Spectral Curvature Clustering for Hybrid Linear Modeling

Guangliang Chen

Applied Math Seminar

Duke University

September 28, 2009

Spectral Curvature Clustering for Hybrid Linear Modeling - p. 1/34

Hybrid Linear Modeling

● **Given**: $X = {\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N} \subset \mathbb{R}^D$ sampled from *K* Borel probability measures supported around affine subspaces of dimensions $d_1, ..., d_K$

Hybrid Linear Modeling

■ **Given**: $X = {\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N} \subset \mathbb{R}^D$ sampled from *K* Borel probability measures supported around affine subspaces of dimensions $d_1, ..., d_K$

- **Goals**:
 - Determine K and d_1, \ldots, d_K (if unknown)
 - Cluster data into subsets and model each subspace

Some Applications

Motion Segmentation

 Given trajectory vectors of pre-selected feature points along the image frames in a video sequence, cluster the trajectories according to the motions

Face Image Clustering

 Classify frontal images of several human subjects under different angles and illumination conditions

Temporal Video Segmentation

 Partition a long video sequence into multiple short segments containing different scenes

Outline of the Talk

- Hybrid linear modeling via SCC
 - The SCC algorithm
 - Theoretical analysis
 - Numerical techniques
- Extension to multi-manifold modeling through
 - Kernelization
 - Localization
- Application to motion segmentation

Two Assumptions

- \blacksquare K and d_k are known
 - We want to focus on clustering and modeling
- \checkmark d_k are all equal to d
 - Otherwise set d = max dk and treat all subspaces as being d dimensional

- Construct pairwise weights: $\mathbf{W}_{ij} = e^{-\|\mathbf{x}_i \mathbf{x}_j\|^2/\sigma}$
- Compute W's top K e.v.'s: $\mathbf{U} = [\mathbf{u}_1 \dots \mathbf{u}_K] \in \mathbb{R}^{N \times K}$ and map data to the **row** vectors of \mathbf{U}
- Cluster data in the U space by Kmeans

- Construct pairwise weights: $\mathbf{W}_{ij} = e^{-\|\mathbf{x}_i \mathbf{x}_j\|^2/\sigma}$
- Compute W's top K e.v.'s: $\mathbf{U} = [\mathbf{u}_1 \dots \mathbf{u}_K] \in \mathbb{R}^{N \times K}$ and map data to the **row** vectors of \mathbf{U}
- Cluster data in the U space by Kmeans

- Construct pairwise weights: $\mathbf{W}_{ij} = e^{-\|\mathbf{x}_i \mathbf{x}_j\|^2/\sigma}$
- Compute W's top K e.v.'s: $\mathbf{U} = [\mathbf{u}_1 \dots \mathbf{u}_K] \in \mathbb{R}^{N \times K}$ and map data to the **row** vectors of \mathbf{U}
- Cluster data in the U space by Kmeans

- Construct pairwise weights: $\mathbf{W}_{ij} = e^{-\|\mathbf{x}_i \mathbf{x}_j\|^2/\sigma}$
- Compute W's top K e.v.'s: $\mathbf{U} = [\mathbf{u}_1 \dots \mathbf{u}_K] \in \mathbb{R}^{N \times K}$ and map data to the **row** vectors of \mathbf{U}
- Cluster data in the U space by Kmeans

When $d \ge 1$

Consider the 2 lines clustering problem (d = 1):

When $d \ge 1$

Clusters found by spectral clustering:

When $d \ge 1$

Clusters found by spectral clustering:

Conclusions: cannot compute weights using only

- distance
- 2 points

Multi-way Clustering

- **Just 6 Idea** (for *d*-planes clustering, $d \ge 0$):
 - Assign an affinity measure to any d + 2 points, using e.g., volume, LS error
 - Process the resulting (d+2)-way affinity tensor to cluster data

Multi-way Clustering

- **Idea** (for *d*-planes clustering, $d \ge 0$):
 - Assign an affinity measure to any d + 2 points, using e.g., volume, LS error
 - Process the resulting (d+2)-way affinity tensor to cluster data

Important questions:

- What are good multiwise affinities?
- How to process affinity tensors both theoretically and practically (N^{d+2} affinities!)?
- How to rigorously justify such an algorithm?

