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Independent Samples
Introduction

In the previous chapter we considered the basics of cohort analysis by comparing incidences (risks) of disease in
two groups of people. Group 1 was “exposed” and Group 0 was not. The relationship between the exposure and
disease was quantified in the form of a relative risk. 

In this chapter, we consider the basics of case-control analysis. In case-control analysis, we use a disease-selective
subset of the cohort to select cases and controls. Group 1 is the cases, and Group 0 is the controls. This precludes
the possibility of direct estimation of incidence (risk), but retains the ability to estimate relative risk through an odds
ratio. Justifications for this approach is complex, but basically relies on two possibly inter-related conceptions.
Conception 1 is based on a Baysian proof,1 whereas conception 2 is based on density sampling of the population at
risk.2 Both justifications are worthy of study in their own right, but are beyond the scope of this modest coverage.
Perhaps we will address these justifications a bit in lecture. 

Either way, case-control data is shown in following 2-by-2 cross-tabulated form as follows:
 

Disease+ Disease-

Exposure + a b n1

Exposure - c d n0

m1 m0 N

The exposure proportion in cases is:

The exposure proportion in controls is:



3 Tuyns, 1977; Breslow & Day, 1980, Chapter 4
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It makes intuitive sense that a higher exposure proportion in cases would justify an association between the
exposure and disease. However, this relationship can be quantifies, we must convert the exposure proportions into

exposure odds, as follows: let  represent the exposure odds in cases and let$ $ /q p c m1 1 11= − =

 represent the exposure odds in controls. $ $ /q p d m0 0 01= − =

The exposure odds ratio is: 

It can be shown that this odds ratio is an estimate of the incidence (density) rate ratio which, itself, is an estimate of
the risk ratio, especially when the disease is rare (risk < .05). Thus, we have another form of the relative risk. So much
for theory.

Illustrative Example

As an illustrative example, let us consider a case-control study of esophageal cancer and alcohol consumption which
included 200 cases and 775 controls.3 Both cases and controls were administered a detailed dietary interview which
contained questions about alcohol consumption, among many other factors. Data are contained in BD1NEW.REC as
the variables CASE (1 = case, 2 = control) and ALCHIGH (alcohol consumption dichotomized at 80 grams per day: 1
= high, 2 = low). In tabular form, data are:

Case Control

Exposure+ 96 109 205

Exposure - 104 666 770

200 775 975

From this we note  = a / m1 = 96 / 200 = 0.480 and  =  b / m0 = 109 / 775 = 0.141. The odds ratio ( ) = ad / bc$p1 $p0
$OR

= (96)(666) / (109)(104) = 5.640, suggesting that high-alcohol consumers have a much higher risk of esophageal
cancer than light-consumers. 
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Confidence Interval for the OR

A 95% confidence interval for the OR is achieved by converting the point estimate of the odds ratio to a natural

logarithm (ln) scale. For the illustrative example,  = ln(5.64) = 1.7299.ln $OR

The standard error of ln odds ratio estimate is:

For the illustrative data, selnOR = sqrt(1/96 + 1/109 + 1/104 + 1/666) = 0.1752.

A 95% confidence interval for the lnOR is now:

For the illustrative example, this confidence interval is 1.7299 ± (1.96)(0.1752) = 1.387, 2.073. 

Comment: The confidence level of the interval can be changed by altering the "1.96" to z1−α/2 as has been
done elsewhere in StatPrimer.

To convert this confidence interval to confidence interval for the OR, take the anti-logarithm of these limits. For the
illustrative example, a 95% confidence interval for OR = e (1.387, 2.073) = (4.0, 7.95). 
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Null Hypothesis Test

The test is traditionally done in a two-sided way. The null and alternative hypotheses are:

H0: OR = 1 vs. H1: OR not =  1 

The test is performed with either a chi-square test or Fisher's exact test, depending on whether any expected
frequencies are less than 5 (see prior chapter). 

