
Design and Integration of an
Expandable Radio Frequency Switch

Matrix Using Cots Components

A project present to

The Faculty of the Department of Aerospace Engineering

San Jose State University

in partial fulfillment of the requirements for the degree

Master of Science in Aerospace Engineering

By

Zachary Pirkl

May 2014

approved by

Dr. Papadopoulos

Faculty Advisor

2

ABSTRACT

DESIGN AND INTEGRATION OF AN EXPANDABLE RADIO FREQUENCY SWITCH

MATRIX

USING COTS COMPONENTS

By

Zachary Pirkl

The object of this project was to design and integrate a Radio

Frequency Switch Matrix that can be easily expandable to additional

pathways for spacecraft ground testing. The standard design used two

command highway pathways to deliver one uplink and one downlink

pathway for spacecraft payload testing. A microcontroller was used to

command the switches to the desired position and to provide real time

telemetry updates. The programming of the Switch Matrix interfaced with

standard payload testing equipment using a standard IEEE 802.3 Ethernet

port and commanded via SCPI protocol. The purpose of this project was to

perform a feasibility study of an in-house built Radio Frequency Switch Matrix

for SSL to use with the growing complexities of satellite payload testing. The

Switch Matrix works for radio frequencies up to 40GHz.

3

ACKNOWLEDGEMENTS

Our Vision:

We create space-based solutions that improve the human experience

Our Mission:

Architect and build the most reliable, affordable spacecraft and space
systems to enable global communications, education, entertainment, health

services, disaster recovery, and Earth observation

Our Values:

 Act With Integrity

 Do It right

 Learn, Apply, Improve,

 Make the Company Stronger

- John Celli, President, SSL

I, first and foremost, would like to thank SSL for the opportunity to further

my breath of knowledge and partake in this feasibility study that could have

a lasting impact on how we test our satellites during their development. I

would like to thank Paul Trainer at SSL who has mentored and overseen the

project since day one of this project. I would also like to thank Dr. Mourtos

and Dr. Papadopoulos, their teaching and support over the years from my

undergrad to my Master’s Program has laid the foundation of a successful

future in the aerospace industry. Their legacy at San José State University is

one that should always be remembered and revered. I would like to thank

my friends and family who have supported me during my years in the

4

Master’s Program. Their understanding and patience during this difficult

time has made working full time and pursing a Master’s Degree bearable.

Table of Contents

1.0 INTRODUCTION...1

1.1 MOTIVATION..1

1.2 LITERATURE REVIEW..1

2.0 SYSTEM REQUIREMENTS..8

3.0 SYSTEM OVERVIEW DESIGN...10

4.0 CRITICAL HARDWARE...12

4.1 MICROWAVE SWITCHES...12

4.2 CONTROL SYSTEM...14

4.3 LAN / ETHERNET CONNECTION..15

5.0 SWITCH DRIVE MATRIX CIRCUIT..16

5.1 SWITCH SELECT COMPONENT DESIGN..17

5.2 POSITION SELECT COMPONENT DESIGN..21

5.2.1 SINGLE COIL LOW SIDE SWITCHING...21

5.2.2 RETURN COIL LOW SIDE SWITCHING..22

6.0 TELEMETRY CIRCUIT..25

6.1 SWITCH TELEMETRY...25

6.2 DISPLAY...27

7.0 INTERFACE CIRCUIT...29

8.0 POWER REGULATION CIRCUIT...30

9.0 WATCHDOG CIRCUIT..33

10.0 SWITCH MATRIX FEATURES..36

10.1 EMERGENCY SAFING..36

10.2 EXTERNAL RESET BUTTON...37

5

10.3 SWITCH ACTIVATION COUNTER..38

11.0 PROGRAMMING DEVELOPMENT..39

11.1 STANDARD COMMANDS FOR PROGRAMMABLE INSTRUMENTS................................39

11.2 CODE LOGIC..41

11.3 GENERAL USER INTERFACE..44

12.0 MECHANICAL INTEGRATION..47

12.1 SWITCH MATRIX WIRING..47

12.2 UNIT DESIGN...48

12.3 SYSTEM INTEGRATION...48

13.0 CONCLUSION...50

REFERENCES..52

APPENDICES..54

APPENDIX A: SYSTEM OVERVIEW DRAWING...55

APPENDIX B: R583833250 INTERNAL SWITCH SCHEMATIC...56

APPENDIX C: SWITCH DRIVE MATRIX SCHEMATIC...57

APPENDIX D: TELEMETRY CIRCUIT SCHEMATIC...58

APPENDIX E: INTERFACE CIRCUIT SCHEMATIC..59

APPENDIX F: POWER REGULATION CIRCUIT SCHEMATIC...60

APPENDIX G: WATCHDOG CIRCUIT SCHEMATIC..61

APPENDIX H: EEPROMANYTHING LIBRARY...62

APPENDIX I: SWITCH MATRIX PROGRAM...63

APPENDIX J: SWITCH MATRIX FULL WIRING SCHEMATIC...100

APPENDIX K: FRONT PLATE CAD DRAWING..101

APPENDIX L: BACK PLATE CAD DRAWING..102

6

List of Figures

FIGURE 1.2-1: 4X4 SWITCH MATRIX FUNCTION VIEW..2

FIGURE 1.2-2: COMMON HIGHWAY DESIGN..4

FIGURE 1.2-4: FULL ACCESS (BLOCKING) DESIGN...5

FIGURE 1.2-5: FULL ACCESS (NON-BLOCKING) DESIGN...6

FIGURE 3-1: SWITCH MATRIX SYSTEM OVERVIEW...11

FIGURE 4.1-1: RADIALL R583833250 SWITCH...12

FIGURE 4.1-2: SINGLE POSITION SCHEMATIC..13

FIGURE 4.2-1: SPARKFUN ARDUINO MEGA PRO 5V..14

FIGURE 4.3-1: ARDUINO ETHERNET SHIELD..15

 FIGURE 5-1: SWITCH DRIVE MATRIX CONCEPT...16

 FIGURE 5-2: SINGLE ELECTRICAL PATHWAY SCHEMATIC.....................................17

FIGURE 5.1-1: CRITICAL TIP31 & TIP 32 TRANSISTOR DATA.................................19

FIGURE 5.2.2-1: CRITICAL TIP120 TRANSISTOR DATA..23

 FIGURE 6.1-1: SWITCH TELEMETRY DIAGRAM..26

 FIGURE 6.2-1: SPARKFUN LCD SCREEN...27

 FIGURE 6.2-2: LCD WIRING DIAGRAM..28

FIGURE 7-1: INTERFACE CABLE..29

FIGURE 8-1: 9 VOLT POWER REGULATION CIRCUIT..31

FIGURE 8-2: BUILT 9 VOLT POWER REGULATION CIRCUIT WITH HEAT SINK............32

FIGURE 9-1: WATCHDOG CIRCUIT CONCEPT..33

FIGURE 9-2: WATCHDOG CIRCUIT...35

FIGURE 10.1-1: EMERGENCY SAFE BEFORE..37

FIGURE 10.1-2: EMERGENCY SAFE AFTER...37

FIGURE 11.1-1: COMMANDS FOR SWITCH ACTUATIONS.......................................40

FIGURE 11.1-2: COMMANDS FOR SWITCH MATRIX TELEMETRY............................41

FIGURE 11.2-1: SWITCH MATRIX PROGRAM FLOWCHART.....................................44

7

FIGURE 11.3-1: SWITCH MATRIX GUI..45

FIGURE 11.3-2: SWITCH POSITION BLOCK DIAGRAM...46

FIGURE 12.1-1: SWITCH MATRIX WIRING IMAGE...47

FIGURE 12.3-1: SWITCH MATRIX FULLY INTEGRATED...49

FIGURE 13-1: FINISHED SWITCH MATRIX..51

8

Nomenclature

A Amp
C Capacitance
dB Decibel
dBm Decibels per milliwatt
KB Kilobyte
GHz Gigahertz
HFE DC Current Gain
I Current
Ic Collector Current
In Inch
mA milliamp
Mb Megabyte
Mbits/s Megabits per second
MHz Megahertz
R Resistance
V Volt
VCEO Collector-Emitter Voltage
VCE Collector-Emitter Saturation Voltage
VBE Base-Emitter Saturation Voltage
W Watt

9

Acronyms

CAD Computer Aided Drafting
COTS Commercial Off The Shelf
DPS Digital Signal Processing
EEPROM Electrically Erasable Programmable Read Only Memory
GUI General User Interface
ICSP In Circuit Serial Programming
IEEE Institute of Electrical and Electronics Engineers
LAN Local Area Network
LCD Liquid Crystal Display
MEMS Micro Electro Mechanical Systems
MISO Master In Slave Out
MOSI Master Out Slave In
MSM Microwave Switch Matrix
RF Radio Frequency
SCK Serial Clock
SCPI Standard Commands for Programmable Instruments
SDM Switch Drive Matrix
SM Switch Matrix
SPI Serial Peripheral Interface
SS-TDMA Satellite Switched Time Division Multiple Access
SSL Space Systems/Loral, LLC
TTL Transistor-Transistor Logic

10

1.0 INTRODUCTION

A Radio Frequency Switch Matrix provides three practical applications in

the spacecraft industry. The first is to provide on-orbit redundancies of

payload units in the event of a unit failure. The second is to improve satellite

signal performance by selecting the strongest signals received and routing

them to other payload units, and the third application is for improving

efficiency of radio frequency ground testing. This project focuses on the

latter application.

