Spectral Curvature Clustering for Hybrid Linear Modeling

Guangliang Chen

Applied Math Seminar
Duke University

September 28, 2009

Hybrid Linear Modeling

- Given: $X=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right\} \subset \mathbb{R}^{D}$ sampled from K Borel probability measures supported around affine subspaces of dimensions d_{1}, \ldots, d_{K}

Hybrid Linear Modeling

- Given: $X=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right\} \subset \mathbb{R}^{D}$ sampled from K Borel probability measures supported around affine subspaces of dimensions d_{1}, \ldots, d_{K}

- Goals:
- Determine K and d_{1}, \ldots, d_{K} (if unknown)
- Cluster data into subsets and model each subspace

Some Applications

- Motion Segmentation
- Given trajectory vectors of pre-selected feature points along the image frames in a video sequence, cluster the trajectories according to the motions
- Face Image Clustering
- Classify frontal images of several human subjects under different angles and illumination conditions
- Temporal Video Segmentation
- Partition a long video sequence into multiple short segments containing different scenes

Outline of the Talk

- Hybrid linear modeling via SCC
- The SCC algorithm
- Theoretical analysis
- Numerical techniques
- Extension to multi-manifold modeling through
- Kernelization
- Localization
- Application to motion segmentation

Two Assumptions

- K and d_{k} are known
- We want to focus on clustering and modeling
- d_{k} are all equal to d
- Otherwise set $d=\max d_{k}$ and treat all subspaces as being d dimensional

$d=0$: Point Clouds

- Example

$d=0:$ Point Clouds

- Example

- Spectral Clustering (Ng-Jordan-Weiss, NIPS 01')
- Construct pairwise weights: $\mathbf{W}_{i j}=e^{-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / \sigma}$
- Compute W's top K e.v.s: $\mathbf{U}=\left[\mathbf{u}_{1} \ldots \mathbf{u}_{K}\right] \in \mathbb{R}^{N \times K}$ and map data to the row vectors of U
- Cluster data in the U space by Kmeans

$d=0$: Point Clouds

- Example

- Spectral Clustering (Ng-Jordan-Weiss, NIPS 01')
- Construct pairwise weights: $\mathbf{W}_{i j}=e^{-\left\|\mathbf{x}_{i}-\mathbf{x}_{\mathbf{j}}\right\|^{2} / \sigma}$
- Compute W's top K e.v.s: $\mathbf{U}=\left[\mathbf{u}_{1} \ldots \mathbf{u}_{K}\right] \in \mathbb{R}^{N \times K}$ and map data to the row vectors of U
- Cluster data in the U space by Kmeans

$d=0$: Point Clouds

- Example

- Spectral Clustering (Ng-Jordan-Weiss, NIPS 01')
- Construct pairwise weights: $\mathbf{W}_{i j}=e^{-\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2} / \sigma}$
- Compute W's top K e.v.s: $\mathbf{U}=\left[\mathbf{u}_{1} \ldots \mathbf{u}_{K}\right] \in \mathbb{R}^{N \times K}$ and map data to the row vectors of U
- Cluster data in the U space by Kmeans

$d=0$: Point Clouds

- Example

- Spectral Clustering (Ng-Jordan-Weiss, NIPS 01')
- Construct pairwise weights: $\mathbf{W}_{i j}=e^{-\left\|\mathbf{x}_{i}-\mathbf{x}_{\mathbf{j}}\right\|^{2} / \sigma}$
- Compute W's top K e.v.'s: $\mathbf{U}=\left[\mathbf{u}_{1} \ldots \mathbf{u}_{K}\right] \in \mathbb{R}^{N \times K}$ and map data to the row vectors of U
- Cluster data in the U space by Kmeans

When $d \geq 1$

Consider the 2 lines clustering problem ($d=1$):

When $d \geq 1$

Clusters found by spectral clustering:

When $d \geq 1$

Clusters found by spectral clustering:

