Chapter 14
Correlation and Regression

14.1 Data 

This chapter considers methods used to assess the relationship between two quantitative variables. One variable may be referred to as the explanatory variable, and the other as the response variable. The follow terms may also apply: 
	Explanatory Variable
	→
	Response Variable

	X

independent variable

factor

treatment

exposure
	→

→

→

→

→
	Y
dependent variable

outcome

response

disease


Illustrative example: Data (Doll’s ecological study of smoking and lung cancer). Data from a historically important study by Sir Richard Doll
 published in 1955 are used to illustrate techniques in this chapter. This study looked at lung cancer mortality rates by region (response variable) according to per capita cigarette consumption (explanatory variable). Table 14.1 lists the data. 

{Table 14.1}

The goal is to quantify the association between cigarette consumption (X) and lung cancer mortality (Y) with graphical explorations, numerical summaries, and estimation and hypothesis testing methods to infer population characteristics.

14.2 Scatterplot

The first step is to plot bivariate data points to create a scatter plot of the relationship. Make certain values for the explanatory variable are plotted on the horizontal axis and values for the response variable are plotted on the vertical axis. After creating the scatterplot, inspect the scatter cloud’s form (Straight? Curved? Random?), direction (Upward? Downward? Flat?), and strength (How closely do data point adhere to a trend line?) Also check for the presence of outliers (striking deviations from the overall pattern), if any.
Figure 14.1 is a scatter plot of the illustrative data. This plot reveals a straight-line (form), a positive association of association in which values for CIG1930 and LUNGCA tend to go up together (direction), and a relationship that is described well by a line (apparently strong relationship).  No obvious outliers are evident.
 

{Figure 14.1}

With this said, it is difficult to judge the strength of a linear relationship based on visual clues alone. Figure 14.2 demonstrates this fact. The data in the two plots in the Figure are identical, yet the right-hand plot appears to show a stronger relationship than the left-hand plot. This is an artifact of the way axes have been scaled—the large amount of space between points in the left-hand plot makes it appear to have a less strong correlation. The eye is not a good judge of correlational strength—we need an objective way to make this type of assessment.
{Figure 14.2}

14.3 Correlation 

The strength of the linear relationship between two quantitative variables can be measured with Pearson’s correlation coefficient (denoted by r).  When all data points fall directly on a line with an upward slope r = 1. When all points fall on a trend line with a negative slope r = −1. Less perfect correlations fall between these extremes. Lack of linear correlation is indicted by r ≈ 0.

Figure 14.3 demonstrates correlations of various directions and strengths. The sign of r indicates the direction of the relationship (positive or negative). The absolute value of r indicates the strength of the relationship. The closer |r| gets to 1, the stronger the linear correlation.
{Figure 14.3}

Using the following formula will provide insights into how the correlation coefficient does its job:
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Recall that z-scores quantify how many standard deviations a value lies above or below its mean (§7.2). The above formula for r shows that the correlation coefficient is the average product of z-score for X and Y. When X and Y values are both above their averages, both z-scores are positive and the product or the z-scores is positive. When X and Y values are both below their averages, their z-scores will both be negative, so the product of z-scores will is positive. When X and Y track in opposite direction (higher than average X values associated with lower than average Y values), one of the z-scores will be positive and the other will be negative, resulting in a negative product. The values of zX∙zY are summed and divided by (n – 1) to determine r.
 
Illustrative example: Correlation coefficient. Table 14.2 shows calculation of the correlation coefficient for the illustrative data. Countries that had above average cigarette consumption tended to have above average lung cancer mortality rates. The correlation coefficient r = 0.737 represents a strong positive correlation.
{Table 14.2}

Notes 

1. Direction: The sign of correlation coefficient r indicates whether there is a positive or negative linear correlatoin between X and Y. Correlation coefficients close to 0 suggest little or no linear correlation.

2. Strength: This correlation coefficient falls on a continuum from −1 to 1.  The closer it comes to one of these extremes, the stronger the correlation. Although there are no hard-and-fast rules for what constitutes “strong” and “weak” correlations, here are some rough guideposts for the beginner: 

|r| ≥ 0.7 indicate strong associations 

0.3 ≤ |r| < 0.7 indicate moderate associations

 
|r| < 0.3 indicate weak associations

3. Coefficient of determination: Squaring r results is a statistic called the coefficient of variation (r2 or R2). This statistic is the proportion of the variance in Y (numerically
) explained by X. For the illustrative data, r2 = 0.7372 = 0.54, showing that 54% of the (numerical) variance in lung cancer mortality is explained by per capital cigarette consumption. 