1.1MOTIVATION

SSL is currently conducting a feasibility study into the potential of

upgrading their current payload test equipment. The two most viable

options are to either purchase expensive equipment or to develop in-house

equipment. While many units are required to be designed and built to create

a full suite of radio frequency test equipment, this project focuses on

determining the feasibility of designing, manufacturing, and integrating a

completely COTS RF Switch Matrix.

1.2LITERATURE REVIEW

Radio Frequency Switch Matrices have been used since some of the

earliest communication satellites. Intelsat VI used two 6x6 Switch Matrices

to carry 120 Mbit/s traffic over its frequency bands [1]. According to R.

Gupta, “the use of microwave switch matrices (MSMs) on-board

communications satellites enhances satellite capacity by providing full and

flexible interconnectivity between signal of up- and down- link beams. The

frequency reuses resulting from the introduction of microwave switching for

satellite switched time division multiple access (SS-TDMA) operation

significantly enhance the satellite utilization efficiency” [2]. In other words,

radio frequency performance can be improved through a switch matrix by

1

selecting the strongest signal received from an antenna and routing it

through the switch matrix to a downconverter or digital signal processing

(DSP) hardware [3]. Another important application of Switch Matrices is to

provide system redundancy between RF units [4]. In addition to satellite

applications, Switch Matrices can be used in a similar fashion for ground

stations to boost efficiency [5].

Figure 1.2-1 below shows an example of a 4x4 matrix that could be

used to route RF signals from any one of four inputs to any one of the four

outputs:

Figure 1.2-1: 4x4 Switch Matrix Function View

[6]

The newest promise in improvement in Switch Matrix technology is

with the use of Micro-Electro-Mechanical Systems (MEMS) switches [7]. MEMS

switches take advantage of the benefits of both mechanical and

2

semiconductor switches. They provide mechanical movement to open and

close the switch configuration similar to mechanical switches to provide

better signal isolation, but are compact like semiconductor switches [8]. E.

Siew et al. has developed a 3x3 prototype RF MEMS Switch Matrix which is

capable of “working up to 60GHz with good RF performance such as return

loss of at least 20dB, isolation of at least 78dB and insertion loss of at most

0.58dB. The proposed design (27×45μm2) is at least 10, 000 times more

compact than the previously reported RF switch matrices. In addition, the

3×3 MEMS switch matrix can be easily expanded to larger matrices using

Clos network” [9]. MEMS technology shows great promise for future satellite

usage to reduce the weight of RF systems. While this technology meets all

of the requirements of this project, and merits additional research, RF ground

test equipment has no requirement on size and weight of the project.

Therefore MEMS technology will not be pursued for this project.

This project is a feasibility study to determine the company’s ability to

develop an inexpensive Switch Matrix. Therefore the majority of research

into this topic has been on commercially available COTS products. One of

the leading suppliers of Switch Matrices is Agilent Technologies, which has

been providing Switch Matrices for over 20 years [10]. A Switch Matrix is just

one unit required for RF Testing Equipment. A standard Agilent Test System

Rack includes many other crucial components that are mounted together in

a portable rack. Some other components that are part of the rack include a

spectrum analyzer, signal generators, reference sources, and filters [11].

Each Agilent Switch Matrix is customized to their customer’s needs,

meaning each Switch Matrix is unique. The various attributes that can be

customized includes the number of input and output ports, the frequency of

operation, power specification, equal path length, switching speed, and

signal conditioning [12].

3

There are 3 types of Switch Matrix designs for RF Pathways. Each

method has advantages and disadvantages.

 Common Highway. Figure 1.2-3 shows such an example. The

advantages of a common highway are that it is the simplest and lowest

cost design for a switch matrix. However, you can only connect to one

output at a time. [12]

Figure 1.2-2: Common Highway Design

[12]

4

 Full Access (Blocking). Figure 1.2-4 shows such an example. The full

access (blocking) design allows the use of multiple active channels at

the same time. This provides higher flexibility for RF testing. This

added flexibility has the disadvantage of a higher cost and the

limitation of any input port can connect to only one output port. [12]

Figure 1.2-4: Full Access (Blocking) Design

[12]

5

 Full Access (Non-Blocking). Figure 1.2-5 shows such an example.

This design allows connections between any input port to any

output port simultaneously, multiple active channels, and can

connect any input port to all output ports at the same time. The

disadvantage of this high flexibility design is cost and a reduction of

RF performance. There is low isolation between output ports

connected to the same input port, the bandwidth is limited by a

power divider, and there is a higher insertion loss. [12]

Figure 1.2-5: Full Access (Non-Blocking) Design

[12]

6

A standard Agilent Switch Matrix is designed to have the primary

components located in the following locations. The front panel of the Switch

Matrix unit has the input and output ports of the switches. On the inside of

the unit, coax cables are routed from the interface ports to their respective

switch ports. In the aft section of the unit, the switch control circuit boards,

power supply, and the power connectors, which provide the voltage and

current to switch the individual switches, can be found [13].

7

2.0 SYSTEM REQUIREMENTS

The requirements of this project are flowed down from SSL to interface

with existing payload test equipment. The requirements are broken into

three subcategories: Radio Frequency Requirements, Electronic

Requirements, and Mechanical Requirements.

Radio Frequency Requirements:

 One uplink RF Path and One downlink RF Path shall be provided.

 Each RF Path shall consist of six inputs and six outputs.

 RF can enter through any input and exit through any output.

 Each Path shall have an RF test coupler to allow for signal verification.

 Available frequency of switch matrix shall be from 400 MHz to 31.5

GHz at low power <30 dBm max.

 Capability of using 3 cable power calibration method shall be available.

Electronic Requirements:

 All switches shall be controllable via SCPI commands via IEEE 802.3

Ethernet port.

 Telemetry of all switch positions shall be provided.

8

 The number of actuations per switch shall be recorded and stored

between power-off cycles.

 The time from any command sent to operation execution and

telemetry response shall be less than 10 seconds.

 If communication is lost, all switches shall remain in the present

configuration.

 If communication is lost, telemetry shall be restored to show current

configuration.

 A serial interface display shall display switch positions and status.

 Switch Drive Matrix (SDM) shall be designed to have the capability of

commanding up to 16 switches.

 A Failsafe button to reset switches to safe position shall be provided.

 Watchdog timeout trigger shall be initiated if controller is

unresponsive.

Mechanical Requirements:

 The Switch Matrix shall be built into standard 2U 19” chassis.

 Space and design for adding power detection/calibration devices shall

be provided.

9

 Equal cable lengths shall be provided for equal RF losses.

 The Switch Matrix shall have the ability to add 3 dB pads for return loss

improvement.

10

3.0 SYSTEM OVERVIEW DESIGN

The primary requirements have been defined for this project. Below is

a preliminary high level concept design which shows the system overview of

how the switch matrix is designed and built for this project.

The components are as followed. See the following page and Appendix

A for a system overview drawing.

 4 Switches that each provide 6x1 positions.

 2 Switch per pathway using Common Highway Design.

 There are RF Instruments between the switch paths to make RF

measurements as required.