Conclusions: cannot compute weights using only

- distance
- 2 points

Multi-way Clustering

- Idea (for d-planes clustering, $d \geq 0$):
- Assign an affinity measure to any $d+2$ points, using e.g., volume, LS error
- Process the resulting $(d+2)$-way affinity tensor to cluster data

Multi-way Clustering

- Idea (for d-planes clustering, $d \geq 0$):
- Assign an affinity measure to any $d+2$ points, using e.g., volume, LS error
- Process the resulting $(d+2)$-way affinity tensor to cluster data
- Important questions:
- What are good multiwise affinities?
- How to process affinity tensors both theoretically and practically (N^{d+2} affinities!)?
- How to rigorously justify such an algorithm?

Multi-way Clustering

- Idea (for d-planes clustering, $d \geq 0$):
- Assign an affinity measure to any $d+2$ points, using e.g., volume, LS error
- Process the resulting $(d+2)$-way affinity tensor to cluster data
- Important questions:
- What are good multiwise affinities?
- How to process affinity tensors both theoretically and practically (N^{d+2} affinities!)?
- How to rigorously justify such an algorithm?
- Previous work:

Govindu (CVPR 05'), Agarwal et al. (CVPR 05', ICML 06^{\prime}), Shashua et al. (ECCV 06')

Polar Curvature

- Definition: For any $Z=\left\{\mathbf{z}_{1}, \ldots, \mathbf{z}_{d+2}\right\} \subset \mathbb{R}^{D}$, and the $(d+1)$-simplex \mathcal{S}, the polar curvature of Z is

$$
c_{\mathrm{p}}^{2}(Z):=\operatorname{diam}(Z)^{2} \cdot \sum \operatorname{psin}_{\mathbf{z}_{i}}(Z)^{2},
$$

where $\operatorname{psin}_{\mathbf{z}_{i}}$ is the polar sine at $\mathbf{z}_{i}, 1 \leq i \leq d+2$:

$$
\operatorname{psin}_{\mathbf{z}_{i}}(Z):=\frac{(d+1)!\cdot \mathrm{V}_{d+1}(\mathcal{S})}{\prod_{j \neq i}\left\|\mathbf{z}_{j}-\mathbf{z}_{i}\right\|}
$$

- Two special cases:
- $d=0: \operatorname{psin}_{\mathbf{z}_{i}}(Z) \equiv 1, c_{\mathrm{p}}(Z)=\left\|\mathbf{z}_{1}-\mathbf{z}_{2}\right\|$
- $d=1: \operatorname{psin}_{\mathbf{z}_{i}}(Z)=\sin _{\mathbf{z}_{i}}(Z)$

Polar Curvature - cont'd

- Main property (Lerman \& Whitehouse, 2008):

$$
\int c_{\mathrm{p}}^{2}(Z) d \mu^{d+2}(Z) \approx \mathrm{d} \text {-dim (squared) LS error of } \mu
$$

It generalizes the following identity $(d=0)$:

$$
\int\|\mathbf{x}-\mathbf{y}\|^{2} d \mu(\mathbf{x}) d \mu(\mathbf{y})=2 \cdot \int\|\mathbf{x}-\overline{\mathbf{x}}\|^{2} d \mu(\mathbf{x})
$$

Polar Curvature - cont'd

- Main property (Lerman \& Whitehouse, 2008):

$$
\int c_{\mathrm{p}}^{2}(Z) d \mu^{d+2}(Z) \approx \mathrm{d} \text {-dim (squared) LS error of } \mu
$$

It generalizes the following identity $(d=0)$:

$$
\int\|\mathbf{x}-\mathbf{y}\|^{2} d \mu(\mathbf{x}) d \mu(\mathbf{y})=2 \cdot \int\|\mathbf{x}-\overline{\mathbf{x}}\|^{2} d \mu(\mathbf{x})
$$

- Other possible curvatures (with same property):
- c_{Ls} : d-dim least squares error of Z
- c_{h} : minimum height from any vertex to its opposite face in the $(d+1)$-simplex Z