Multi-way Clustering

- **Jeta** (for *d*-planes clustering, $d \ge 0$):
 - Assign an affinity measure to any d + 2 points, using e.g., volume, LS error
 - Process the resulting (d+2)-way affinity tensor to cluster data

Important questions:

- What are good multiwise affinities?
- How to process affinity tensors both theoretically and practically (N^{d+2} affinities!)?
- How to rigorously justify such an algorithm?
- Previous work: Govindu (CVPR 05'), Agarwal et al. (CVPR 05', ICML 06'), Shashua et al. (ECCV 06')

Polar Curvature

■ **Definition**: For any $Z = \{z_1, ..., z_{d+2}\} \subset \mathbb{R}^D$, and the (d+1)-simplex S, the *polar curvature* of Z is

$$c_{\mathbf{p}}^{2}(Z) \coloneqq \operatorname{diam}(Z)^{2} \cdot \sum \operatorname{psin}_{\mathbf{z}_{i}}(Z)^{2},$$

where $psin_{\mathbf{z}_i}$ is the polar sine at $\mathbf{z}_i, 1 \le i \le d+2$:

$$\mathsf{psin}_{\mathbf{z}_i}(Z) \coloneqq \frac{(d+1)! \cdot \mathsf{V}_{d+1}(\mathcal{S})}{\prod_{j \neq i} \|\mathbf{z}_j - \mathbf{z}_i\|}.$$

Two special cases:

•
$$d = 0$$
: $psin_{\mathbf{z}_i}(Z) \equiv 1, c_p(Z) = ||\mathbf{z}_1 - \mathbf{z}_2||$
• $d = 1$: $psin_{\mathbf{z}_i}(Z) = sin_{\mathbf{z}_i}(Z)$

Polar Curvature - cont'd

Main property (*Lerman & Whitehouse, 2008*):

 $\int c_{\rm p}^2(Z) d\mu^{d+2}(Z) \approx \text{d-dim}$ (squared) LS error of μ

It generalizes the following identity (d = 0):

$$\int \|\mathbf{x} - \mathbf{y}\|^2 d\mu(\mathbf{x}) d\mu(\mathbf{y}) = 2 \cdot \int \|\mathbf{x} - \bar{\mathbf{x}}\|^2 d\mu(\mathbf{x})$$

Polar Curvature - cont'd

Main property (Lerman & Whitehouse, 2008):

 $\int c_{\rm p}^2(Z) d\mu^{d+2}(Z) \approx \text{d-dim}$ (squared) LS error of μ

It generalizes the following identity (d = 0):

$$\int \|\mathbf{x} - \mathbf{y}\|^2 d\mu(\mathbf{x}) d\mu(\mathbf{y}) = 2 \cdot \int \|\mathbf{x} - \bar{\mathbf{x}}\|^2 d\mu(\mathbf{x})$$

- Other possible curvatures (with same property):
 - c_{LS} : d-dim least squares error of Z
 - c_h : minimum height from any vertex to its opposite face in the (d+1)-simplex Z

The Polar Tensor

● Affinity tensor $\mathcal{A}_{p} \in \mathbb{R}^{N \times \dots \times N}$ (of order d + 2):

$$\mathcal{A}_{p}(i_{1},...,i_{d+2}) = e^{-c_{p}^{2}(\mathbf{x}_{i_{1}},...,\mathbf{x}_{i_{d+2}})/\sigma}$$

- For clean subspaces and $\sigma \rightarrow 0$:
 - $\mathcal{A}_{p} \approx 1$ within an underlying cluster

•
$$\mathcal{A}_{p} \approx 0$$
 between clusters

From Affinities to Weights

(Govindu 05') Construct pairwise weights from affinities:

$$\mathbf{W}_{ik} = \sum_{\forall j_1, \dots, j_{d+1}} \mathcal{A}_{\mathsf{p}}(i, j_1, \dots, j_{d+1}) \cdot \mathcal{A}_{\mathsf{p}}(k, j_1, \dots, j_{d+1})$$