 An ATmega 2560 microcontroller with an Ethernet Shield will be used

to control the switches.

 To control switches, a Control Circuit will be designed to be able to

pulse each switch.

 To collect telemetry, a Telemetry Circuit will be designed to gather

switch position Telemetry and display to a visible display for the user.

 An Interface Board will need to be designed to connect all of the switch

connectors and route all of the wiring to the appropriate board.

11

 28V Power Supply to provide power to the Control Board to switch the

switches.

 Power Regulator Board to regulate the voltage from the 28V Power

Supply to supply the microcontroller required voltage and current.

 Watchdog Circuit to provide a heartbeat of the system. In the case of a

failure, the watchdog will reset the microcontroller. This will allow the

switch matrix to be used for months at a time without a system failure.

12

Figure 3-3: Switch Matrix System Overview

See Appendix A for a larger diagram of the Switch Matrix System Overview.

13

4.0 CRITICAL HARDWARE

4.1MICROWAVE SWITCHES

The switches for this project were provided by SSL. They are the given

switches in which then entire switch matrix is designed around. Four Radiall

R583833250 switches are used in the switch matrix design. Each switch is a

six to one pathway switch ranging from 0 to 40GHz. The below figure is an

image of a switch used in the Switch Matrix.

Figure 4.1-1: Radiall R583833250 Switch

Each switch is a latching switch that actuates via a 28V, 125mA pulse.

The nominal switch time is less than 15ms. However as a factor of safely,

the programming pulses the switch for 75ms. The switch has a 25 pins D-

SUB male connector on the aft end of the switch.

The wiring diagram below is the schematic for one position within the

switch. Each position in the switch has one forward coil and one reverse coil.

14

Figure 4.1-2: Single Position Schematic

To activate the coil to choose a particular switch position, the positive 28

volts enters in the +C wire and exits out the -1 wire. This creates a magnetic

field due to the coil and pushes the center bar down. When the center bar is

down, it creates a pathway for the RF signal to pass out that particular port.

In addition, it also closes the latch between wires D and E. This provides a

telemetry position. To open the RF switch position, a 28V pulse would enter

through the +C wire and exit out the –R1 wire. This creates a magnetic field

in the opposite direction and pushes the center bar up. This opens the RF

pathway and opens the telemetry relay. A schematic of all switch positions

and how they are tied together can be found in Appendix B.

15

4.2CONTROL SYSTEM

The Switch Matrix is controlled by an Arduino Mega 2560 microcontroller.

This microcontroller uses an ATmega 2560 chip that runs at 16MHz. The

microcontroller consists of 54 digital input/output and 16 analog inputs pins.

Each output pin is able to output 5 volts at 40mA. The Arduino platform was

chosen due to its programmable flexibility. The Arduino programming

language is based off of the C++ programming language. All standard C++

libraries and functions are available to the Arduino. Uploading the code to

the Arduino board only requires a standard USB connection. Below is a figure

of the Arduino Mega Pro microcontroller created by Sparkfun Electronics.

Figure 4.2-1: Sparkfun Arduino Mega Pro 5V

Source: https://www.sparkfun.com/products/11007
Creative Commons images are CC BY-NC-SA 3.0

Photo taken by Juan Peña

This particular microcontroller was selected because of the versatility of

the input and output pins. Pins that were required for this project had wire-

wrap pins soldered to the board so the board is able to fit into a 0.1”

prototype circuit board.

16

4.3LAN / ETHERNET CONNECTION

The Arduino Mega 2560 alone is unable to connect via LAN by itself. To

be able to transmit and receive commands and telemetry via Ethernet

connection, additional hardware is required. To meet the demands of this

project and to appropriately interface with the Arduino Mega 2560, the

Arduino Ethernet Shield has been selected for this project. The Ethernet

Shield is controlled by a W5100 Ethernet chip capable of 10/100Mb

connection speed. The Shield has a standard RF-45 connection that is IEEE

802.3 compliant. Below is a figure of the Arduino Ethernet Shield.

Figure 4.3-1: Arduino Ethernet Shield

Source: http://arduino.cc/en/Main/ArduinoEthernetShield
Creative Commons images are CC BY-SA 3.0

The Ethernet Shield communications to the Arduino Mega 2560 via the

SPI bus which is through the ICSP headers on both boards. This includes the

following pins: MOSI, MISO, SCK, Reset, +5V, and return pins. In addition,

17

the slave select pins on both boards are used to select the W5100 chip on

the Ethernet Shield.

5.0 SWITCH DRIVE MATRIX CIRCUIT

A Switch Drive Matrix Circuit was designed to control the switches. This

method allows for the most amount of available switches with the least

amount of components and wiring. The method allows for every individual

switch position for all switch command ground lines be wired together. In

addition, the six return position lines are tied together, essentially making

the return line, R, one pathway for six coils. Figure 5-1 below shows the

configuration of the Switch Drive matrix.

Figure 5-1: Switch Drive Matrix Concept

For example, to pulse switch 1 to position 4, the switch 1 select line

would be activated and the position 4 select line would be activated. This

would allow current to flow through the switch 1 position 4 coil and activate

that position. Since the other switch select lines and position select lines do

not complete an electrical circuit, there is no current to activate those coils.

18

Figure 5-2 below shows the electrical schematic for a single coil.

Figure 5-2: Single Electrical Pathway Schematic

The above pathway design can be broken down into two parts; the Switch

Select Transistor (Q2) and the Position Select Transistor (Q3). Transistors are

used for this project over relays due to the limited life expectancy of relays.

A typical electromechanical relay has a life expectancy of one to two million

cycles. The switches used in the project have a life expectancy of two million

cycles per position. This would mean that the control circuit would fail prior

to the switches failing.

5.1Switch Select Component Design

To active the switch select transistor, a PNP transistor is used. PNP

transistors are used for high side switching, which means that PNP

transistors are used prior to the circuit resistive load, close the voltage

source. This is opposed to an NPN transistor which is used for low side

switching after the circuit resistive load, close to ground.

19

For the PNP transistor to work, if the base of the transistor is lower than

the voltage at the emitter, current will flow from the emitter to the collector.

Since the microcontroller can only output 5V, a special circuit was designed

to nominally keep the base of the transistor Q2 at 28V. NPN transistors only

let current flow from collector to emitter when the base voltage is higher

than the voltage at the emitter. NPN transistors are the only transistors in

this design that can be directly actuated by a microcontroller.

The theory behind the switch select high switching circuit is as follows.

Resistor R3 supplies the base of transistor Q2 with 28V, preventing current to

pass through transistors Q2. When the user wishes to activate the switch

select, the microcontroller sends current through resistor R1. Resistor R1 is

sized to allow the correct amount of current to fully saturate transistors Q1.

When transistor Q1 is fully saturated, it allows current to flow from its collect

to its emitter. Since the emitter on transistor Q1 is grounded, the current

that is nominally preventing transistors Q2 from saturating flows to ground.

The amount of current that flows to ground is determined by R2. While

transistor Q1 is saturated by the microcontroller, the base of transistor Q2

has now been set to a lower voltage than its emitter, which allows current to

flow from its emitter to collector, activating the desired switch. In short

terms, this design pulls the voltage at the base of Q2 down when transistor

Q1 has been activated.

The following are the calculations for the different components in this design:

First, the maximum current that will pass across transistor Q2 is

calculated. Per section 4.1, the nominal activation current for a coil is 0.125

amps. To reduce the amount of wires and components, the six return coils in

the switch are tied together, allowing only one master reset command to

activate all six return coils. This means that the maximum current across

transistor Q2 is:

20

I c=0.125 Amps∗6coils

I c=0.75 Amps

This value is the collector current at transistors Q2. Since this

transistor has to pass 0.75 amps at 28 volts, PNP power transistor TIP32 is

used. The TIP32 transistor works up to 40 volts and 3 amps with a minimum

gain (Hfe) of 10. Note that minimum gain is used in all calculations because it

is a worst-cast value.

Due to the gain of transistor Q2, transistors Q1 will not need to sink as much

current to activate the TIP32.

I c=I b∗H fe (5.1)

Where Ib is the base current.

Rearrange the equation

I b=
I c

H fe

I b=
.75
10

=0.075 A

This means that transistors Q1 must be able to sink 0.075 amps to

activate transistor Q2. Power transistors TIP31 has been selected as

transistor Q1. It has the identical properties as the TIP32, but an NPN

transistor. Below is a figure of critical information about the TIP31 and TIP

32.

