1	VISCOMETER INFORMATION	
		Date:
	Serial Number:	Model:
2	COMPANY INFORMATION	
	Company:	Primary User:
	Telephone:	Fax:
	P.O. Number:	(to cover repair and shipping)
	Billing Address:	Shipping Address:
	Return Shipment Instructions: U	JPS ground I UPS Next Day I UPS 2nd Day I Federal Express I I (Federal Express Account Number required) I
	Operating Conditions (Spindle; Speed; Viscosity Range; Temp. Control; Temperature of Sample):	
 STEPS: Return the Viscometer to the attention of the Repair Department at the address above. Package the Viscometer for shipment, as outlined on page 73. Include a purchase order or purchase order number with this form. 		

BROOKFIELD ENGINEERING LABORATORIES, INC. • 11 Commerce Boulevard • Middleboro, MA 02346 • TEL: 508-946-6200 or 800-628-8139. • FAX: 508-946-6262 • www.brookfieldengineering.com NOTES TIME FOR: с С SHEAR RATE VISCOSITY cP FACTOR DATE: BY: DIAL READING **/ISCOSITY TEST REPORT** % TORQUE RPM SPINDLE MODEL TEST INFORMATION: CONCLUSIONS: SAMPLE

This tear-off sheet is a typical example of recorded test data. Please photocopy and retain this template so that additional copies may be made as needed.