Within-cluster weights: large; between-cluster weights: small

Theoretical SCC (TSCC)

- Compute affinity tensor \mathcal{A}_{p}
- Form weight matrix W from \mathcal{A}_{p}
- Apply spectral clustering
 - Extract top K eigenvectors of W: $\mathbf{U} = [\mathbf{u}_1 \dots \mathbf{u}_K]$
 - \checkmark Apply Kmeans to the row vectors of ${\bf U}$

Another Interpretation of TSCC

• Define an affinity matrix by unfolding the tensor \mathcal{A}_{p} :

$$\mathbf{A}(i,:) = \{ \mathcal{A}_{\mathsf{p}}(i, j_1, \dots, j_{d+1}) \mid \forall j_1, \dots, j_{d+1} \} \in \mathbb{R}^{N^{d+1}},$$

containing closeness information between point i and all (d+1)-tuples of points (spanning d-planes)

Apply SVD (reduce dimension) + Kmeans (cluster data)
(Note that $W = A \cdot A'$)

Another Interpretation of TSCC

• Define an affinity matrix by unfolding the tensor \mathcal{A}_{p} :

$$\mathbf{A}(i,:) = \{ \mathcal{A}_{\mathsf{p}}(i, j_1, \dots, j_{d+1}) \mid \forall j_1, \dots, j_{d+1} \} \in \mathbb{R}^{N^{d+1}},$$

containing closeness information between point i and all (d+1)-tuples of points (spanning d-planes)

Apply SVD (reduce dimension) + Kmeans (cluster data)
(Note that $W = A \cdot A'$)

Important observation:

Enough to have some representative (d+1)-tuples from each cluster, thus possible to reduce N^{d+1} to O(K)!

Two-step Justification

Step 1: we assume an ideal tensor:

 $\widetilde{\mathcal{A}}(i_1,\ldots,i_{d+2}) = 1$ within-cluster and 0 between-clusters,

and show that SCC works perfectly with $\widetilde{\mathcal{A}}$

(can be closely approximated for clean data + $\sigma \rightarrow 0$)

Step 2: we examine more general tensors by using operator perturbation theory

Step 1 - The Ideal Case

- The matrix W is block-diagonal, each block corresponding to an underlying cluster
- The rows of U are exactly K orthonormal vectors, each representing a true cluster

Step 2 - More General Cases

Step 2 - Goodness of Clustering

Total variance of true clusters in the U space:

$$\mathrm{TV}(\mathbf{U}) \coloneqq \sum_{k} \sum_{i \in \mathbf{I}_{k}} \|\mathbf{u}^{(i)} - \mathbf{c}^{(k)}\|_{2}^{2}$$

in which

- $\mathbf{u}^{(i)}$: *i*-th row of U
- **•** $\mathbf{c}^{(k)}$: center of underlying cluster \mathbf{I}_k

Step 2 - Perturbation Analysis

Let ${\mathcal A}$ be a general affinity tensor, and define

$$\mathcal{E} \coloneqq \mathcal{A} - \widetilde{\mathcal{A}},$$

then TSCC (with \mathcal{A}) achieves that

 $\operatorname{TV}(\mathbf{U}) \lesssim N^{-(d+2)} \|\mathcal{E}\|_F^2$

Step 2 - Probabilistic Analysis

Let μ_k : underlying measure of the *k*-th cluster, and

$$\alpha \coloneqq \frac{1}{\sigma^2} \sum_k c_p^2(\mu_k) + c_{\text{inc'd}}(\mu_1, \dots, \mu_K; \sigma),$$

in which

•
$$c_p^2(\mu_k) = \int c_p^2(Z) d\mu_k^{d+2}(Z)$$
: flatness measure of μ_k

• $c_{inc'd}$: separation measure between all μ_k Then using the polar tensor \mathcal{A}_p , TSCC achieves that

