# Basic Electronics Solutions 

1. 4 R
2. 102 R
3. $\mathrm{R} / 2$
4. $\frac{(10 \mathrm{R})(1 \mathrm{R})}{10 \mathrm{R}+1 \mathrm{R}}=\frac{10}{11} \mathrm{R}$
5. $\frac{2}{3} \mathrm{R}$
6. $\frac{1}{1 / R+1 / 2 R+1 / 2 R}=\frac{R}{2}$
7. $(12 \mathrm{~V}) \frac{10 \mathrm{k}}{10 \mathrm{k}+10 \mathrm{k}}=6 \mathrm{~V}$
8. Voltage divider
9. Short the voltage source, and calculate the Thevenin resistance. It turns out to simply be the parallel combination of two 10 k resistors, hence the output impedance is 5 k .
10. Find the input impedance by first combining the two 30 k resistors in series. The resulting 60 k resistance is now in parallel with 10k from the lower leg of the pair of 10k resistors. The resulting 8.6 k resistance is in series with the upper 10k resistor. Thus the input impedance is 18.6k.
11. Use superposition to solve this problem. First, imagine that the -5 V node is instead connected to ground. Calculate the voltage, $\mathrm{V}_{\mathrm{a}} . \mathrm{V}_{\mathrm{a}}=(5 \mathrm{~V}) \frac{2 \mathrm{k}+2 \mathrm{k}}{2 \mathrm{k}+2 \mathrm{k}+2 \mathrm{k}}=3.33 \mathrm{~V}$. Now replace the -5 V node, and imagine the +5 V node is connected to ground. Calculate $\mathrm{V}_{\mathrm{a}}$, it is again a simple voltage divider. $\mathrm{V}_{\mathrm{a}}=(-5 \mathrm{~V}) \frac{2 \mathrm{k}}{2 \mathrm{k}+2 \mathrm{k}+2 \mathrm{k}}=-1.67 \mathrm{~V}$. The final solution is $\mathrm{V}_{\mathrm{a}}=3.33-1.67=1.67 \mathrm{~V}$
12. Short the voltage sources to ground, and calculate the equivalent resistance from node a to ground. It turns out to be 2 k in parallel with 4 k , which is 1.5 k . Thus, the Thevenin equivalent circuit is a 1.67 V source in series with at 1.5 k resistor.
13. Reduce the problem into a simple voltage divider by collapsing the upper loop. The uppermost resistors combine in series to 3 k and then can be combined in parallel with the remaining 2 k into an equivalent resistance of $\frac{6}{5} \mathrm{k}$. This resistance now forms a simple voltage divider with the 10 k resistor, hence, $\mathrm{V}_{\mathrm{a}}=(5 \mathrm{~V}) \frac{(10 \mathrm{k})}{\frac{6}{5} \mathrm{k}+10 \mathrm{k}}=4.46 \mathrm{~V}$.
14. The capacitance of capacitors in parallel add, so $\mathrm{C}_{\text {equiv }}=11 \mathrm{C}$
15. 8C

## Basic Electronics Solutions

16. Cequiv $=\frac{1}{1 / \mathrm{C}+1 / 10 \mathrm{C}}=\frac{10}{11} \mathrm{C}$
17. Inductances of inductors in series add, so $\mathrm{L}_{\mathrm{equiv}}=11 \mathrm{~L}$
18. The reciprocal inductances of inductors in parallel add, so $\mathrm{L}_{\text {equiv }}=\frac{10}{11} \mathrm{~L}$
19. $(5 \mathrm{~V}) \frac{(1 \mathrm{M})}{800 \mathrm{k}+1 \mathrm{M}}=2.78 \mathrm{~V}$