The Polar Tensor

- Affinity tensor $\mathcal{A}_{\mathrm{p}} \in \mathbb{R}^{N \times \cdots \times N}$ (of order $d+2$):

$$
\mathcal{A}_{\mathfrak{p}}\left(i_{1}, \ldots, i_{d+2}\right)=e^{-c_{\mathrm{p}}^{2}\left(\mathbf{x}_{i_{1}}, \ldots, \mathbf{x}_{i_{d+2}}\right) / \sigma}
$$

- For clean subspaces and $\sigma \rightarrow 0$:
- $\mathcal{A}_{\mathrm{p}} \approx 1$ within an underlying cluster
- $\mathcal{A}_{\mathrm{p}} \approx 0$ between clusters

From Affinities to Weights

- (Govindu 05') Construct pairwise weights from affinities:

$$
\mathbf{W}_{i k}=\sum_{\forall j_{1}, \ldots, j_{d+1}} \mathcal{A}_{\mathbf{p}}\left(i, j_{1}, \ldots, j_{d+1}\right) \cdot \mathcal{A}_{\mathrm{p}}\left(k, j_{1}, \ldots, j_{d+1}\right)
$$

- Within-cluster weights: large; between-cluster weights: small

Theoretical SCC (TSCC)

- Compute affinity tensor \mathcal{A}_{p}
- Form weight matrix W from \mathcal{A}_{p}
- Apply spectral clustering
- Extract top K eigenvectors of $\mathbf{W}: \mathbf{U}=\left[\mathbf{u}_{1} \ldots \mathbf{u}_{K}\right]$
- Apply Kmeans to the row vectors of \mathbf{U}

Another Interpretation of TSCC

- Define an affinity matrix by unfolding the tensor \mathcal{A}_{p} :

$$
\mathbf{A}(i,:)=\left\{\mathcal{A}_{\mathrm{p}}\left(i, j_{1}, \ldots, j_{d+1}\right) \mid \forall j_{1}, \ldots, j_{d+1}\right\} \in \mathbb{R}^{N^{d+1}},
$$

containing closeness information between point i and all $(d+1)$-tuples of points (spanning d-planes)

- Apply SVD (reduce dimension) + Kmeans (cluster data) (Note that $\mathbf{W}=\mathbf{A} \cdot \mathbf{A}^{\prime}$)

Another Interpretation of TSCC

- Define an affinity matrix by unfolding the tensor \mathcal{A}_{p} :

$$
\mathbf{A}(i,:)=\left\{\mathcal{A}_{\mathrm{p}}\left(i, j_{1}, \ldots, j_{d+1}\right) \mid \forall j_{1}, \ldots, j_{d+1}\right\} \in \mathbb{R}^{N^{d+1}},
$$

containing closeness information between point i and all ($d+1$)-tuples of points (spanning d-planes)

- Apply SVD (reduce dimension) + Kmeans (cluster data) (Note that $\mathrm{W}=\mathrm{A} \cdot \mathrm{A}^{\prime}$)
- Important observation:

Enough to have some representative ($d+1$)-tuples from each cluster, thus possible to reduce N^{d+1} to $O(K)$!

Two-step Justification

- Step 1: we assume an ideal tensor:
$\widetilde{\mathcal{A}}\left(i_{1}, \ldots, i_{d+2}\right)=1$ within-cluster and 0 between-clusters, and show that SCC works perfectly with $\widetilde{\mathcal{A}}$ (can be closely approximated for clean data $+\sigma \rightarrow 0$)
- Step 2: we examine more general tensors by using operator perturbation theory

Step 1 - The Ideal Case

- The matrix W is block-diagonal, each block corresponding to an underlying cluster
- The rows of U are exactly K orthonormal vectors, each representing a true cluster

Step 2 - More General Cases

Step 2 - Goodness of Clustering

Total variance of true clusters in the U space:

$$
\mathrm{TV}(\mathbf{U}):=\sum_{k} \sum_{i \in \mathrm{I}_{k}}\left\|\mathbf{u}^{(i)}-\mathbf{c}^{(k)}\right\|_{2}^{2}
$$

in which

- $\mathbf{u}^{(i)}$: i-th row of \mathbf{U}
- $\mathbf{c}^{(k)}$: center of underlying cluster I_{k}