 $TV(U) \leq \alpha$ with high probability

Numerical Challenges

- Complexity is high:
 - Cannot store/compute A_p (N^{d+2} elements)
 - Even harder to compute W ($O(N^{d+3})$ time)

$$\mathbf{W}_{ik} = \sum_{\forall j_1, \dots, j_{d+1}} \mathcal{A}_{\mathsf{p}}(i, j_1, \dots, j_{d+1}) \cdot \mathcal{A}_{\mathsf{p}}(k, j_1, \dots, j_{d+1})$$

Numerical Challenges

- Complexity is high:
 - Cannot store/compute A_p (N^{d+2} elements)
 - Even harder to compute W ($O(N^{d+3})$ time)

$$\mathbf{W}_{ik} = \sum_{\forall j_1, \dots, j_{d+1}} \mathcal{A}_{\mathsf{p}}(i, j_1, \dots, j_{d+1}) \cdot \mathcal{A}_{\mathsf{p}}(k, j_1, \dots, j_{d+1})$$

A_p contains a sensitive parameter σ (which should be data-dependent); not clear how to efficiently select its optimal value

Problem with Uniform Sampling

Idea: (Govindu 05') estimate W by randomly sampling a constant c number of (d+1)-tuples of points:

$$\mathbf{W}_{ik} \approx \sum_{t=1}^{c} \mathcal{A}_{\mathsf{p}}(i, j_{1}^{(t)}, \dots, j_{d+1}^{(t)}) \cdot \mathcal{A}_{\mathsf{p}}(k, j_{1}^{(t)}, \dots, j_{d+1}^{(t)})$$

Problem with Uniform Sampling

Idea: (Govindu 05') estimate W by randomly sampling a constant c number of (d+1)-tuples of points:

$$\mathbf{W}_{ik} \approx \sum_{t=1}^{c} \mathcal{A}_{\mathsf{p}}(i, j_{1}^{(t)}, \dots, j_{d+1}^{(t)}) \cdot \mathcal{A}_{\mathsf{p}}(k, j_{1}^{(t)}, \dots, j_{d+1}^{(t)})$$

Performance: Does not work for large *d*

Problem with Uniform Sampling

K = 3 d-dim linear subspaces in \mathbb{R}^D , N = 100K. Use $c = 1 \cdot N, \dots, 10 \cdot N$ independently. Plot of error (averaged over 500 experiments) against time

Why would uniform sampling fail?

$$\mathbf{W}_{ik} \approx \sum_{t=1}^{c} \mathcal{A}_{\mathsf{p}}(i, j_{1}^{(t)}, \dots, j_{d+1}^{(t)}) \cdot \mathcal{A}_{\mathsf{p}}(k, j_{1}^{(t)}, \dots, j_{d+1}^{(t)})$$

Why would uniform sampling fail?

$$\mathbf{W}_{ik} \approx \sum_{t=1}^{c} \mathcal{A}_{\mathsf{p}}(i, j_{1}^{(t)}, \dots, j_{d+1}^{(t)}) \cdot \mathcal{A}_{\mathsf{p}}(k, j_{1}^{(t)}, \dots, j_{d+1}^{(t)})$$

• Only tuples of points $(j_1^{(t)}, \ldots, j_{d+1}^{(t)})$ sampled from same underlying clusters matter (those mixed are useless and even harmful!)

Why would uniform sampling fail?

$$\mathbf{W}_{ik} \approx \sum_{t=1}^{c} \mathcal{A}_{\mathsf{p}}(i, j_{1}^{(t)}, \dots, j_{d+1}^{(t)}) \cdot \mathcal{A}_{\mathsf{p}}(k, j_{1}^{(t)}, \dots, j_{d+1}^{(t)})$$

- Only tuples of points $(j_1^{(t)}, \ldots, j_{d+1}^{(t)})$ sampled from same underlying clusters matter (those mixed are useless and even harmful!)
- However, the probability of sampling a "good" tuple is $1/K^{d+1}$ (small when K, d large)