21

TIP31 and TIP32 Critical Data
VCE

O

Maximum Collector-Emitter
Voltage 40

IC
Maximum Collector Current
(amps) 3

HFE Minimum DC Current Gain 10

VCE

Collector-Emitter Saturation
Voltage

1.
2

VBE Base-Emitter Saturation Voltage
1.
8

Figure 5.1-1: Critical TIP31 & TIP 32 Transistor Data

Next, to make sure 0.075 amps is able to flow to ground, resistor R2 is

calculated from Ohm’s Law.

R=
V
I (5.2)

For this calculation, Vr2 is the voltage across resistor R2 and Ir2 is the current

across resistor R2.

R2=
V r2

I r2

To calculate Vr2, the voltage drop across the base-emitter voltage (Vbe) of Q2

and the Collector-emitter(Vce) must be taken into account.

V r2=V −V be2−V ce1 (5.3)

V r2=5−1.8−1.2=2V

Completing equation 5.2:

R2=
2

.075
=26.6 6́Ω

22

The closest standard resistor value is a 24 Ω resistor which is used.

The next value to calculate is resistor R1. The value of R1 determines how

saturated transistor Q1 is by limiting the current that flows over it. Modifying

equation 5.1:

I b1=
I c1

H fe

=
.075
10

=0.0075amps

This value means that it will take 0.0075 amps to drive transistor Q1 to

saturation. Since this current comes directly from the microcontroller, it is

not always a precise value. Therefore a safety factor of 2 shall be included

to guarantee that 75 mA is sunk to ground. Therefore Ib1 = .015 amps.

A similar process using equations 5.2 is repeated except now to calculate

voltage, only the base-emitter voltage drop across transistor Q1 is taken into

account.

V r2=V −V be1 (5.4)

V r2=5−1.8=3.2V

Completing equation 5.2:

R2=
3.2
.015

=213.3Ω

The closest standard resistor value plus an additional margin is a 300 Ω

resistor which is used.

Resistor R3 is used to supply the 28 volts at the base of transistor Q2.

The only requirement for resistor R3 is that is must be at a high enough

23

value. If the value is too low, there would be enough current flow to both

resistor R2 and to prevent transistor Q2 from fully turning on. The general

technique is to make resistor R3 at least an order of magnitude greater than

R2. As an extra margin a safely for this circuit, roughly two orders of

magnitude are used for resistor R3. Therefore resistor R3 is using a 2.2k Ω

resistor.

5.2Position Select Component Design

Position selection design is much simpler than switch selection. Because

the position selection is downstream of the coil, only a low side switch

concept is required. Only a NPN transistor with a current limiting base

resistor is required to activate the return side of the circuit. However, there

are two versions of the return side: The first is when activating a single coil

to move to a particular switch position. This requires the use of only one coil.

The second is when activating the six return coils. This pathway requires

different components.

5.2.1Single Coil Low Side Switching

As mentioned previously, a single coil requires 125 mA to activate.

NPN transistor TIP31 has been selected to be used as transistors Q3 due to

high tolerance levels and gain value. The following are the calculations to

calculate values for resistor R4. Using equation 5.1, the following values are

determined:

I b=
I c

H fe

=
0.125
10

=.0125 A

This value means that it will take 0.0125 amps to drive transistor Q3 to

saturation. Since this current comes directly from the microcontroller, it is

not always a precise value. Therefore a safety factor of 2 shall be included

24

to guarantee that 12.5 mA is sunk to ground. Therefore Ib = .025 amps.

Using equation 5.4, the voltage across resistor R4 can be calculated.

V r4=V−V be=5−1.8=3.2V

Using equation 5.2:

R4=
V r4

I r 4

=
3.2
.025

=128Ω

The closest standard resistor value is a 120 Ω resistor which is used.

5.2.2Return Coil Low Side Switching

In section 5.1, it was determined that 0.75 amps were required to

activate all six return coils at once. Therefore while the equations and

concepts are the same as section 5.2.1, a different transistor is required. In

section 5.2.1, only 25 mA were required to saturate the transistor. The

microcontroller is able to output 40 mA, so there is no issue. However, if a

TIP31 is used for return coil low side switching, it would require a 150 mA

pulse from the microcontroller. Since this is not possible, a different power

transistor with a higher gain must be used. For this project, the TIP120 was

selected because of its higher gain value. The TIP120 is an NPN Darlington

Transistor. A Darlington Transistor is essentially two transistors together to

increase the current gain. Below is a figure of critical information about the

TIP120:

25

TIP120 Critical Data
VCE

O

Maximum Collector-Emitter
Voltage 60

IC
Maximum Collector Current
(amps) 5

HFE Minimum DC Current Gain
100

0

VCE

Collector-Emitter Saturation
Voltage 2

VBE Base-Emitter Saturation Voltage 2.5

Figure 5.2.2-1: Critical TIP120 Transistor Data

Following the same calculations as section 5.2.1:

I b=
I c

H fe

=
0.75
1000

=.00075 A

A factor of safely of two is added to the current is included. Therefore Ib = .

0015 amps. Using equation 5.4, the voltage across resistor R4 can be

calculated.

V r4=V−V be=5−2.5=2.5V

Using equation 5.2:

R4=
V r4

I r 4

=
2.5

.0015
=1666.6́Ω

The closest standard resistor value is a 1.6k Ω resistor which is used.

The final component in the Switch Drive Matrix Circuit is the bi-directional

zener diode D1. A snubber diode is required across all inductive loads. In

the case of this project, the activation coils are inductive loads. If a snubber

26

diode is present, the current will loop through the coil and dissipate through

the magnetic field. If a snubber diode is not present parallel of an inductive

load, and current is pulsed through the load; the voltage across the inductive

load will begin to rise to a point of damaging components. For this project,

the TIP31 and TIP32 transistors will break if over 40 volts are placed across

the collector. However, since the low side of all the switches are tied

together, a standard diode would cause other switches to have unwanted

activations.

The bi-directional zener diode, also known as a transient voltage

suppressor, is a semiconductor device that does not let current pass in any

direction unless a certain voltage level is reach. Once that voltage is

reached, the diode will break down and let current pass until the voltage is

reduced. In this case, the bi-directional zener diode is set to break down at

36 volts. A 1.5KE36CA transient voltage suppressor is used in this design.

The concept is that when the inductive coil voltage rises and hits 36 volts,

the zener diode will break down and let current pass through back to the coil

and dissipate itself. 36 volts was chosen because the switch coils only

activate within a voltage pulse from 24 to 30 volts and will not activate at 36

volts, but leave enough margin of safety to protect the electrical components

that break at 40 volts.

See Appendix C for the schematic of the entire Switch Drive Matrix

Circuit, including the different pathways. The Switch Drive Matrix is easily

expandable to include additional switches. Adding an extra switch would

only require adding two transistors and three resistors as the low side

switching components are shared between all switches.

27

6.0 TELEMETRY CIRCUIT

The telemetry circuit provides real time status updates of all switch

positions. The circuit is divided into two parts: switch position telemetry and

an LCD Display.

6.1SWITCH TELEMETRY

Switch position is provided by internal wiring in each switch. As shown in

Appendix B, there is a telemetry wire that runs through the switch. Similar to

the command terminals, there is a common telemetry terminal and six

position terminals. When the switch is in an open position, relays for the

individual positions are open. This breaks continuity through the telemetry

wire. When a switch has been placed in a particular position, the

corresponding telemetry relay is closed which provides electrical continuity

through the telemetry wire. See Figure 6.1-1 below for a switch telemetry

diagram.

28

Figure 6.1-1: Switch Telemetry Diagram

To be able to read whether a telemetry relay is closed or open, the

microcontroller is programmed to read the positions. The microcontroller

digital and analog input pins are able to read voltage readings between zero

and five volts. To prevent floating values for each of the microcontroller

input pins, a pull up resistor to five volts to used. This allows the input pin to

read a high (+5V) state. The advantage of using an Arduino Microcontroller

is that the ATmega2560 chip has internal 20k Ω pull up resistor that can be

activated via software. The telemetry common terminal is wired to the

Arduino ground pin.