Step 2 - Perturbation Analysis

Let \mathcal{A} be a general affinity tensor, and define

$$
\mathcal{E}:=\mathcal{A}-\widetilde{\mathcal{A}},
$$

then TSCC (with \mathcal{A}) achieves that

$$
\mathrm{TV}(\mathrm{U}) \lesssim N^{-(d+2)}\|\mathcal{E}\|_{F}^{2}
$$

Step 2 - Probabilistic Analysis

Let μ_{k} : underlying measure of the k-th cluster, and

$$
\alpha:=\frac{1}{\sigma^{2}} \sum_{k} c_{\mathrm{p}}^{2}\left(\mu_{k}\right)+c_{\mathrm{inc} \mathrm{c}^{\prime} \mathrm{d}}\left(\mu_{1}, \ldots, \mu_{K} ; \sigma\right),
$$

in which

- $c_{\mathrm{p}}^{2}\left(\mu_{k}\right)=\int c_{\mathrm{p}}^{2}(Z) d \mu_{k}^{d+2}(Z)$: flatness measure of μ_{k}
- $c_{\text {inc'd }}$: separation measure between all μ_{k}

Then using the polar tensor \mathcal{A}_{p}, TSCC achieves that
$\mathrm{TV}(\mathbf{U}) \lesssim \alpha \quad$ with high probability

Numerical Challenges

- Complexity is high:
- Cannot store/compute $\mathcal{A}_{\mathrm{p}}\left(N^{d+2}\right.$ elements)
- Even harder to compute W $\left(O\left(N^{d+3}\right)\right.$ time $)$

$$
\mathbf{W}_{i k}=\sum_{\forall j_{1}, \ldots, j_{d+1}} \mathcal{A}_{\mathrm{p}}\left(i, j_{1}, \ldots, j_{d+1}\right) \cdot \mathcal{A}_{\mathrm{p}}\left(k, j_{1}, \ldots, j_{d+1}\right)
$$

Numerical Challenges

- Complexity is high:
- Cannot store/compute $\mathcal{A}_{\mathrm{p}}\left(N^{d+2}\right.$ elements)
- Even harder to compute W ($O\left(N^{d+3}\right)$ time $)$

$$
\mathbf{W}_{i k}=\sum_{\forall j_{1}, \ldots, j_{d+1}} \mathcal{A}_{\mathbf{p}}\left(i, j_{1}, \ldots, j_{d+1}\right) \cdot \mathcal{A}_{\mathrm{p}}\left(k, j_{1}, \ldots, j_{d+1}\right)
$$

- \mathcal{A}_{p} contains a sensitive parameter σ (which should be data-dependent); not clear how to efficiently select its optimal value

Problem with Uniform Sampling

- Idea: (Govindu 05 ') estimate \mathbf{W} by randomly sampling a constant c number of $(d+1)$-tuples of points:

$$
\mathbf{W}_{i k} \approx \sum_{t=1}^{c} \mathcal{A}_{\mathrm{p}}\left(i, j_{1}^{(t)}, \ldots, j_{d+1}^{(t)}\right) \cdot \mathcal{A}_{\mathrm{p}}\left(k, j_{1}^{(t)}, \ldots, j_{d+1}^{(t)}\right)
$$

Problem with Uniform Sampling

- Idea: (Govindu 05 ') estimate \mathbf{W} by randomly sampling a constant c number of $(d+1)$-tuples of points:

$$
\mathbf{W}_{i k} \approx \sum_{t=1}^{c} \mathcal{A}_{\mathrm{p}}\left(i, j_{1}^{(t)}, \ldots, j_{d+1}^{(t)}\right) \cdot \mathcal{A}_{\mathrm{p}}\left(k, j_{1}^{(t)}, \ldots, j_{d+1}^{(t)}\right)
$$

