10: Independent Proportions (2x2 Crosstabs)

Introduction
Estimation
Hypothesis Test

Introduction

This chapter considers the analysis of two-independent proportions. Data are stored in the form of a binary outcome (dependent) variable and a binary group (independent) variable.

Techniques will be demonstrated with data from a food borne outbreak study (data are stored in OSWEGO.SAV) in which 75 people attended a picnic and 46 became ill. We will look at exposure to ice cream as a possible predictor to illness. The dependent variable is CASE (gastroenteritis: $1=$ yes, $2=n o$). The independent variable is ICecream (vanilla ice cream: $1=$ yes, $2=$ no). We want to compare the proportion of people in each group that became ill. The first 5 data records are:

```
CASE ICECREAM
2 2
1 1
1 1
1 1
2 2
etc.
```

The first step of our analysis is to cross-classify (cross-tabulate) the data to form a 2-by-2 table, with table cells denoted:

Independent Variable	Dependent Variable	
1	Yes	No

Our illustrative data shows:

CASE

SPSS: Data are cross-tabulated by clicking Analyze | Descriptive Statistics| Crosstabs.

Estimation

The (incidence) proportion in Group 1 is:

$$
\hat{p}_{1}=\frac{a}{n_{1}}
$$

For the illustrative example, $\hat{p}_{1}=43 / 54=.7963$.

The (incidence) proportion in Group 2 is:

$$
\hat{p}_{2}=\frac{c}{n_{2}}
$$

For the illustrative data, $\hat{p}_{2}=3 / 21=.1429$. Notice that the outcome occurred much more frequently in Group 1 than in Group 2.

We may wish to estimate the difference in these proportions with confidence. Let us define the risk difference as:

$$
\hat{R} D=\hat{p}_{1}-\hat{p}_{2}
$$

For the illustrative example, the risk difference $=.7963-.1429=.6534$.
The standard error of this difference is:

$$
s e_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{\hat{p} \hat{q}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}
$$

where $\hat{p}=\frac{a+c}{n_{1}+n_{2}}$. For the illustrative data, $\hat{p}=\frac{43+3}{54+21}=.6133$ and
$s e_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{(.6133)(.3867)\left(\frac{1}{54}+\frac{1}{21}\right)}=.1252$.

When the sample is large (at least 5 cases per group), we use the following formula to calculate a 95% confidence interval for the risk difference:

$$
\hat{R} D \pm(1.96)\left(s e_{\hat{p}_{1}-\hat{p}_{2}}\right)
$$

For the illustrative data, a 95% confidence interval for the risk difference $=.6534 \pm(1.96)(.1252)=.6534$ $\pm .2455=(.4079, .8989)$.

Hypothesis Test

The parameters of interest are p_{1} (proportion in population 1) and p_{2} (proportion in population 2). The two-sided test null and alternative are: $H_{0}: p_{1}=p_{2}$ vs. $H_{1}: p_{1} \underline{\text { not }}=p_{2}$. This is equivalent to H_{0} : "no association" vs. H_{1} : "association."

Let us use a chi-square ($\boldsymbol{\chi}^{\mathbf{2}}$) statistic to perform this test. Chi-square distributions are asymmetrical with long right tails. A chi-square distribution with 1 degree of freedom is shown in the figure to the right. Notice that the $95^{\text {th }}$ percentile on this distribution is equal to 3.84 . Let us use the notation $\chi^{2}{ }_{d f ; p}$ to denote the $\mathrm{p}^{\text {th }}$ percentile on a chi-square distribution with $d f$ degrees of freedom. For example, $\chi^{\mathbf{2}}{ }_{1,95}=3.84$. Other chi-square percentiles are found in Appendix 4.

This test statistic is based on a comparison of observed frequencies (\boldsymbol{O}_{i}) to expected frequencies $\left(\boldsymbol{E}_{\boldsymbol{i}}\right)$. The observed frequencies are counts in
 the sample (see page 1). Expected frequencies are hypothetical counts, assuming the null hypothesis were true. These are calculated:

$$
E_{i}=\frac{\text { row total } \times \text { column total }}{\text { total sample size }}
$$

For the illustrative data, the expected frequencies are:
CASE

ICE CREAM	1	2
Total		
1	$54 \times 46 / 75=33.12$	$54 \times 29 / 75=20.88$
$21 \times 46 / 75=12.88$	$21 \times 29 / 75=8.12$	
46		54
Total	29	75

Chi-square statistics should not be used when an expected frequency is less than 5 . Notice that expected frequencies in the above table all exceed 5.

Pearson's ("uncorrected") chi-square test statistic is:

$$
\underset{\text { stat }}{2}=\sum \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

For the illustrative data, $\chi_{\text {stat }}^{2}=\left[(43!33.12)^{2} / 33.12\right]+\left[(11!20.88)^{2} / 20.88\right]+\left[(3!12.88)^{2} / 12.88\right]+$ $\left[(18!8.12)^{2} / 8.12\right]=2.95+4.68+7.58+12.02=27.23$. Under the null hypothesis, the test statistic has $(r-1)(c-1)$ degree of freedom, where r represents the number of rows in the table and c represents the number of columns. For 2 x 2 tables, $d f=(2-1)(2-1)=1$. The p value is the area under the curve in the right tail of the chi-square statistic on the $\chi^{2}{ }_{d f}$ distribution. For the illustrative example, $p<.001$. Therefore, the association is significant.

SPSS: Click Analyze | Descriptive Statistics | Crosstabs | Options button: Chi-square.