4. Non-functional relationships: Correlation can be used without specification of an explanatory and response variable. That is, there is no assumed functional dependence between X and Y; the variables are reversible. For example, the relation between arm length and leg length is not functionally dependent—altering arm length has no effect on leg length (and vice versa). Therefore, you need not specify which of the variables is X and which is Y for this analysis. 

5. Not robust in face of outliers: Correlation coefficient r is readily influenced by an outlier. Figure 14.4 depicts a data set in which r = 0.82. The entire correlation in this data set is due to the one “wild shot” observation. Outliers that lie far to the right or left in the horizontal direction can be especially influential (influential observations). 
{Figure 14.4}
6. Linear relations only: Correlation coefficients describe linear relationships only. They do not apply to other types of forms. Figure 14.5 depicts a strong relation, yet r = 0 because the relationship is not linear. 
{Figure 14.5}
7. Correlation is not causation: Statistical correlations are not always causal. For example, and observed relationship between X and Y may be an artifact of lurking confounders (§2.2). 
Illustrative example: Confounded correlation (William Farr’s analysis of cholera mortality and elevation). This historical illustration shows how correlation does not always related to causation. It was completed by a famous figure in the history of public health statistics named William Farr.
 Like many of his contemporaries, Farr erroneously believed that infectious diseases like cholera were caused by unfavorable atmospheric conditions (“miasmas”) that originated in suitable low-lying environments.  In 1852, Farr reported on the association between elevation and cholera mortality in a report published in the Journal of the Statistical Society of London.
 Data from this report are listed in Table 14.3 and are plotted (on logarithmic axes) in Figure 14.6.
{Table 14.3}

{Figure 14.6}

This scatter plot in Figure 14.6 reveals a clear negative correlation. With both variables on natural log scales, r = −0.987. Farr used this correlation to support the theory that “bad air” (miasma) had settled into low-lying areas causing outbreaks of cholera. We now know that this is ridiculous. Cholera is a bacterial disease caused by the waterborne transmission of Vibrio cholera whose genesis is not influenced by atmospheric conditions. 
Why has Farr made such a dramatic error? The reasons: he failed to account for the confounding variable of “water source.” People who lived in low-lying areas derived their water from nearby rivers are streams contaminated by human waste. The lurking variable “water source” confounding the relation between elevation and cholera. The correlation was entirely non-causal.

Statistical inference about population correlation coefficient ρ
Sample correlation coefficient r is the estimator of population correlation coefficient ρ (“rho”). Any observed r must be viewed as an example of an r that could have been derived by a different sample from the same population. The observed value of r can not be assumed to be a precise reflection of the value of ρ. 

A positive or negative r could merely reflect sampling chance. Figure 14.7 depicts a situation in which the population of bivariate points has no correlation while the sampled points (circled) have a perfect positive correlation. 

{Figure 14.7}
Hypothesis test

To decrease the chance of false conclusions about the direction of a correlatoin, we test the observed correlation coefficient for significance. Here are the steps of the procedure:
(A) Hypotheses: We test H0: ρ = 0 against either Ha: ρ ≠ 0 (two-sided), Ha: ρ > 0 (one-sided to the right) or Ha: ρ < 0 (one-sided to the left).

(B) Test statistic: The test statistic is  
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(C) P-value: The tstat is converted to a P-value in the usual manner, using Table C or a software utility. As before, small and smaller P-value provide stronger and stronger evidence against the claim of the null hypothesis. 

(D) Significance (optional): The P-value may be compared to various alpha levels to declare significance.
Illustrative example: Hypothesis test of ρ (Doll’s ecological data). We have established a correlation coefficient r of 0.737 for the ecological association between smoking and lung cancer mortality using the data in table 14.1. We now test this correlatoin for statistical significance. 

(A) Hypotheses: H0: ρ = 0 versus Ha: ρ ≠ 0

(B) Test statistics: The standard error of the correlation coefficient 
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 = 3.27 and df = n – 2 = 11 – 2 = 9.

(C) P-value: Using Table C, 0.005 ≤ P ≤ 0.01. Using statistical software, P = 0.0097. The evidence against H0 is strong.