When a telemetry relay is closed, a path to ground is created. This pulls

the microcontroller input pin to a low (0V) state. The programming, which is

described in more detail in Section 11 reads all of the switch position states

29

and determines which pins read a high or a low state and is assigned to a

particular switch position.

6.2DISPLAY

There are two ways for the user to determine current switch positions.

The first is through the General User Interface (GUI) by sending SCPI

commands, or through an LCD screen on the front of the unit that displays all

current switch positions. This section focuses on the design of the latter.

The GUI is described in greater detail in Section 11.

The LCD screen used in this project is a Sparkfun Serial Enabled 16x2

LCD screen. The screen displays red on black characters and is controlled

via a 5V TTL serial input. The below figure is an image of the LCD screen

used for this project.

30

 Figure

6.2-1: Sparkfun LCD Screen

Source: https://www.sparkfun.com/products/9394
Creative Commons images are CC BY-NC-SA 3.0

Photo taken by Juan Peña

The LCD screen is controlled via three pins: a power pin, a ground pin,

and a receive pin. The power pin is wired up to the microcontroller +5 volt

pin. This provided the LCD screen the voltage and current for the LCD

backlight. The ground pin is wired to the microcontroller ground pin to

ground the power supply of the LCD screen. The receive pin is wired to a

microcontroller digital output pin. This pin controls the characters on the

LCD screen. The Sparkfun screen uses standard Arduino code serial libraries

which make the device easy to incorporate. See the figure below for a wiring

diagram of the LCD display.

31

Figure 6.2-2: LCD Wiring Diagram

Switch position telemetry is displayed on the first row of the LCD display.

Since the LCD screen does not require a delay between displaying values,

switch position telemetry is displayed as real time values for the user.

The second row of the LCD display is reserved for displaying the last SCPI

command sent and the heartbeat of the system. As mentioned previously,

the microcontroller is commanded via SCPI protocol. The user can send SCPI

commands to either control the switch or request telemetry. Section 11 will

describe the SCPI protocol used in this project. The LCD screen displays the

last SCPI command sent to system starting on the first position of the second

line of the screen. The heartbeat display feature will also be discussed in

Section 11.

See Appendix D for a full schematic of the telemetry circuit. It includes

wiring for the four switches used and the LCD display.

32

7.0 INTERFACE CIRCUIT

The Interface Circuit is broken up into two major parts. The first part is

an interface cable that connects the 25 pin male D-SUB connector on the aft

end of the Radiall Switch to a 26 pin ribbon connector. A 26 pin ribbon

connector is used because the Interface Circuit is built on a 0.1” prototype

circuit board, and the ribbon connector mates with this spacing. The cable

itself has a 25 pin female D-SUB connector and a 26 pin female ribbon cable

connector. See Figure 7-1 below for an image of the interface cables used.

 Figure 7-1: Interface Cable

The second part of the Interface Circuit is the board itself. The board

routes all telemetry and command wires from the switches to the appropriate

command and telemetry circuits. This organizes the harness wiring to aid in

building and any required troubleshooting.

33

In addition, all return command paths are equipped with a 1N4007 diode

in line to the ground to prevent current leakage and unwanted stray switch

actuations.

For the full Interface Circuit Schematic, see Appendix E for a detailed

view of command and telemetry wire routing.

8.0 POWER REGULATION CIRCUIT

Power for the Switch Matrix uses the following scheme. AC Voltage

enters through a Qualtex 862-06/002 EMI Power Line Filter. The filter has an

IEC connector for AC voltage wired in series with a fuse and an on/off power

switch. On the output of the filter, the ground line is connected to the Switch

Matrix chassis ground, and the hot AC lines are wired into an Acopian AC to

28V DC Power Converter. This converter is supplied by SSL. The 28V

converter supplies the required voltage to actuate the Radiall switches.

However the microcontroller requires an input voltage between 4 and 12

volts.

In this instance, 9 volts was selected to power the microcontroller. A

minimum of 7 volts is required to output a stable 5 volts on the digital output

pins. To achieve a stable 9 volt supply to the microcontroller, a NJM78M09FA

Voltage regulator is used. This voltage regulator can input a maximum of 35

volts and outputs 9 volts at a maximum of 500 mA.

A voltage regulator requires an input capacitor and an output capacitor.

The input capacitor prevents oscillation and reduces the power supply ripple.

An input capacitor of 0.33 mF is wired between the 28V input and ground.

The output capacitor aids phase compensation of the internal error amplifier

of the regulator. An output capacitor of 0.1 mF is wired between the 9 volt

output and ground. Below is a schematic of the 9V power regulation circuit.

34

A full schematic of the power scheme used for this Switch Matrix can be

found in Appendix F.

 Figure 8-1: 9 Volt Power Regulation Circuit

An additional consideration to take into account is the heat generated

from the voltage regulator. Power generated is equal to the voltage times

the current.

P=V∗I (8.1)

In the case of a voltage regulator, the voltage is the voltage delta

between the input and the output of a voltage regulator. The nominal

current draw of the microcontroller is 250 mA. However the regulator can

output up to 500 mA. The minimum and maximum power dissipated is as

follows:

PMIN=(28−9)∗0.25=4.75Watts

35

PMAX=(28−9)∗0.5=9.5Watts

Therefore, worst case, the voltage regulator will have to dissipate 9.5

watts. This is much more than the regulator can dissipate on its own.

Therefore, a large heat sink was mounted and thermal paste was applied to

the voltage regulator to aid in the heat dissipation. The figure below is an

image of the built 9 volt power regulator with its attached heat sink.

 Figure 8-2: Built 9 Volt Power Regulation Circuit with Heat sink

36

9.0 WATCHDOG CIRCUIT

A Watchdog Circuit provides a failsafe to circuits and microcontrollers.

 For systems such as this Switch Matrix, that is required to be on for days or

months without failure, a watchdog circuit is required. The Watchdog Circuit,

in this instance, works by resetting the microcontroller if the microcontroller

becomes unresponsive. The concept works that when the microcontroller is

working properly, it regularly “pats” the watchdog circuit. If the

microcontroller fails or the code becomes stuck, the microcontroller is unable

to “pat” the circuit. After a set amount of time, the Watchdog Circuit will

automatically reset the microcontroller to a desired state. See Figure 9-1 for

a concept diagram of the Watchdog Circuit.

37

Figure 9-1: Watchdog Circuit Concept

For this Watchdog Circuit, a 555 timer is used. A 555 timer is an

integrated circuit that is used in this application in astable operation mode.

The output of the 555 timer is tied to the reset pin on the microcontroller. A

capacitor (C1) begins to charge through two resistors (R1 and R2) from the

microcontroller 5 volt pin. Once the capacitor reaches 3.33 Volts which is 2/3

of the supply voltage, the 555 timer pulls down the output pin and

discharges the capacitor through resistor R2. While the output pin is pulled

low, this resets the microcontroller. Once the capacitor discharges to 1/3 of

the supply voltage, the output pin is returned to a high position and begins

the charge cycle over again.

38

To “pat” the Watchdog Circuit, the microcontroller pulls down a digital

output pin to sink current from the capacitor through a resistor (R3) and

prevents the capacitor to charge to 2/3 of the supply voltage and reset the

microcontroller. The length of time it takes to charge and discharge the

capacitor is determined by the size of capacitor (C1) and both resistors (R1

and R2). For this project, the Watchdog Circuit was sized to reset the

microcontroller after 15 seconds without a “pat” with a 100ms pulse to the

reset pin. 15 seconds was choose because it was noted that the

microcontroller took roughly 8 seconds to fully boot up before the watchdog

programming module began. 15 seconds gave a factor of safety without

having the microcontroller be unresponsive for too long. The reset pulse was

chosen to be 100ms to allow for the microcontroller to fully reset. Below are

the required Watchdog timing equations.

TCHARGE=0.67∗(R1+R2)∗C 1 (9.1)

T DISCHARGE=0.67∗R2∗C 1 (9.2)

A 100µF capacitor was used for capacitor C1. The following standard

resistor sizes were selected to as closely match the targeted 15 second

TCHARGE and the 100ms TDISCHARGE; where R1 is 200k Ω and R2 is 1.3k Ω. Solving

equations 9.1 and 9.2 give a TCHARGE of 13.5 seconds and TDISCHARGE of 90ms.

