Math 285 Homework 1, SJSU, Fall 2015

Due date: Tuesday, September 22, in class.

1. Find, by hand, the economic SVD of the following matrix

$$\mathbf{A} = \begin{pmatrix} 0 & 2\\ 2 & 0\\ 1 & 3\\ 3 & 1 \end{pmatrix}$$

What are the different norms (Frobenius, Spectral and Nuclear) of this matrix?

- 2. Now for the matrix in Question 1, use MATLAB to find the full SVD. Submit both your script and the results.
- 3. Find the best-fit line (under the orthogonal error criterion) to the points in Question 1 (i.e., the rows of **A**) and plot it with the data (by hand or computer). What are the coordinates of the projections of the original data onto the best-fit line? Find also the principle components of the data. What do they mean?
- 4. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a square, invertible matrix and the SVD is

$$\mathbf{A} = \sum_{i=1}^n \sigma_i \mathbf{u}_i \mathbf{v}_i^T.$$

Show that the inverse of ${\bf A}$ is

$$\mathbf{A}^{-1} = \sum_{i=1}^{n} \frac{1}{\sigma_i} \mathbf{v}_i \mathbf{u}_i^T.$$

5. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a matrix and $\vec{\sigma}$ the vector of its singular values. Which of the following norms are equal to each other? Draw a line between those that are equal.

$$\begin{split} \|\mathbf{A}\|_{F} & \|\vec{\sigma}\|_{\infty} \\ \|\mathbf{A}\|_{2} & \|\vec{\sigma}\|_{1} \\ \|\mathbf{A}\|_{*} & \|\vec{\sigma}\|_{2} \end{split}$$

- 6. First show that the product of two orthogonal matrices (of the same size) is also an orthogonal matrix. Then use this fact to show that
 - (a) If $\mathbf{L} \in \mathbb{R}^{m \times m}$ is orthogonal and $\mathbf{A} \in \mathbb{R}^{m \times n}$ is arbitrary, then the product $\mathbf{L}\mathbf{A}$ has the same singular values and right singular vectors with \mathbf{A} .
 - (b) If $\mathbf{A} \in \mathbb{R}^{m \times n}$ is arbitrary and $\mathbf{R} \in \mathbb{R}^{n \times n}$ is orthogonal, then the product \mathbf{AR} has the same singular values and left singular vectors with \mathbf{A} .

Note that an immediate consequence of the above results is that

$$\|\mathbf{L}\mathbf{A}\| = \|\mathbf{A}\| = \|\mathbf{A}\mathbf{R}\|$$

regardless of which norm (Frobenius/spectral/nuclear) is used. You don't need to prove this part.

- 7. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be any matrix. Denote $r = \operatorname{rank}(\mathbf{A})$. Show that
 - (a) $\|\mathbf{A}\|_{2} \leq \|\mathbf{A}\|_{F} \leq \sqrt{r} \|\mathbf{A}\|_{2}$
 - (b) $\|\mathbf{A}\|_F \leq \|\mathbf{A}\|_*$ In fact, it is also true that $\|\mathbf{A}\|_* \leq \sqrt{r} \|\mathbf{A}\|_F$, but the proof requires using Cauchy-Schwarz Inequality:

$$\left(\sum a_i b_i\right)^2 \le \left(\sum a_i^2\right) \left(\sum b_i^2\right).$$

You don't need to prove this part.

8. The MNIST database contains 70,000 images of handwritten digits (i.e., $0,1,\ldots,9$) collected from about 250 writers. The images all have the same size 28×28 ; a random subset of them is displayed below:

		-		/	_							-		-	*	U			-	-				
0	1	2	8	7	3	Э	\mathcal{S}	1	5	З	4	З)	З	0	5	7	3	0	3	0	5	9	7
9	0	0	CI	1	1	7	3	l	5	1	0	l	6	5	0	フ	9	7	8	2	2	5	Ъ	3
3	6	6	1	8	9	Ŷ	8	2	7	T	9	1	Ч	2	Ч	б	0	0	2	З	٢	З	7	2
I	6	3	2	٥	U		7	0	2	1	0	4	le	0	2	6	0	8	9	ລ	1	4	1	0
7	2	ı	7	4	8	2	9	0)	5	4	7	0	8	7	2	C	2	8	8	5	3	0	2

More details about this dataset can be found at http://yann.lecun.com/exdb/mnist/.

In this homework we focus on the handwritten digit 1 in the training set; there are still 6,742 of them. We are going to convert each of these images to a 784 dimensional vector so that our data can be stored in a $6,742 \times 784$ matrix (see *mnist_digit1.mat*). Now you are asked to use MATLAB to perform principal component analysis on such data.

Specifically, you need to show

- The center of the handwritten 1's as an image of size 28×28 (this is how the "average" writer writes the digit 1)
- The first 50 singular values and their explained variances (this can help select k)
- The top 20 principal directions (i.e., right singular vectors) as images of size 28×28
- The top two principal components of the data (in order to visualize the data)

Include your MATLAB script with your submission.