- Why would uniform sampling fail?
 - Only tuples of points $(j_1^{(t)}, \ldots, j_{d+1}^{(t)})$ sampled from same underlying clusters matter (those mixed are useless and even harmful!)
 - However, the probability of sampling a "good" tuple is $1/K^{d+1}$ (small when K, d large)
- One way to fix this is to sample *iteratively*: Fix $c = 100 \cdot K$.
 - Oth iteration: estimate clusters by uniform sampling
 - Subsequent iterations: sample tuples from same clusters obtained in the preceding iteration

- Why would uniform sampling fail?
 - Only tuples of points $(j_1^{(t)}, \ldots, j_{d+1}^{(t)})$ sampled from same underlying clusters matter (those mixed are useless and even harmful!)
 - However, the probability of sampling a "good" tuple is $1/K^{d+1}$ (small when K, d large)
- One way to fix this is to sample *iteratively*: Fix $c = 100 \cdot K$.
 - Oth iteration: estimate clusters by uniform sampling
 - Subsequent iterations: sample tuples from same clusters obtained in the preceding iteration
- Other ways: sample from local regions

Uniform vs Iterative

Uniform Sampling: c = 1 · N, ..., 10 · N, respectively
 Iterative Sampling: c = N fixed in each iteration

The Parameter σ

Common practice is to try several manually selected values, which is inefficient and often fails:

(a) σ = 1

(b) σ = 0.5

(c) $\sigma = 0.0573$

(e) $\sigma = 0.001$

The Parameter σ

We automatically infer it from data.

- Minimality of $\alpha \coloneqq \frac{1}{\sigma^2} \sum_k c_p^2(\mu_k) + c_{inc'd}(\mu_1, \dots, \mu_K, \sigma)$ implies that optimal σ , σ_{opt} , should have upper and lower bounds
- If we divide all the computed curvatures into two groups:
 - (small) curvatures of within-cluster points
 - (large) curvatures of between-cluster points, then σ_{opt} is the maximum of the small curvatures.
- Claim:

$$\sigma_{\text{opt}} \in [\mathbf{c}(N \cdot c/K^{d+1}), \mathbf{c}(N \cdot c/K)],$$

where c: vector of all $N \cdot c$ curvatures, sorted in nondecreasing order

From Linear to Nonlinear

From Linear to Nonlinear

Two natural ways of extending SCC for manifold clustering:

- Kernelize SCC: linearize data in a feature space and apply SCC there
- Localize SCC: apply SCC for near neighbors to compute pairwise weights

Kernel SCC (KSCC)

The idea is to find a feature map Φ to map data to linear manifolds and then apply SCC in the feature space

 $(\Phi(\mathbf{x}) = \Phi(x_1, x_2) = (x_1, x_2, x_1^2 + x_2^2))$

Kernel SCC (KSCC)

The idea is to find a feature map Φ to map data to linear manifolds and then apply SCC in the feature space

$$(\Phi(\mathbf{x}) = \Phi(x_1, x_2) = (x_1, x_2, x_1^2 + x_2^2))$$

Since c_p(x₁,...,x_{d+2})=diameter*volume/edgeLengths and hence SCC depends only on dot products, we only need to specify the kernel function k(x,y) =< Φ(x), Φ(y) > and use it to replace dot product in SCC (e.g., k(x,y) =< x, y > + ||x||₂² ⋅ ||y||₂²)

KSCC: Some Examples

Local SCC

Idea: Fix an integer $m \ge d + 2$. Compute pairwise weights only using and for nearest neighbors

$$\mathbf{W}_{ik} = \sum_{j_1,\ldots,j_{m-1}\in\mathcal{N}(i)} \mathcal{A}_{\mathsf{p}}(i,j_1,\ldots,j_{m-1}) \cdot \mathcal{A}_{\mathsf{p}}(k,j_1,\ldots,j_{m-1})$$

for $k \in \mathcal{N}(i)$, and 0 otherwise

Local SCC

Idea: Fix an integer $m \ge d + 2$. Compute pairwise weights only using and for nearest neighbors

$$\mathbf{W}_{ik} = \sum_{j_1,\ldots,j_{m-1}\in\mathcal{N}(i)} \mathcal{A}_{\mathsf{p}}(i,j_1,\ldots,j_{m-1}) \cdot \mathcal{A}_{\mathsf{p}}(k,j_1,\ldots,j_{m-1})$$

