
CS 153 Concepts of Compiler Design, Fall 2019, Ron Mak Page 1 of 7

San José State University
Department of Computer Science

CS/SE 153
Concepts of Compiler Design

Section 1
Fall 2019

Course and Contact Information
Instructor: Ron Mak
Office Location: ENG 250
Email: ron.mak@sjsu.edu
Website: http://www.cs.sjsu.edu/~mak/
Office Hours: TuTh 4:30 - 5:30 PM
Class Days/Time: TuTh 9:00 – 10:15 AM
Classroom: Class: MacQuarrie Hall MH 222
Prerequisites: CS 47 or CMPE 102, CS 146, and CS 154 (with a grade of "C-" or better in each);

Computer Science, Applied and Computational Math, or Software Engineering majors
only; or instructor consent.

Course Format
Class meetings will each consist of a lecture and a lab session.

Faculty Web Page and Canvas
Course materials, syllabus, assignments, grading criteria, exams, and other information will be posted at my
faculty website at http://www.cs.sjsu.edu/~mak and on the Canvas Learning Management System course login
website at http://sjsu.instructure.com. You are responsible for regularly checking these websites to learn of any
updates. You can find Canvas video tutorials and documentations at http://ges.sjsu.edu/canvas-students

Course Catalog Description
“Theoretical aspects of compiler design, including parsing context free languages, lexical analysis, translation
specification and machine-independent code generation. Programming projects to demonstrate design topics.”

Course Goals
This course will concentrate on practical aspects of compiler construction, programming language design, and
engineering a large, complex software application.

• Compiler construction and language design. Design and build a working compiler for a programming
language that you invented. Write sample programs in your language and then compile them into
executable machine code that you can run.

• Software engineering. Employ the best practices of object-oriented design and team-based software
engineering. A compiler is a large, complex program! Managing the development of such a program
requires learning critical job skills that are highly desired by employers.

CS 153 Concepts of Compiler Design, Fall 2019, Ron Mak Page 2 of 7

Course Learning Outcomes (CLO)
Upon successful completion of this course, students will be able to:

CLO 1: Develop a scanner and a parser for a programming language.
CLO 2: Perform syntactic and semantic analyses of source programs.
CLO 3: Generate symbol tables and intermediate code for source programs.
CLO 4: Develop an interpreter that executes a source program in a suitable runtime environment.
CLO 5: Design the grammar for a programming language and feed it into a compiler-compiler.
CLO 6: Develop a compiler that translates a source program into executable machine code.
CLO 7: Engineer a large, complex software application.

Required Texts
Title:

Author:
Publisher:

ISBN:
Source files:

Writing Compilers and Interpreters, 3rd edition
Ronald Mak
Wiley Publishers, Inc.
978-0-470-17707-5
http://www.cs.sjsu.edu/~mak/CS153/sources/
(both Java and C++ source files are available)

Title:
Author:

Publisher:
ISBN:

The Definitive ANTLR 4 Reference, 2nd edition
Terence Parr
Pragmatic Bookshelf
978-1934356999
http://www.antlr.org

We will use the ANTLR 4 compiler-compiler during the second half of the course, so you won’t need the
ANTLR text until then. ANTLR 4 can generate compiler components written in either Java or C++.
We will use Pascal as an example source language. These online Pascal tutorials are helpful:

Pascal Tutorial looks very good. It even has an online compiler.
Learn Pascal also looks good, although it doesn't appear to cover set types.

Some online websites to compile and run Pascal programs:

http://rextester.com/l/pascal_online_compiler
https://www.tutorialspoint.com/compile_pascal_online.php
https://www.jdoodle.com/execute-pascal-online

Source Codes
Source codes from the Writing Compilers and Interpreters textbook, in both the original Java and ported to
C++, are available for download at http://www.cs.sjsu.edu/~mak/CS153/sources.