In addition to the components previously defined, the following are

components added to protect the microcontroller from voltage fluctuations

and current spikes. For C2, a 10nF capacitor is added between control

voltage 555 timer pin and ground to reduce noise to prevent false triggers of

the reset pin. A 1N4148 Diode is in line from the reset pin to the 555 timer

output pin to protect the reset pin of the microcontroller. A 560 Ω resistors is

used for R3 to sink the current from the capacitor while the microcontroller

39

“pats” or discharges the Watchdog Circuit. The below figure is the Watchdog

Circuit built in the circuit board.

Figure 9-2: Watchdog Circuit

See Appendix G for a full schematic of the Watchdog Circuit design.

40

10.0SWITCH MATRIX FEATURES

10.1 EMERGENCY SAFING

One of the electrical requirements for the Switch Matrix is to provide the

user an emergency safe button. The concept is that in case of an issue or if

the user wishes to stop all RF transmissions, a button on the Switch Matrix

can be pressed.

To do this, a normally closed switch button is used. The button is in line

between the +5 volts from the microcontroller to an input pin on the

microcontroller. In addition, a 10k Ω pull down resistor is installed from the

input pin to ground. When the button is not pressed, the input pin reads the

+5 volts. However, when the button is pressed, the path to +5 volts is

broken and the input pin is pulled low via the pull down resistor. The wiring

of the emergency safe button can be seen in Appendix J.

When the microcontroller reads the input pin as pulled low, it directs the

program to the EmergencySafeCode module in the code. In this module, the

code displays that the Switch Matrix is now safing via the LCD display. Then

each switch in the matrix is returned to the open position and prevents any

RF signals to pass through the switches. Each switch is pulsed individually in

order due to the lack of current to pulse all switches open simultaneously. To

prevent the transistors from overheating, a one second delay is added to

allow time for the system to cool down in case the operator holds the button

down for prolong periods of time. At the end of the safing sequence, the LCD

displays that the system is now safe.

The below figure is an image of the LCD display prior to the emergency

safe button being pressed. The button is located on the bottom right of the

image.

41

Figure 10.1-1: Emergency Safe Before

The below figure is an image of the LCD display after the emergency

safe button has been pressed. Note that now the switch positions now read

“0’ which is the open position for the switches.

Figure 10.1-2: Emergency Safe After

10.2 EXTERNAL RESET BUTTON

An external reset button is provided to the user in the event the operator

wishes to reset the microcontroller in the Switch Matrix. The ATmega2560

42

microcontroller is equipped with a reset button located on the

microcontroller. However this is not reachable to the operator without

disassembling the unit. Instead, an external normally open switch button is

used. The microcontroller has a reset pin that if pulled to ground, will reset

the microcontroller. Therefore the button is wired inline between the reset

pin and ground. The button is placed in the back of the switch matrix near

the power switch. The button is mounted to the unit and can be accessed

via a small hole in the unit.

10.3 SWITCH ACTIVATION COUNTER

The electrical mechanical switches that are used in this Switch Matrix are

rated to two million actuations per position. While this is a large number, the

Switch Matrix is expected to be used for spacecraft testing for many years.

 Therefore a switch activation counter is required to keep track of the

number of activations per switch position commanded for each switch.

For the microcontroller to retain the number of switch actuations

between power cycles, the number must be written to the EEPROM of the

microcontroller. The ATmega2560 microcontroller has 4 KB of memory for

EEPROM. Nominally, when writing to the EEPROM, you can only save a

number from 0 to 255. Since this problem requires writing numbers up to at

least two million, this is insufficient. To bypass this limitation, a library titled

EEPROMAnything was implemented which increases the amount of bytes can

be used to generate a number above the standard 1 byte which only allows a

number from 0 to 255. The library automatically reads and writes to the

required number of bytes. For this project, each switch positions was

allocated 5 bytes of EEPROM memory, which means each counter can count

to over a trillion. These parameters are more than sufficient for this

feasibility study, knowing that the read / write capabilities of the EEPROM

memory is less. See Appendix H for the EEPROMAnything library.

43

Each time a switch is commanded to a particular position, the program

will read the activation counter for the switch position, add one and write the

new value back to EEPROM memory. To access the counter telemetry, see

Section 11 for commands and telemetry for the switch activation counter.

11.0PROGRAMMING DEVELOPMENT

11.1 STANDARD COMMANDS FOR PROGRAMMABLE INSTRUMENTS

The Switch Matrix is commanded using the Standard Commands for

Programmable Instruments (SCPI) protocol. SCPI was developed in 1990 and

is the standard syntax for all test equipment and instruments for

commanding. With a standard set of commands, it is easy to interface many

different instruments to each other, and the Switch Matrix is no exception.

 For this project, SCPI commands are broken into two section; commands to

actuate switches and commands to receive telemetry. The below two figures

are a list of all SCPI commands that are available to the Switch Matrix and

their function.

44

Commands for Switch
Actuations

Commands for Switch
Actuations

SCPI
Command Output

SCPI
Command Output

S(1,1)
Activate

Switch 1 to
Position 1

S(3,1)
Activate

Switch 3 to
Position 1

S(1,2)
Activate

Switch 1 to
Position 2

S(3,2)
Activate

Switch 3 to
Position 2

S(1,3)
Activate

Switch 1 to
Position 3

S(3,3)
Activate

Switch 3 to
Position 3

S(1,4)
Activate

Switch 1 to
Position 4

S(3,4)
Activate

Switch 3 to
Position 4

S(1,5)
Activate

Switch 1 to
Position 5

S(3,5)
Activate

Switch 3 to
Position 5

S(1,6)
Activate

Switch 1 to
Position 6

S(3,6)
Activate

Switch 3 to
Position 6

S(1,7)
Return Switch

1 to OPEN
Position

S(3,7)
Return Switch

3 to OPEN
Position

S(2,1)
Activate

Switch 2 to
Position 1

S(4,1)
Activate

Switch 4 to
Position 1

S(2,2)
Activate

Switch 2 to
Position 2

S(4,2)
Activate

Switch 4 to
Position 2

S(2,3)
Activate

Switch 2 to
Position 3

S(4,3)
Activate

Switch 4 to
Position 3

S(2,4)
Activate

Switch 2 to
Position 4

S(4,4)
Activate

Switch 4 to
Position 4

S(2,5)
Activate

Switch 2 to
Position 5

S(4,5)
Activate

Switch 4 to
Position 5

S(2,6)
Activate

Switch 2 to
Position 6

S(4,6)
Activate

Switch 4 to
Position 6

S(2,7)
Return Switch

2 to OPEN
Position

S(4,7)
Return Switch

4 to OPEN
Position

45

Figure 11.1-1: Commands for Switch Actuations

46

Commands for Switch Matrix Telemetry
SCPI

Command
Description Output

*IDN?

Displays
Identification and
version of Switch

Matrix

SSL,LCU/Switch Matrix,Prototype,A1.00

S1?
Displays Switch 1
telemetry Position

Integer from 0 to 6. Where 0 is OPEN
position

S2?
Displays Switch 2
telemetry Position

Integer from 0 to 6. Where 0 is OPEN
position

S3?
Displays Switch 3
telemetry Position

Integer from 0 to 6. Where 0 is OPEN
position

S4?
Displays Switch 4
telemetry Position

Integer from 0 to 6. Where 0 is OPEN
position

T1?
Displays Activation
Counter of Switch 1

Six integers, delimited by a comma (,)
where each integer is the

corresponding position's counter

T2?
Displays Activation
Counter of Switch 2

Six integers, delimited by a comma (,)
where each integer is the

corresponding position's counter

T3?
Displays Activation
Counter of Switch 3

Six integers, delimited by a comma (,)
where each integer is the

corresponding position's counter

T4?
Displays Activation
Counter of Switch 4

Six integers, delimited by a comma (,)
where each integer is the

corresponding position's counter

Figure 11.1-2: Commands for Switch Matrix Telemetry

11.2 CODE LOGIC

The Sparkfun ATmega2560 Microcontroller is programmed in the Arduino

Programming Language. The Arduino Programming Language is based off of

C++ and can be expanded through the standard C++ libraries. The

structure of an Arduino Code is broken into three sections: Initialization,

Setup, and Loop.