for $k \in \mathcal{N}(i)$, and 0 otherwise

Local SCC

Idea: Fix an integer $m \ge d + 2$. Compute pairwise weights only using and for nearest neighbors

$$\mathbf{W}_{ik} = \sum_{j_1,\ldots,j_{m-1}\in\mathcal{N}(i)} \mathcal{A}_{\mathsf{p}}(i,j_1,\ldots,j_{m-1}) \cdot \mathcal{A}_{\mathsf{p}}(k,j_1,\ldots,j_{m-1})$$

for $k \in \mathcal{N}(i)$, and 0 otherwise

Problem: cluster (pre-collected) trajectory vectors

$$\mathbf{z}^{(i)} = (x_1^{(i)}, y_1^{(i)}, x_2^{(i)}, x_2^{(i)}, \dots, x_F^{(i)}, y_F^{(i)})', 1 \le i \le N$$

of feature points tracked on different moving objects

Problem: cluster (pre-collected) trajectory vectors

$$\mathbf{z}^{(i)} = (x_1^{(i)}, y_1^{(i)}, x_2^{(i)}, x_2^{(i)}, \dots, x_F^{(i)}, y_F^{(i)})', 1 \le i \le N$$

of feature points tracked on different moving objectsUnder the affine camera model, i.e.,

$$(x_f^{(i)}, y_f^{(i)})' = (\mathbf{A}_f)_{2 \times 3} \mathbf{r}_{3 \times 1}^{(i)} + (\mathbf{b}_f)_{2 \times 1},$$

we have for trajectories on k-th moving object

$$[\mathbf{z}^{(1)}, \dots, \mathbf{z}^{(N_k)}]_{2F \times N_k} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{b}_1 \\ \vdots & \vdots \\ \mathbf{A}_F & \mathbf{b}_F \end{bmatrix}_{2F \times 4} \begin{bmatrix} \mathbf{r}^{(1)} & \dots & \mathbf{r}^{(N_k)} \\ 1 & \dots & 1 \end{bmatrix}_{4 \times N_k}$$

Problem: cluster (pre-collected) trajectory vectors

 $\mathbf{z}^{(i)} = (x_1^{(i)}, y_1^{(i)}, x_2^{(i)}, x_2^{(i)}, \dots, x_F^{(i)}, y_F^{(i)})', 1 \le i \le N$

of feature points tracked on different moving objects

- Fact: Trajectories associated with same moving object live on a distinct 3D affine subspace
- **5 Tool**: hybrid linear modeling via SCC

Performance on a Benchmark

Hopkins155 Database of 155 video sequences: 120 two motions (N = 266, F = 30), 35 three motions (N = 398, F = 29)

classfication	two motions		three motions	
errors	mean	median	mean	median
RANSAC	5.56%	1.18%	22.94%	22.03%
GPCA	4.59%	0.38%	28.66%	28.26%
LSA 5	6.73%	1.99%	29.28%	31.63%
LSA $4K$	3.45%	0.59%	9.73%	2.33%
MSL	4.14%	0.00%	8.23%	1.76%
SCC $2F$	1.40%	0.10%	5.77%	2.21%
SCC 5	2.10%	0.26%	4.94%	1.70%

Summary & Open Questions

- Presented SCC + kernelization & localization
- SCC
 - Automatic inference of K and d_k
 - Further improvement for mixed dimensions
 - Theoretical investigation of iterative sampling
 - New initialization (e.g., by multiscale SVD)
- Kernel SCC
 - Optimal kernel selection
- Local SCC
 - Automatic tuning of the parameters (e.g., neighborhood size)

Acknowledgements

Collaborators:

- Ery Arias-Castro, UCSD (on localization of scc)
- Stefan Atev, U of MN (on kernelization of scc)
- Gilad Lerman (PhD advisor), U of MN (on all three)
- **Contact**: glchen@math.duke.edu
- SCC website (with papers, matlab codes, data, etc.): http://www.math.duke.edu/~glchen/scc.html

Thank you for coming to the talk!