CS 153 Concepts of Compiler Design, Fall 2019, Ron Mak Page 3 of 7

Course Requirements and Assignments
You must have good Java programming skills and be familiar with development tools such as Eclipse.
You will form project teams of four students each. Team membership is mandatory for this class. The teams
will last throughout the semester. Once the teams are formed, you will not be allowed to move from one team to
another, so form your teams wisely!
Weekly team-based lab assignments will provide practice with compiler design techniques and give you
experience adding new features to a large legacy code base. Each student on a team will receive the same score
for each team assignment.
Each team will submit its assignments into Canvas, where the rubric for scoring each will be displayed. Each
assignment and project will be worth up to 100 points. Late assignments will lose 20 points and an additional 20
points for each 24 hours after the due date.
Because class meetings each will have a lab session, you are expected to have done the required reading
before coming to class. This is a challenging course that will demand much of your time and effort
throughout the semester.

The university’s syllabus policies:

• University Syllabus Policy S16-9 at http://www.sjsu.edu/senate/docs/S16-9.pdf.

• Office of Graduate and Undergraduate Program’s Syllabus Information web page at
http://www.sjsu.edu/gup/syllabusinfo/

 “Success in this course is based on the expectation that students will spend, for each unit of credit, a minimum
of 45 hours over the length of the course (normally 3 hours per unit per week with 1 of the hours used for
lecture) for instruction or preparation/studying or course related activities including but not limited to
internships, labs, clinical practica. Other course structures will have equivalent workload expectations as
described in the syllabus.”

CS 153 Concepts of Compiler Design, Fall 2019, Ron Mak Page 4 of 7

Team Compiler Project
In addition to the team assignments, each student team will work on a compiler project throughout the semester.
Each team will develop a working compiler for a newly invented language or for an existing language. Teams
will be able to write, compile, and execute programs written in their invented or chosen languages. Each student
on a team will receive the same score for the team project. Each project involves:

• Invent a new programming language or choose a subset of an existing language.

• Develop a grammar for the language.

• Generating a compiler for the language using the ANTLR compiler-compiler. Other components may be
borrowed from the compiler code given in the class.

A minimally acceptable compiler project has at least these features:

• Two data types with type checking.
• Basic arithmetic operations with operator precedence.
• Assignment statements.
• A conditional control statement (e.g., IF).
• A looping control statement.
• Procedures or functions with calls and returns.
• Parameters passed by value or by reference.
• Basic error recovery (skip to semicolon or end of line).
• Nontrivial sample programs written in the source language.
• Generate Jasmin assembly code that can be successfully assembled.
• Execute the resulting .class file.
• No crashes (e.g., null pointer exceptions).

Each team will write a report (5-10 pp.) that includes:

• A high-level description of the design of the compiler with UML diagrams of the major classes.
• The grammar for your source language, either as syntax diagrams or in BNF.
• Code templates that show the Jasmin code your compiler generates for some key constructs of the

source language.

Exams
The midterm and final examinations will be closed book. There can be no make-up midterm examination unless
there is a documented medical emergency. Make-up final examinations are available only under conditions
dictated by University regulations.
The exams will test understanding (not memorization) of the material taught during the semester and now well
each of you participated in your team assignments and project.

CS 153 Concepts of Compiler Design, Fall 2019, Ron Mak Page 5 of 7

Grading Information
Individual total scores will be computed with these weights:

30% Assignments*
35% Compiler project*
15% Midterm exam**
20% Final exam**

 * team scores
** individual scores

Course grades will be based on a curve. The median total score will earn a B–. Approximately one third of the
class will earn higher grades, and another one third will earn lower grades.

Postmortem Report
At the end of the semester, each student must also turn in a short (under 1 page) individual postmortem report
that includes:

• A brief description of what you learned in the course.
• An assessment of your accomplishments for your team assignments and design project.
• An assessment of each of your other project team members.

Only the instructor will see these reports. How your teammates evaluate you may affect your course grade.