47

Initialization

During the initialization phase of the code, the building blocks of the

Switch Matrix program are defined. First the libraries used are defined. This

program calls the following libraries:

 Ethernet.h & SPI.h are called to initialize the Arduino Ethernet shield

and provide Ethernet access
 SoftwareSerial.h is used to drive the LCD display as defined in Section

6.2
 EEPROM.h and EEPROMAnything.h is used to read and write to the

EEPROM memory as defined in Section 10.3.

In addition, the initialization phase defines and maps the

microcontroller pins to variable names, defines the variables used, and

configures the Ethernet connection.

Setup

During the setup section, each microcontroller pin is defined as an

input or an output pin. The Ethernet client begins and connects to the

router, and the LCD display is initialized.

Loop

The loop section of the code is where the Switch Matrix is controlled. The

loop section is broken down into four modules that loop indefinitely. Once

each module has completed its designed task, the program will move to the

next module. Once the last module has completed its task, the first module

will begin again. The four modules are as follows:

 CheckforClient
 TelemetryCode

48

 EmergencySafeCode
 Watchdog

The CheckforClient module checks to see if the user has input any

commands to the Switch Matrix. If no commands are seen, the module ends

and moves to the next module. If the module sees a command from the

user, the command is broken down into the individual characters and enters

a state machine. If the command is equal to one of the commands as

defined in Figures 11.1-1 and 11.1-2 it enters a predetermined function and

performs its action. If the input from the user does not match any defined

command, it ignores the input and clears the client. The following are the list

functions and their output:

 SCPI_IDENTITY: This function displays the identification and version of

the Switch Matrix to the user
 SCPI_Telemetry: This function displays the desired switch position

telemetry to the user
 EEPROMCounterRead: This function reads the position counters of the

desired switch and displays each position counter values delimited by

a comma.
 ExecuteCommand: This function drives the desired switch to the

desired position. In addition, it increments the EEPROM counter for the

respective position.

 The TelemetryCode module reads all of the current switch positions and

displays the positions to the LCD display. This provides a real-time telemetry

positions to the LCD display.

The EmergencySafeCode module checks to see if the emergency safe

button is pressed. If it button is not pressed, the program continues to the

next module. If the button is pressed, it actives all of the switches and

49

returns them to a safe configuration. See Section 10.1 for more information

on the emergency safing.

The Watchdog module has two functions. This first is to pull down the

watchdog pin to discharge the capacitor in the watchdog circuit. This “pats”

the watchdog circuit. Once the “pat” is complete, it returns the watchdog

pin to a high position to allow the capacitor to continue charging. The

second function of the Watchdog module is to display a heartbeat on the LCD

display. This gives the user a visual cue that the Switch Matrix is functional.

 The heartbeat blinks at rate of about 1 beat per second. This rate is

arbitrary, and is only show alive status.

The figure below is a flowchart of the Switch Matrix program. See

Appendix I for the entire code used for the Switch Matrix.

50

Figure 11.2-1: Switch Matrix Program Flowchart

11.3 GENERAL USER INTERFACE

To provide the user with a clean and professional interface and to reduce

the chance of incorrect commands being sent, a General User Interface (GUI)

was created. The GUI was created by Paul Trainer at SSL. The GUI allows the

operator to select which position they desire via a drop down menu. Once

the switch position is selected, the operator presses the “Execute” button.

 The GUI sends the desired switch actuation command to the Switch Matrix

code and pulls the switch position telemetry and the actuation counter for

the commanded switch from the code and displays it on the GUI. Once the

command has been executed, the “Execute” button will turn from green to

red to give the user a visual cue that the command has been sent. In

addition, an Identity Test button is offered to the user which pulls the identity

and version of the Switch Matrix in use. See Figure 11.3-1 below for a

screenshot of the Switch Matrix GUI. Figure 11.3-2 shows a block diagram to

represent the switch positions called out per Figure 11.3-1.

51

Figure 11.3-1: Switch Matrix GUI

52

Figure 11.3-2: Switch Position Block Diagram

53

12.0MECHANICAL INTEGRATION

At this point, all electrical design has been completed. This section

covers the building and mechanical integration of the Switch Matrix

12.1 SWITCH MATRIX WIRING

All of the previously designed circuits must be built and wired. To do this,

a prototype board with 0.1” spacing is used to hold all of the components.

 Each component is soldered into place to prevent components from

loosening. Then each wire is installed by hand via the wire wrap method.

 Wire wrapping is used because it provides easier troubleshooting if an issue

arises during the build. In total, over 220 wires are installed on the circuit

boards. See Appendix J for a schematic of all wiring used for all circuits for

this project. The below figure is an image taken of the bottom of the

prototype board which shows some of the wires installed.

54

Figure 12.1-1: Switch Matrix Wiring Image

12.2 UNIT DESIGN

The unit that houses the electronics and switches is a 2U 19” chassis that

is compatible to mount to a standard rack. To allow for component

mounting, the front plate and back plate were machined and the front plate

55

was painted. See Appendix K for the CAD file of the Front Plate and

Appendix L for the CAD file of the Back Plate.

The front plate was machined with openings for two of the switches, the

LCD display and mounting holes, emergency safe button, and two coax cable

ports. Each coax cable port provides an interface from the switch’s common

RF pathway port to the inside of the Switch Matrix unit.

The back plate was machined with openings for two of the switches, the

Ethernet Port, the power line filter, the external reset button, and three coax

cable ports. Two of the coax cable ports provide an interface from the inside

of the Switch Matrix unit to the switch’s common RF pathway port. The third

is to provide an RF test device interface.

The switches and coax cable ports were machined in line and equal

distance from each other. This allows for equal cable distances between the

switches. This improves RF performance and repeatability.

12.3 SYSTEM INTEGRATION

To fully integrate the system, the electrical components were mounted to

the unit. The circuit boards, the power supply, and the power regulator were

mounted to the bottom of the unit. The switches were held down by U-

brackets which were also mounted to the bottom of the unit. The below

figure is an image of the Switch Matrix with all components fully integrated.

56

Figure 12.3-1: Switch Matrix Fully Integrated

57

13.0CONCLUSION

In this project, a fully functional and reliable RF Switch Matrix was

designed and integrated used COTS components. The Switch Matrix is able

to direct RF signals up to 40GHz with nominal repeatability and low insertion

loss. The Switch Matrix is programmed in a robust way and uses SCPI

protocol which can be interfaced easily by different systems. The unit can be

operational for months at a time due to the implementation of a watchdog

circuit and emergency safing features.

This project successfully passed the feasibility study at SSL and will now

set the precedent and be the archetype for all future SSL built RF Switch

Matrices. Not only was this Switch Matrix built for a fraction of the price as a

competitor’s switch matrix, it also has the ability to be expanded with

additional RF pathways and features.

See the figure below for the final fully built and integrated image of the

SSL Radio Frequency Switch Matrix.

58

Figure 13-1: Finished Switch Matrix

59

REFERENCES

[1] Assal, F.T.; Gupta, R.; Betaharon, Khodadad; Zaghloul, A.I.; Apple, J., "A

Wide-Band Satellite Microwave Switch Matrix for SS/TDMA Communications,"

IEEE Journal on Selected Areas in Communications, vol.1, no.1, pp.223-231,

January 1983

doi: 10.1109/JSAC.1983.1145897

[2] Gupta, R.; Assal, F.; Hampsch, T., "A microwave switch matrix using

MMICs for satellite applications," Microwave Symposium Digest, 1990, IEEE

MTT-S International, vol.2, pp.885-888, 8-10 May 1990

doi: 10.1109/MWSYM.1990.99720

[3] U-yen, K.; Lu Dong; Kenney, J.S., "A low-loss high-reliability microwave

switch matrix for smart antenna systems," Microwave Symposium Digest,

2004 IEEE MTT-S International, vol.2, pp.1125-1128, 6-11 June 2004

doi: 10.1109/MWSYM.2004.1339183

[4] Daneshmand, M.; Mansour, R.R., "C-type and R-type RF MEMS Switches

for Redundancy Switch Matrix Applications," Microwave Symposium Digest,

2006. IEEE MTT-S International, pp.144-147, 11-16 June 2006

doi: 10.1109/MWSYM.2006.249415

[5] Voudouris, K.; Athanasopoulos, N.; Meir, A.; Manor, D.; Tsiakas, P.;