- Performance: Does not work for large d

Problem with Uniform Sampling

$K=3 d$-dim linear subspaces in $\mathbb{R}^{D}, N=100 K$.
Use $c=1 \cdot N, \ldots, 10 \cdot N$ independently.
Plot of error (averaged over 500 experiments) against time

Fixing Uniform Sampling

- Why would uniform sampling fail?

$$
\mathbf{W}_{i k} \approx \sum_{t=1}^{c} \mathcal{A}_{\mathrm{p}}\left(i, j_{1}^{(t)}, \ldots, j_{d+1}^{(t)}\right) \cdot \mathcal{A}_{\mathrm{p}}\left(k, j_{1}^{(t)}, \ldots, j_{d+1}^{(t)}\right)
$$

Fixing Uniform Sampling

- Why would uniform sampling fail?

$$
\mathbf{W}_{i k} \approx \sum_{t=1}^{c} \mathcal{A}_{\mathrm{p}}\left(i, j_{1}^{(t)}, \ldots, j_{d+1}^{(t)}\right) \cdot \mathcal{A}_{\mathrm{p}}\left(k, j_{1}^{(t)}, \ldots, j_{d+1}^{(t)}\right)
$$

- Only tuples of points $\left(j_{1}^{(t)}, \ldots, j_{d+1}^{(t)}\right)$ sampled from same underlying clusters matter (those mixed are useless and even harmful!)

Fixing Uniform Sampling

- Why would uniform sampling fail?

$$
\mathbf{W}_{i k} \approx \sum_{t=1}^{c} \mathcal{A}_{\mathrm{p}}\left(i, j_{1}^{(t)}, \ldots, j_{d+1}^{(t)}\right) \cdot \mathcal{A}_{\mathrm{p}}\left(k, j_{1}^{(t)}, \ldots, j_{d+1}^{(t)}\right)
$$

- Only tuples of points $\left(j_{1}^{(t)}, \ldots, j_{d+1}^{(t)}\right)$ sampled from same underlying clusters matter (those mixed are useless and even harmful!)
- However, the probability of sampling a "good" tuple is $1 / K^{d+1}$ (small when K, d large)

Fixing Uniform Sampling

- Why would uniform sampling fail?
- Only tuples of points $\left(j_{1}^{(t)}, \ldots, j_{d+1}^{(t)}\right)$ sampled from same underlying clusters matter
(those mixed are useless and even harmful!)
- However, the probability of sampling a "good" tuple is $1 / K^{d+1}$ (small when K, d large)
- One way to fix this is to sample iteratively:

Fix $c=100 \cdot K$.

- Oth iteration: estimate clusters by uniform sampling
- Subsequent iterations: sample tuples from same clusters obtained in the preceding iteration

Fixing Uniform Sampling

- Why would uniform sampling fail?
- Only tuples of points $\left(j_{1}^{(t)}, \ldots, j_{d+1}^{(t)}\right)$ sampled from same underlying clusters matter
(those mixed are useless and even harmful!)
- However, the probability of sampling a "good" tuple is $1 / K^{d+1}$ (small when K, d large)
- One way to fix this is to sample iteratively:

Fix $c=100 \cdot K$.

- Oth iteration: estimate clusters by uniform sampling
- Subsequent iterations: sample tuples from same clusters obtained in the preceding iteration
- Other ways: sample from local regions

Uniform vs Iterative

- Uniform Sampling: $c=1 \cdot N, \ldots, 10 \cdot N$, respectively
- Iterative Sampling: $c=N$ fixed in each iteration

The Parameter σ

Common practice is to try several manually selected values, which is inefficient and often fails:

(a) $\sigma=1$

(d) $\sigma=0.01$
(e) $\sigma=0.001$

(c) $\sigma=0.0573$

The Parameter σ

We automatically infer it from data.