(D) Significance (optional). The correlation coefficient is significant at α = 0.01 (reject H0 at α = 0.01).
Confidence interval for ρ 

The lower confidence limit (LCL) and upper confidence limit (UCL) for population correlation coefficient ρ are given by
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where 
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 and df = n – 2.

Illustrative example: Confidence interval for ρ. We have established the following statistics for Doll’s ecological correlation between smoking and lung cancer mortality: r = 0.737, n = 11, and df = 9.  The 95% confidence interval for ρ based on this information is based on the following calculations:
· For 95% confidence use t9,.975 = 2.262, so t29,.975 = 2.2622 = 5.117 

· 
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This allows us to say with 95% confidence that population correlation ρ is in the interval 0.243 to 0.927. 
Conditions for inference

Be aware that correlation applies only to linear relationships only. It does not apply to curved and other-shaped relationships.
The hypothesis testing and confidence intervals techniques for ρ assume sampling independence from a population in which X and Y have a bivariate Normal distribution. Figure 14.8 depicts a bivariate Normal distribution.
{Figure 14.8}

When the correlation between X and Y is weak, deviations from bivariate Normality will be relatively unimportant. However, when the correlation is strong, inferences will be adversely affected by the absence of bivariate Normality. This problem is not diminished in larger samples—the Central Limit Theorem does not apply.
 However, mathematical transformation of variables can be used to impart Normality under some conditions.
It is worth noting that r is still a valid point estimate of ρ even if population is not bivariate Normal. Practical problems with data quality and confounding are always of concern. 
Exercises
14.1 Bicycle helmet use. Table 14.4 lists data from a cross-sectional survey of bicycle safety. The explanatory variable is a surrogate measure of neighborhood socioeconomic status (variable P_RFM). The response variable is “percent of bicycle riders wearing a helmet” (P_HELM). 
{Table 14.4}

(a) Construct a scatterplot of the relation between P_RFM and P_HELM. If drawing the plot by hand, use graph paper to ensure accuracy. Make sure you label the axes. After you have constructed the scatterplot, consider its form and direction. Identify outliers, if any. 

(b) Calculate r for all 13 data points. Describe the correlational strength.

(c) A good case can be made that observation 13 (Los Arboles) is an outlier. Discuss what this means in terms of the measured variables.

(d) In practice, the next step in the analysis would be to identify the cause of the outlier. Suppose we determine that Los Arboles had a special program in place to encourage helmet use. In this sense, it is from a different population, so we decide to exclude it from further analyses. Remove this outlier and recalculate r. To what extent did removal of the outlier improve the fit of the correlatoin line? 

(e) Test H0: ρ = 0 (excluding outlying observation 13).
14.2 Mental health care. This exercise uses data from a historical study on mental health service utilization.
 Fourteen Massachusetts counties are considered. The explanatory variable is the reciprocal of the distance to the nearest mental healthcare center (miles−1, REC_DIST). The response variable is the percent of patients cared for in the home (PHOME). Table 14.5 lists the data.
{Table 14.5}
(a) Construct a scatterplot of REC_DIST versus PHOME. Describe the pattern of the plot. Would correlation be appropriate here? 

(b) Calculate the correlation coefficient for REC_DIST and PHOME. Interpret this statistic.

(c) Observation 13 (Nantucket) seems to be an outlier. Remove this data point from the dataset and recalculate the correlation coefficient. (The variable PHOME2 in the dataset LUNATICS.* has removed this observation for you.). Did this improve the fit of the correlational fit? 

(d) This exercise has plotted the reciprocal of distance to the nearest healthcare center and patient care at home. Now plot direct distance from the health care center (variable DIST) versus PHOME2 (percent cared for at home with the outlier removed). Why did we avoid this variable in initially describing the correlation?
14.4 Regression 

The regression line

Regression, like correlation, is used to quantify the relationship between two quantitative variables. However, unlike correlations, regression can be used to express the predicted change in Y per unit X. It does this by fitting a line to the observed bivariate data points. 