Classroom Protocol
It is very important for each student to attend classes and to participate. Mobile devices in silent mode, please.

University Policies
Per University Policy S16-9, university-wide policy information relevant to all courses, such as academic
integrity, accommodations, etc. will be available on Office of Graduate and Undergraduate Program’s Syllabus
Information web page at http://www.sjsu.edu/gup/syllabusinfo/.

CS 153 Concepts of Compiler Design, Fall 2019, Ron Mak Page 6 of 7

CS/SE 153
Concepts of Compiler Design

Section 1
Fall 2018

Course Schedule (subject to change with fair notice)
• WCI = Writing Compilers and Interpreters, 3rd edition
• ANTLR = The Definitive ANTLR 4 Reference, 2nd edition
Because class meetings each will have a lab session, you are expected to have done
the required reading before coming to class.

Week Dates Topics Readings
1 Aug 22 Overview of the course

What are compilers and interpreters?
Form programming teams

WCI 1, 2

2 Aug 27
Aug 29

A software framework for compilers and interpreters
Scanning (lexical analysis)
Lab: Write Pascal programs

WCI 3

3 Sep 3
Sep 5

Basic scanning algorithm
Symbol table management
Top-down recursive-descent parsing
Syntax diagrams
Lab: Scanning

WCI 4, 5

4 Sep 10
Sep 12

Parse assignment statements and expressions
Intermediate code (parse trees)
Interpret assignment statements and expressions
Parsing control statements
Parser error handling
Lab: Parsing

WCI 6, 7

5 Sep 17
Sep 19

Interpret control statements
Runtime error handling
Scope and the symbol table stack
Parsing declarations
Lab: Executing control statements

WCI 8, 9

6 Sep 24
Sep 26

Parsing declarations, cont’d
Semantic actions and type checking
Lab: Type declarations

WCI 9, 10

7 Oct 1
Oct 3

Parse programs, procedures, and functions
Parse procedure and function calls
Runtime memory management
The runtime stack and activation frames
Lab: Executing programs

WCI 11, 12

CS 153 Concepts of Compiler Design, Fall 2019, Ron Mak Page 7 of 7

Week Dates Topics Readings
8 Oct 8

Oct 10
Pass parameters by value and by reference
Lab: Executing programs, cont’d
Midcourse review
Midterm exam Thursday, October 10

WCI 12

9 Oct 15
Oct 17

A simple DFA scanner
BNF grammars for programming languages
The ANTLR compiler-compiler
Lab: ANTLR 4 grammar

ANTLR 1-4

10 Oct 22
Oct 24

Generate a scanner and a parser with ANTLR
ANTLR listener and visitor interfaces
Lab: ANTLR 4 grammar, cont’d

ANTLR 5, 6

11 Oct 29
Oct 31

Pcl, a tiny subset of Pascal
ANTLR-generated compiler components for Pcl
The Java Virtual Machine (JVM) architecture
Jasmin assembly language
Code templates and code generation
Lab: Code generation

WCI 15
ANTLR 7, 8

12 Nov 5
Nov 7

Pcl2 code generation example
Code for expressions
Code for assignment statements
Code for control statements
Code for procedure and function calls
Lab: Code generation, cont’d

WCI 16, 17
ANTLR 9

13 Nov 12
Nov 14

Code to call System.out.printf()
Code for string operations
Code for arrays and records
The Pascal runtime library
Code to pass parameters by value and by reference
Lab: Code generation, cont’d

WCI 18

14 Nov 19
Nov 21

Compiled vs. interpreted code
Context-free vs. context-sensitive grammars
Bottom-up parsing with yacc and lex
Code optimization
Lab: Code generation, cont’d

15 Nov 26 Runtime memory management
Garbage collection algorithms
Lab: Code generation, cont’d

16 Dec 3
Dec 5

Team compiler demos (optional)

Final
Exam

Monday,
Dec 16

Time: 7:15 - 9:30 AM
Room: MacQuarrie Hall MH 222