- Minimality of $\alpha:=\frac{1}{\sigma^{2}} \sum_{k} c_{\mathrm{p}}^{2}\left(\mu_{k}\right)+c_{\text {inc'd }}\left(\mu_{1}, \ldots, \mu_{K}, \sigma\right)$ implies that optimal $\sigma, \sigma_{\mathrm{opt}}$, should have upper and lower bounds
- If we divide all the computed curvatures into two groups:
- (small) curvatures of within-cluster points
- (large) curvatures of between-cluster points, then $\sigma_{\text {opt }}$ is the maximum of the small curvatures.
- Claim:

$$
\sigma_{\mathrm{opt}} \in\left[\mathbf{c}\left(N \cdot c / K^{d+1}\right), \mathbf{c}(N \cdot c / K)\right],
$$

where c: vector of all $N \cdot c$ curvatures, sorted in nondecreasing order

From Linear to Nonlinear

From Linear to Nonlinear

Two natural ways of extending SCC for manifold clustering:

- Kernelize SCC: linearize data in a feature space and apply SCC there
- Localize SCC: apply SCC for near neighbors to compute pairwise weights

Kernel SCC (KSCC)

- The idea is to find a feature map Φ to map data to linear manifolds and then apply SCC in the feature space

$$
\left(\Phi(\mathbf{x})=\Phi\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}, x_{1}^{2}+x_{2}^{2}\right)\right)
$$

Kernel SCC (KSCC)

- The idea is to find a feature map Φ to map data to linear manifolds and then apply SCC in the feature space

$\left(\Phi(\mathbf{x})=\Phi\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}, x_{1}^{2}+x_{2}^{2}\right)\right)$
- Since $c_{p}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{d+2}\right)=$ diameter*volume/edgeLengths and hence SCC depends only on dot products, we only need to specify the kernel function $k(\mathrm{x}, \mathrm{y})=<\Phi(\mathrm{x}), \Phi(\mathrm{y})>$ and use it to replace dot product in SCC (e.g., $\left.k(\mathrm{x}, \mathrm{y})=<\mathrm{x}, \mathrm{y}>+\|\mathrm{x}\|_{2}^{2} \cdot\|\mathbf{y}\|_{2}^{2}\right)$

KSCC: Some Examples

(a) five circles
(d) three adjacent unit spheres and a plane through their centers

(b) three lines and three circles

(e) four 1D conic sections

(c) three (noisy) spheres

(f) five Lissajous curves

Local SCC

Idea: Fix an integer $m \geq d+2$. Compute pairwise weights only using and for nearest neighbors

$$
\mathbf{W}_{i k}=\sum_{j_{1}, \ldots, j_{m-1} \in \mathcal{N}(i)} \mathcal{A}_{\mathrm{p}}\left(i, j_{1}, \ldots, j_{m-1}\right) \cdot \mathcal{A}_{\mathrm{p}}\left(k, j_{1}, \ldots, j_{m-1}\right)
$$

for $k \in \mathcal{N}(i)$, and 0 otherwise

Local SCC

Idea: Fix an integer $m \geq d+2$. Compute pairwise weights only using and for nearest neighbors

$$
\mathbf{W}_{i k}=\sum_{j_{1}, \ldots, j_{m-1} \in \mathcal{N}(i)} \mathcal{A}_{\mathrm{p}}\left(i, j_{1}, \ldots, j_{m-1}\right) \cdot \mathcal{A}_{\mathrm{p}}\left(k, j_{1}, \ldots, j_{m-1}\right)
$$

for $k \in \mathcal{N}(i)$, and 0 otherwise

Local SCC

Idea: Fix an integer $m \geq d+2$. Compute pairwise weights only using and for nearest neighbors

$$
\mathbf{W}_{i k}=\sum_{j_{1}, \ldots, j_{m-1} \in \mathcal{N}(i)} \mathcal{A}_{\mathrm{p}}\left(i, j_{1}, \ldots, j_{m-1}\right) \cdot \mathcal{A}_{\mathrm{p}}\left(k, j_{1}, \ldots, j_{m-1}\right)
$$