One challenge this process is to find the best fitting line to describe the relationship between X and Y. If all the data points were to fall on a line, this would be a trivial matter. However, with statistical relationships, this will seldom be the case. Therefore, start by breaking each observation for Y into two parts—the part predicted by the regression model and the residual that is unaccounted for by the regression model:

observed y = predicted y + residual

The above equation can be re-expressed: 

residual = observed y – predicted y
Figure 14.9 shows residuals for the illustrative example represented by the dotted lines in the diagram. The regression line (solid) has been drawn to minimize the sum of the squared residuals. This technique of fitting the line is known as the least squares method and the line itself is the least squares regression line. 
{Figure 14.9}

Notation: Let 
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 denote the value of Y predicted by the regression model, a denote the intercept of the regression line, and b denote the slope of the line. The least squares regression line is:
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The intercept a identifies where the regression line would cross the Y axis and the slope coefficient b reflects the change in Y per unit X. Figure 14.10 shows how to interpret these estimates.
{Figure 14.10}

The slope of the least squares regression line is calculated with this equation:
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and the intercept is given by
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 are the means of X and Y, sX and sY are their sample standard deviations, and r is the correlation coefficient. 
Illustrative example: Regression coefficients (Doll’s ecological data). For the illustrative data we have previously established 
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 = 603.64, 
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 = 20.55, sX = 378.451, sY = 11.725 and r = 0.737. Now we calculate the coefficients for the least square regression line.
The slope coefficient 
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The intercept coefficient 
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 = 20.55 – (0.02284)(603.64) = 6.76.

The regression model is 
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Notes

1.  Interpretation of the slope. The slope in the above illustrative example predicts an increase of 0.0028 lung cancer deaths (per 100,000 individuals per year) for each additional cigarette smoked per capita. Since the relationship is linear, we can also say that an increase of 100 cigarettes per capita predicts an increase of 100 × 0.0028 = 2.28 lung cancer deaths (per 100,000). It works the other way, too—a decrease of 100 cigarettes per capital is expected to decrease lung cancer mortality by 2.28 per 100,000.

2. Predicting Y given x. A regression model can be used to predict the value of Y for a given value of x. For example, we can ask “What is the predicted lung cancer rate in a country with per capita cigarette consumption of 800?” The predicted value 
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 = 6.76 + (0.0228)(800) = 25 (per 100,000). 

3. Avoid extrapolation. Extrapolation beyond the observed range of X is not recommended.
 The linear relationship should be applied to the observed range only. 

4. Specification of explanatory and response variable. In calculating b, it is important to specify which variable is explanatory (X) and which variable is the response (Y). These cannot be switch around in a regression model.  

5. Technology. We routinely use statistical packages for calculations. Figure 14.11 is a screenshot of computer output for the illustrative example. The intercept and slope coefficients are listed under the column labeled “Unstandardized Coefficient B.” The intercept is listed as the model “(Constant).” The slope is listed as the unstandardized coefficient for explanatory variable CIG1930.
 Notice that the slope is listed as 2.284E−02, which is computerese for 2.284×10−02 = 0.02284.
{Figure 14.11}

6. Relationship between the slope coefficient and correlation coefficient. There is a close connection between correlation and regression. This is seen in the formula 
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.  A change in one standard deviation of X is associated with a change of r standard deviations in Y. The least squares regression line will always pass through the point (
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7. b vs. r. Both b and r quantify the relationship between X and Y. How do they differ? Slope b reflects the statistical relationship between X and Y in meaningful units. For example, the slope for the illustrative data predicts that a decrease in 100 cigarettes per capital will be accompanied by an average decrease of 2.28 lung cancer cases per 100,000 people per year. In contrast, correlation coefficient r provides only a unit-free (abstract) measure of statistical strength (e.g., r = 0.74).
8. Regression is not robust. Like correlation, regression is strongly influenced by outliers. Outliers in the Y direction have larger residuals. Outliers in the X direction (“influential observations”) have a large influence on leveraging the estimates. Care must be taken in interpreting regression models in the presence of outliers. 

9. Linear relations only. Regression describes linear relationships only. It does not apply to other functional forms. 

10. “Association” does not always mean “causation.” As discussed in the section on correlation, statistical associations are not always causal. Take care to consider lurking variables that may confound results, especially with non-experimental data. 

Inferential methods
Population regression model and standard error of the regression

The population regression model is: 

yi = α + βxi + εi  
where yi is the value of the response variable for the ith observations, α is the parameter representing the intercept of the model, β is the parameter representing the slope of the model, xi is the value of the explanatory variable for the ith observations, and εi is the “error term” or residual for that point. We make the simplifying assumption that residual term εi varies according to a Normal distribution with mean 0 and uniform standard deviation σ:
εi ~N(0, σ)

The σ in this last expression quantifies the random scatter around the regression line. This quantity is the same all levels of X.  We have thus imposed an equal variance condition on the model. Figure 14.12 shows this schematically.