The expected frequencies for the illustrative data are:

Disease+ Disease-

Exposure + 42.051 162.949 205

Exposure - 157.949 612.0513 770

200 775 975

Notice that all expected frequencies values exceed 5, so a chi-square method is appropriate. 

The Yates’ correct chi-square statistic in this instance (see Unit 16) is equal to (|96 - 42.051| - .5)2/42.051 + (|109 -
162.949| - .5)2/162.949 + (|104 - 157.949| - .5)2/157.949 + (|666 - 612.051|- .5)2/612.051  = 108.22 with 1 degree of freedom.
The  p value < .001; data are “significant.” qed.

Z (Wald) Statistic

An alternative test statistic, based on the standard error estimate, is:

Under the null hypothesis, this statistic has a standard normal distribution. 

For the illustrative example, zstat = 1.7299, p (two-sided) < .002.
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Matched (Paired) Samples

Introduction

Suppose we want to conduct a case-control study of disease D and exposure E in which cases and controls are
uniquely-matched on potential confounders such as age, time, sex, clinic, and so on. We might do this to control for
extraneous factors that could confound the study’s results. In such general, such matched case-control pairs should
be chosen to be alike in respected to all characteristics except for the exposure underinvestigation.

Although we might be tempted to use standard case-control procedures to analyze such data, methods that rely on
sampling independence no longer apply: a new procedure is needed -- a procedure that accounts for the
sample-match and addresses the fact that observations are no longer independent. This situation will now shift our
attention from differences between individuals to differences within pairs, with data displayed as follows:
 

Control pair-member is
Exposed

Control pair-member is
Unexposed

Case pair-member is E+ t u

Case pair-member is E- v w

In this table cells t and w contain concordant pairs (case-control pairs-members are same with respect to exposure
status), and cells u and v represent discordant pairs (case-control pairs-members are different with respect to
exposure status). In analyzing these data, concordant pairs are ignored -- they provide little useful information about
the potential effect of the exposure -- while we focus on the ratio of discordant pairs. 

As an illustrative example, let us consider 50 age- and sex-matched case/controls-pairs.

Control pair-member is
E+

Control pair-member is
E-

Case pair-member is E+ 5 30

Case pair-member is E- 10 5

These data show 10 concordant pairs (cells a and d) and 30 discordant pairs (cells b and c). We will now discard the
information from the concordant pairs (this may make you uncomfortable, but is the right thing to do), leaving an
effective sample size of:

n' = u + v

For the illustrative example, n' = 30 + 10 = 40. 
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Confidence Interval for OR

An estimate for the odds ratio is provided by the ratio of the discordant pairs:

For the illustrative example, the odds ratio estimate = 30 / 10 = 3.0.

The standard error estimate of the ln(OR) is:

For the illustrative example, this standard error = sqrt(1/30 + 1/10) = 0.3651. 

A 95% confidence interval for the lnOR is:

For the illustrative example, this = ln(3.0) ± 1.96(0.3651) = 1.0986 ± .7156 = (.3830, 1.8142).

To derive the confidence limits for the odds ratio, take the anti-log (base e) of these limits; a 95% confidence interval
for the OR for the illustrative example = e(.3830, 1.8142) = (1.5, 6.2). 
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Null Hypothesis Test

The two-sided test of H0: OR = 1 can be done with McNemar’s chi-square statistic computed as:

This statistic has 1 degree of freedom.

For the illustrative example, χ2 = (30 - 10)2 / (30 + 10) = 10.00; p < .01.

The McNemar’s test statistic can also be corrected for continuity, as follows:

This, too, is a chi-square statistic with 1 degree of freedom.

For the illustrative example, χ2 = (|30 - 10| − 1)2 / (30 + 10) = 9.025; p < .01.

Z (Wald) Statistic

An alternative hypothesis testing statistic is:

For the illustrative example, zstat = 1.0986 / 0.3651 = 3.01, p (two-sided) = .0026. 