for $k \in \mathcal{N}(i)$, and 0 otherwise

Application: Motion Segmentation

Application: Motion Segmentation

- Problem: cluster (pre-collected) trajectory vectors

$$
\mathbf{z}^{(i)}=\left(x_{1}^{(i)}, y_{1}^{(i)}, x_{2}^{(i)}, x_{2}^{(i)}, \ldots, x_{F}^{(i)}, y_{F}^{(i)}\right)^{\prime}, 1 \leq i \leq N
$$

of feature points tracked on different moving objects

Application: Motion Segmentation

- Problem: cluster (pre-collected) trajectory vectors

$$
\mathbf{z}^{(i)}=\left(x_{1}^{(i)}, y_{1}^{(i)}, x_{2}^{(i)}, x_{2}^{(i)}, \ldots, x_{F}^{(i)}, y_{F}^{(i)}\right)^{\prime}, 1 \leq i \leq N
$$

of feature points tracked on different moving objects

- Under the affine camera model, i.e.,

$$
\left(x_{f}^{(i)}, y_{f}^{(i)}\right)^{\prime}=\left(\mathbf{A}_{f}\right)_{2 \times 3} \mathbf{r}_{3 \times 1}^{(i)}+\left(\mathbf{b}_{f}\right)_{2 \times 1},
$$

we have for trajectories on k-th moving object

$$
\left[\mathbf{z}^{(1)}, \ldots, \mathbf{z}^{\left(N_{k}\right)}\right]_{2 F \times N_{k}}=\left[\begin{array}{cc}
\mathbf{A}_{1} & \mathbf{b}_{1} \\
\vdots & \vdots \\
\mathbf{A}_{F} & \mathbf{b}_{F}
\end{array}\right]_{2 F \times 4}\left[\begin{array}{ccc}
\mathbf{r}^{(1)} & \ldots & \mathbf{r}^{\left(N_{k}\right)} \\
1 & \ldots & 1
\end{array}\right]_{4 \times N_{k}}
$$

Application: Motion Segmentation

- Problem: cluster (pre-collected) trajectory vectors

$$
\mathbf{z}^{(i)}=\left(x_{1}^{(i)}, y_{1}^{(i)}, x_{2}^{(i)}, x_{2}^{(i)}, \ldots, x_{F}^{(i)}, y_{F}^{(i)}\right)^{\prime}, 1 \leq i \leq N
$$

of feature points tracked on different moving objects

- Fact: Trajectories associated with same moving object live on a distinct 3D affine subspace
- Tool: hybrid linear modeling via SCC

Performance on a Benchmark

Hopkins155 Database of 155 video sequences: 120 two motions ($N=266, F=30$), 35 three motions ($N=398, F=29$)

classfication errors	two motions		three motions	
	mean	median	mean	median
RANSAC	5.56%	1.18%	22.94%	22.03%
GPCA	4.59%	0.38%	28.66%	28.26%
LSA 5	6.73%	1.99%	29.28%	31.63%
LSA 4K	3.45%	0.59%	9.73%	2.33%
MSL	4.14%	0.00%	8.23%	1.76%
SCC 2F	1.40%	0.10%	5.77%	2.21%
SCC 5	2.10%	0.26%	4.94%	1.70%

Summary \& Open Questions

- Presented SCC + kernelization \& localization
- SCC
- Automatic inference of K and d_{k}
- Further improvement for mixed dimensions
- Theoretical investigation of iterative sampling
- New initialization (e.g., by multiscale SVD)
- Kernel SCC
- Optimal kernel selection
- Local SCC
- Automatic tuning of the parameters (e.g., neighborhood size)

Acknowledgements

- Collaborators:
- Ery Arias-Castro, UCSD (on localization of scc)
- Stefan Atev, U of MN (on kernelization of scc)
- Gilad Lerman (PhD advisor), U of MN (on all three)
- Contact: glchen@math.duke.edu
- SCC website (with papers, matlab codes, data, etc.): http://www.math.duke.edu/~glchen/scc.html

Thank you for coming to the talk!