 {Figure 14.12}

We estimate σ with a statistic called the standard error of the regression
 (denoted sY|x) which is calculated as
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Recall that a residual is the difference between an observed value of y minus the value of Y predicted by the regression model (
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As an example, the point (20, 1300) in the illustrative data set has 
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 = a + bx = 6.76 + (0.0228)(1300) = 36.4. Therefore, the residual = 
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 = 20 – 36.4 = −16.4. Figure 14.13 highlights this residual.
{Figure 14.13}

Table 14.6 lists observed values, predicted values, and the residuals for each data point in the illustrative data set. The standard error of the regression is calculated as follows:
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{Table 14.6}
Confidence interval for the population slope

The confidence interval for slope parameter β can now be estimated with this formula:
b ± (t)(SEb)
where the point estimate is sample slope b, t is a t random variable with n – 2 degrees of freedom and cumulative probability 1 – (α/2), and the SEb is the standard error of the slope
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An equivalent
 formula is 
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Illustrative example: Confidence interval for β. We have established for the smoking and lung cancer illustrative example that n = 11, b = 0.02284, sY|x = 8.349 and sX = 378.451. Let us calculate a 95% confidence for slope parameter β.

· 
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· For 95% confidence, use tn−2,1-(α/2) = t9,.975 = 2.262
· The 95% confidence interval for β = 
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 = 0.02884 ± (2.262)(0.006976) = 0.02884 ± 0.01578 = (0.00706 to 0.03862). 
t test of slope coefficient
A t test can be used to test the slope coefficient for significance. Under the null hypothesis, there is no linear relationship between X and Y in the population, in which case the slope parameter β would be 0. Here are the steps of the testing procedure:
(A) Hypotheses. H0: β = 0 against either Ha: β ≠ 0 (two-sided), Ha: β < 0 (one-sided to the left) or Ha: β > 0 (one-sided to the right).  The two-sided alternative shall be our default.
(B) Test statistic. The test statistic is 
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.  This test statistic has n – 2 degrees of freedom. 

(C) P-value. The one-tailed P-value = Pr(T ≥ |tstat|). Use Table C or a software utility such as StaTable
 to determine this probability. 
(D) Significance (optional). The test is said to be significant at the α-level of significance when P ≤ α.
Illustrative example: t statistic. Let us test whether slope in smoking and lung cancer illustrative data. There are 11 bivariate observations. We have established b = 0.002284 and SEb = 0.006976.
(A) Hypotheses. H0: β = 0 versus Ha: β ≠ 0
(B) Test statistic.  
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(C) P-value. P = 0.0096, providing good evidence against H0. 

(D) Significance (optional). The association is significant at α = 0.01.
Notes: 
1. t tests for correlation and for slope. The test for H0: ρ = 0 and H0: β = 0 produce identical t statistics: 
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 with df = n – 2. 
2. Relation between confidence interval and test of H0. You can use the (1−α)100% confidence interval for β to see if results are significant at the α level of significance. When “0” is captured in the (1−α)100% confidence interval for the population slope, the data are not significant at that α level. When the value 0 is not captured by confidence interval, we can say slope is significantly different than 0 at that α level. The 95% confidence interval for β for the illustrative data is (0.00706 to 0.03862), failing to capture “0”. Therefore, we can see that the slope is going to be significant at α = 0.05. 

3. Testing for population slopes other than 0. The hypothesis and test statistic can be adapted to address any population slopes other than 0. Let β0 represent the population slope posited by the null hypothesis. To test H0: β = β0, 
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 with df = n – 2. For example, to test whether the slope in the smoking and lung cancer illustrative data is significantly different than 0.01, the null hypothesis is H0: β = 0.001. The test statistic is 
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 = 1.84 with df = 9 (two-sided P = 0.099). Therefore, the difference is marginally significant (i.e., significant at α = 0.10 but not at α = 0.05).
Analysis of variance 
An analysis of variance (ANOVA) procedure can be used to test the model. Results will be equivalent to the t test. ANOVA for regression is presented as a matter of completeness and because it leads to methods useful in multiple regression (Chapter 15).

(A) Hypotheses. The null hypothesis is H0: the regression model does not fit in the population. The alternative hypothesis is Ha: the regression model does fit in the population. For simple regression models, these statements are functionally equivalent to H0: β = 0 and Ha: β ≠ 0, respectively.

(B) Test statistics. Variability in the data set is split into regression and residual components. The regression sum of squares is analogous to the sum of squares between groups in one-way ANOVA:
Regression SS = 
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 is predicted value of Y for observation i and 
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The residual sum of squares is analogous to the sum of squares within groups in one-way ANOVA:
Residual SS = 
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where yi is an observed value of Y for observation i and 
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 is its predicted value. 
Mean squares are calculated as follows:
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This F statistic is used to test the null hypothesis
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For simple regression models, the Fstat has 1 degree of freedom in the numerator and n – 2 degrees of freedom in its denominator. 
(C) P-value. The Fstat is converted to a P-value with Table D or a software utility (§13.3). 
Illustrative example: ANOVA for regression. Let us submit the illustrative data (Table 13.1) to an ANOVA test. 
(A) Hypotheses. H0: the regression model of per capita smoking and lung cancer mortality does not fit the population against Ha: the null hypothesis is incorrect. 
(B) Test statistic. Table 14.7 demonstrates calculations for sums of squares, mean squares, and the F statistic. Figure 14.14 displays the SPSS output for the problem. Both show an Fstat of 10.723 with 1 and 9 df.
{Table 14.7}

{Figure 14.14}

 (C) P-value: The P-value = 0.010, which is identical to the two-sided P-value derived by the t test. 
Notes

1. Coefficient of determination. A coefficient of determination r2 (§14.3) can be calculated as follows:
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This is the coefficient of determination presented in §14.1 (i.e., the square of the correlation coefficient). In this form, it is easy to recognize  r2 as the proportion of the total variation in Y accounted for by the regression line. For the smoking and lung cancer data, 
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 = 0.544, indicating that 54.4% of the variation in the response variable is numerically accounted for by the explanatory variable. 
2. Root Mean Square Residual = Standard Error of the Regression. The square root of the Mean Square Residual in the ANOVA table is standard error of the regression (sY|x). For the illustrative data, sY|x = 
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Conditions for inference
Regression inferential procedures require conditions of linearity, sampling independence, normality, and equal variance. The conditions conveniently form the mnemonic “line.”
Linearity refers to the straight functional form of X and Y. We can judge linearity by looking directly at a scatter plot or looking at residuals plot. Residual plots graph residuals against X values for the data set. Figure 14.15 is a residual plot for the illustrative data set. The horizontal line at 0 makes it easier to judge the variability of the response. This particular residual plot is difficult to judge because of the sparseness of data points.
{Figure 14.15}

Figure 14.16 depicts three different patters we might see in residual plots. Plots A and B depict linear relationships—there are an equal number of points above and below the 0- reference line throughout the extent of X. Plot C show a non-linear pattern.

{Figure 14.16} 

Sampling independence relates to the sampling of bivariate observations. Bivariate data point should represent a SRS of a defined population. There should be no pairing, matching, or repeated measurements of individuals. 
Normality refers to the distribution of residuals. Figure 14.12 shows an idealized depiction of this phenomenon. With small data sets, a stemplot of the residuals may be helpful for assessing departures from Normality. Here is the stemplot of the residuals for the smoking and lung cancer illustrative data.
  
−1|6
−0|2336
 0|01366
 1|4
×10
This shows no major departures from Normality.  
The equal variance (homoscedasticity) condition also relates to the residuals. The spread of scatter should be homogenous at all levels of X (Figure 14.12). Unequal variance is evident when the magnitude of residual scatter changes with levels of X, as demonstrated in Figure 14.16B.
 
Exercises
14.3 Bicycle helmet use, n = 12. Exercise 14.1 introduced data for a cross-sectional survey of bicycle helmet use in Northern California counties. Table 14.4 lists the data. Exercise 14.1 part (a) revealed that observation 13 (Los Arboles) was an outlier. 

(a) After eliminating the outlier from the data set (n now equal to 12), calculate the least squares regression model for the data. Report a and b, and interpret these estimates.

(b) Calculate the 95% confidence interval for slope parameter β.
(c) Use the 95% confidence interval to predict whether the slope is significant at α = 0.05. 
(d) Optional: Determine the residuals for each of the 12 data points that remained in the analysis. Plot theses residuals as a stemplot and check for departures from Normality.
14.4 Mental health care. Exercise 14.2 introduced historical data about mental health care. The explanatory variable was the reciprocal of the distance to the nearest healthcare facility (miles−1, variable name REC_DIST). The response variable was the percent of patients cared for at home (variable name PHOME2). Table 14.5 lists the data. Eliminate observation 13 (Nantucket) and then determine the least square regression line for the data. Interpret the regression model. 
14.5  Anscombe's quartet. “Graphs are essential to good statistical analysis,” so starts a  1973 article Anscombe.
 This article demonstrates why it is important to look at the data before analyzing it numerically. Table 14.8 contains four different datasets. Each of the data sets produces these identical numerical results: 

n = 11
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  = 7.5
r = 0.82 
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Figure 14.17 shows scatterplots for each of the datasets. Consider the relevance of these above numerical summaries in light of these scatterplots. Would you use correlation or regression to analyze these datasets?  Explain your reasoning in each instance.
{Table 14.8}

{Figure 14.17}

14.6 Domestic water and dental cavities. Table 14.9 contains data from a historically important study of water fluoridation and dental cavities in 21 North American cities. 
{Table 14.9}
(a) Construct a scatterplot of FLUORIDE and CARIES. Discuss the plot. Are there any outliers? Is a linear relationship evident? If the relation is not linear, what type of relation is evident? Would linear regression be warranted under these circumstances?

(b) Although unmodified regression does not appear to fit these data, we may build a valid model using a number of different approaches. One approach is to to straighten-out the relation by re-expressing the data through a mathematical transformation. Apply logarithmic transforms (base e) to both FLUORIDE and CARIES. Create a new plot with the transformed data.
 Discuss the results.

(c) Calculate the coefficients for a least square regression line for the ln-ln transformed data. Interpret the slope estimate. 

(d) Calculate r and r2 for ln-ln transformed data. 
14.7 Domestic water and dental cavities, analysis 2. Another way to look at the data presented in Exercise 14.6 is to restrict the analysis to a range that can be described more-or-less accurately with a straight line. This is called a range restriction. 
(a) Is there are range of FLUORIDE in which the relationship between FLOURIDE and CARIES is pretty straight? Restrict the data to this range. The determine the least squares line for this model. Interpret b. 
(b) Calculate r2 for this model. 

(c) Which model do you prefer, this model of the one created in Exercise 14.6? Explain your reasoning.
14.8 Correlation matrix.
 Statistical packages can calculate correlation coefficients for multiple pairings of variables. Results are often reported in the form of a correlation matrix. Figure 14.18 displays the correlation matrix for a data set named Fraumani1969.*. Data are from a study of geographic variation in cancer rates. The variables are:


CIG

cigarettes sold per capita
BLAD

bladder cancer deaths per 100,000
LUNG

lung cancer deaths per 100,000
KID

kidney cancer deaths per 100,000
LEUK

leukemia cancer deaths per 100,000

{Figure 14.18}

Notice that the values for each correlation coefficients appears twice in the matrix, each time the variables intersect in row or column order. For example, the value r = 0.704 occurs for CIG and BLAD and for BLAD and CIG. The correlation of 1 across the diagonal reflects the trivial fact that each variable is perfectly correlated with itself. Review this correlation matrix and discuss the results of the study.
14.9 True or false? Identify which of the statements are true and which are false.

(a) Correlation coefficient r quantifies the relationship between quantitative variables X and Y.

(b) Correlation coefficient r quantifies the linear relation between quantitative variables X and Y. 

(c) The closer r is to 1, the stronger the linear relation between X and Y. 

(d) The closer r is to −1 or 1, the stronger the linear relation between X and Y. 

(e) If r is close to zero, X and Y are unrelated.

(f) If r is close to zero, X and Y are not related in a linear way.

(g) The value of r changes when the units of measure are changed.

(h) The value of b changes when the units of measure are changed.

14.10 Memory of food intake. Retrospective studies of diet and health rely on recall of distant dietary histories. The validity and reliability of such information is often suspect. An epidemiologic study asked middle-aged adults (median age 50) to recall food intake at ages 6, 18, and 30 years. Recall was validated by comparing recalled results to historical information collected during earlier time periods. Correlations rarely exceeded r = 0.3.
 What do you conclude from this result? 
Vocabulary

Bivariate Normality
Coefficient of determination (r2)
Confounding

Dependent variable
Direction of correlation

Explanatory variable

Homoscedasticity (along the regression line)

Independent variable

Intercept coefficient (a)

Intercept parameter (α)

Least squares line

Linear/non-linear form 

Outlier

Predicted value for Y (
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Response variable 
Scatterplot

Slope coefficient (b)

Slope parameter (β)

Standard deviation (error) of the regression (sY|x)

Standard error of the slope (SEb)

Strength of correlation

Variance of the regression 

ρ

�  Richard Doll (1912 –2005) was a British epidemiologist well known for his studies linking smoking to various health problems. 


�  The U.S. data point is a lower then expected. Whether it is strikingly low or just a random fluctuation is unclear.


� The “minus 1” reflects a loss of a degree of freedom.


� Numerical explanations are not always biologically sound.


� William Farr (1807–1883) – one of the founders of modern epidemiology; first registrar of vital statistics for a nation (England). Known as one of the first scientists to collect, tabulate, and analyze surveillance data; recognized the need for standardized nomenclatures of diseases; one of the first to apply actuarial methods to vital statistics.


�  Farr, W. (1852). Influence of elevation on the fatality of cholera. Journal of the Statistical Society of London, 15(2), 155-183. Data stored in farr1854.sav.


� The procedure described in this section addresses H0: ρ = 0 only. Testing other values of ρ (i.e., H0: ρ = some value other than 0) requires a different approach See Fisher, R. A. (1921). On the "probable error" of a coefficient of correlation deduced from a small sample. Metron, 1, 3-32.


� The loss of 2 degrees of freedom can be traced to using � EMBED Equation.3  ��� and � EMBED Equation.3  ��� as estimates of μX and μY.


� Jeyaratnam, S. (1992). Confidence intervals for the correlation coefficient. Statistitics & Probability Letters, 15, 389-393.  


�  Norris, R.C., Hjelm, H.F. (1961). Non-normality and product moment correlation. The Journal of Experimental Education, 29, 261–270.


� This study still has repercussions today. The relation between patient care and distance to the nearest health center remains an important consideration; numerous small hospitals scattered locally are preferable to a large central facility.


� “Now, if I wanted to be one of those ponderous scientific people, and `let on' to prove what had occurred in the remote past by what had occurred in a given time in the recent past, or what will occur in the far future by what has occurred in late years, what an opportunity is here! Geology never had such a chance, nor such exact data to argue from! Nor `development of species', either! Glacial epochs are great things, but they are vague--vague. Please observe. In the space of one hundred and seventy-six years the Lower Mississippi has shortened itself two hundred and forty-two miles. This is an average of a trifle over one mile and a third per year. Therefore, any calm person, who is not blind or idiotic, can see that in the Old Oolitic Silurian Period, just a million years ago next November, the Lower Mississippi River was upward of one million three hundred thousand miles long, and stuck out over the Gulf of Mexico like a fishing-rod. And by the same token any person can see that seven hundred and forty-two years from now the Lower Mississippi will be only a mile and three-quarters long, and Cairo and New Orleans will have joined their streets together, and be plodding comfortably along under a single mayor and a mutual board of aldermen. There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact.” (Mark Twain, Life on the Mississippi, 1883, pp. 173-6).


� Labeling of output from other statistical packages will differ.


� It may be easier to think of this statistic as the standard deviation of the scatter around the regression line, i.e., standard deviation of Y at each given level X. 


� Not to be confused with the standard error of the regression.


�  To see this equivalency, rearrange � EMBED Equation.3  ��� so that � EMBED Equation.3  ���. 


� Cytel Software Corp. (1990-1196). StaTable: Electronic Tables for Statisticians and Engineers. www.cytel.com/Products/StaTable/.


� See Table 14.6 for a data listing that includes residual values. 


� The slope coefficient should remain unbiased despite the non-uniform variance of the residuals.


� Anscombe, F. J. (1973). Graphs in statistical analysis. The American Statistician, 27, 17-21. Data are stored in anscomb.*. 


� Alternatively, you can rescale both axes of the scatterplot to logarithmic scales.


�  Fraumeni, J. F., Jr. (1968). Cigarette smoking and cancers of the urinary tract: geographic variation in the United States. Journal of the National Cancer Institute, 41(5), 1205-1211.


� Dwyer, J. T., Gardner, J., Halvorsen, K., Krall, E. A., Cohen, A., & Valadian, I. (1989). Memory of food intake in the distant past. American Journal of Epidemiology, 130(5), 1033-1046.
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