Georgas, I.; Petropoulos, I.; Agapiou, G., "2x2 Switch Matrix for WiMAX Relay

Station Applications," Microwave and Wireless Components Letters, IEEE ,

vol.21, no.8, pp.424-426, Aug. 2011

doi: 10.1109/LMWC.2011.2158532

60

[6] Kaleem, S.; Humbla, S.; Rentsch, S.; Trabert, J.; Stopel, D.; Muller, J.; Hein,

M.A., "Compact Ka-band reconfigurable switch matrix with power failure

redundancy," 2012 The 7th German Microwave Conference (GeMiC), pp.1-4,

12-14 March 2012

[7] Chan, E.; Daneshmand, M.; Mansour, R.R.; Ramer, R., "Monolithic crossbar

MEMS switch matrix," Microwave Symposium Digest, 2008 IEEE MTT-S

International, pp.129-132, 15-20 June 2008

doi: 10.1109/MWSYM.2008.4633120

[8] Sinha, S.; Bansal, D.; Rangra, K.J., "RF MEMS compact T-type switch

design for switch matrix applications in space telecommunication," 2012

International Conference on Advances in Engineering, Science and

Management (ICAESM), pp.130-135, 30-31 March 2012

[9] Siew, E.; King Yuk Chan; Ramer, R.; Dzurak, A., "Design of a RF NEMS

switch matrix," Antennas and Propagation (APSURSI), 2011 IEEE

International Symposium, pp.12-15, 3-8 July 2011

doi: 10.1109/APS.2011.5996369

[10] Agilent Technologies, “Agilent RF/Microwave Switching Solutions,”

Agilent Technologies, USA, 2008, Print

[11] Agilent Technologies, “Agilent's Payload RF Test Solution,” Agilent

Technologies, USA, 2011, Print

[12] Agilent Technologies, “Agilent Custom Switch Matrices,” Agilent

Technologies, USA, 2001, Print

[13] Agilent Technologies, “Agilent Switch Matrix - Product Overview,” Agilent

Technologies, USA, 2009, Print

61

62

APPENDICES

63

APPENDIX A: System Overview Drawing

64

APPENDIX B: R583833250 Internal Switch Schematic

65

APPENDIX C: Switch Drive Matrix Schematic

66

APPENDIX D: Telemetry Circuit Schematic

67

APPENDIX E: Interface Circuit Schematic

68

APPENDIX F: Power Regulation Circuit Schematic

69

70

APPENDIX G: Watchdog Circuit Schematic

71

72

APPENDIX H: EEPROMAnything Library

#include <EEPROM.h>
#include <Arduino.h> // for type definitions

template <class T> int EEPROM_writeAnything(int ee, const T& value)
{
 const byte* p = (const byte*)(const void*)&value;
 unsigned int i;
 for (i = 0; i < sizeof(value); i++)
 EEPROM.write(ee++, *p++);
 return i;
}

template <class T> int EEPROM_readAnything(int ee, T& value)
{
 byte* p = (byte*)(void*)&value;
 unsigned int i;
 for (i = 0; i < sizeof(value); i++)
 *p++ = EEPROM.read(ee++);
 return i;
}

73

APPENDIX I: Switch Matrix Program

//......LCU / SWITCH MATRIX CODE..........//
//......Author........Zack Pirkl......................//

//....CONTAINS THE FOLLOWING FEATURES:....//
//..........Controls 4 Switches...............................//
//..........Ethernet Commanding..........................//
//..........LCD Display...//
//..........Watchdog (Heartbeat Monitor)……….//
//..........EEPROM Activation Counter..............//

///
////////// COMMANDING DIRECTIONS /////////
////////////// PuTTY ////////////////
////////// IP Address: 192.168.0.77 /////////////
///////////// Port 23 (Telnet) //////////////
//// S(a,b) Where a = SwSelect, b = SwPos /////
//
////////// Switch Position Telemetry ////////////
//////////// Sa? Where a = SwSelect ///////////
///
////// Activation Counter TLM Directions ///////
/////////// Ta? Where a = SwSelect ////////////
///

//Define Libraries
#include <Ethernet.h>
#include <SPI.h>
#include <SoftwareSerial.h>
#include <EEPROM.h>
#include "EEPROMAnything.h"

//Define Switch Position Arduino Pins
#define Pos1 34
#define Pos2 35
#define Pos3 36
#define Pos4 37
#define Pos5 38
#define Pos6 39
#define ReturnPos 40

74

//Define Switch Selection Arduino Pins
#define Sw1 30
#define Sw2 31
#define Sw3 32
#define Sw4 33

//Define Switch Telemetry Arduino Pins
#define Sw1Pos1TLM 2
#define Sw1Pos2TLM 3
#define Sw1Pos3TLM 4
#define Sw1Pos4TLM 5
#define Sw1Pos5TLM 6
#define Sw1Pos6TLM 7

#define Sw2Pos1TLM 22
#define Sw2Pos2TLM 23
#define Sw2Pos3TLM 24
#define Sw2Pos4TLM 25
#define Sw2Pos5TLM 26
#define Sw2Pos6TLM 27

#define Sw3Pos1TLM A0
#define Sw3Pos2TLM A1
#define Sw3Pos3TLM A2
#define Sw3Pos4TLM A3
#define Sw3Pos5TLM A4
#define Sw3Pos6TLM A5

#define Sw4Pos1TLM A6
#define Sw4Pos2TLM A7
#define Sw4Pos3TLM A8
#define Sw4Pos4TLM A9
#define Sw4Pos5TLM A10
#define Sw4Pos6TLM A11

//Define Emergency Safe Switch Arduino Pin
#define EmergencySafe A12
int EmergencySafeState = 0;

//Define Watchdog Heartbeat Monitor Arduino Pin
#define WatchdogPin 29

//Define State Machine and Counters
int state, i;

//Define generic Switch Command Variables

75

int SwSelect, SwPos;

//Define Switch Telemtry Values and Initialize.
int Sw1TLM, Sw2TLM, Sw3TLM, Sw4TLM;
int Sw1Pos1TLMstate, Sw1Pos2TLMstate, Sw1Pos3TLMstate,
Sw1Pos4TLMstate, Sw1Pos5TLMstate, Sw1Pos6TLMstate = 0;
int Sw2Pos1TLMstate, Sw2Pos2TLMstate, Sw2Pos3TLMstate,
Sw2Pos4TLMstate, Sw2Pos5TLMstate, Sw2Pos6TLMstate = 0;
int Sw3Pos1TLMstate, Sw3Pos2TLMstate, Sw3Pos3TLMstate,
Sw3Pos4TLMstate, Sw3Pos5TLMstate, Sw3Pos6TLMstate = 0;
int Sw4Pos1TLMstate, Sw4Pos2TLMstate, Sw4Pos3TLMstate,
Sw4Pos4TLMstate, Sw4Pos5TLMstate, Sw4Pos6TLMstate = 0;

//Define EEPROM Write Activation Counter Variables
int SwSelectCounter, SwPosCounter;
int Sw1Pos1Counter, Sw1Pos2Counter, Sw1Pos3Counter, Sw1Pos4Counter,
Sw1Pos5Counter, Sw1Pos6Counter;
int Sw2Pos1Counter, Sw2Pos2Counter, Sw2Pos3Counter, Sw2Pos4Counter,
Sw2Pos5Counter, Sw2Pos6Counter;
int Sw3Pos1Counter, Sw3Pos2Counter, Sw3Pos3Counter, Sw3Pos4Counter,
Sw3Pos5Counter, Sw3Pos6Counter;
int Sw4Pos1Counter, Sw4Pos2Counter, Sw4Pos3Counter, Sw4Pos4Counter,
Sw4Pos5Counter, Sw4Pos6Counter;

//Define LCD Transmit PIN
SoftwareSerial mySerial(42,43); // pin 43 = TX

//
//CONFIGURE ETHERNET
//
byte ip[] = { 192, 168, 0, 77 }; //Manual setup only
//byte gateway[] = { 192, 168, 0, 1 }; //Manual setup only
//byte subnet[] = { 255, 255, 255, 0 }; //Manual setup only

// If need to change the MAC address (Very Rare)
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

EthernetServer server = EthernetServer(23); //Port 23 for Telnet
//
//Pins 10,11,12 & 13 are used by the ethernet shield

void setup()
{
//Define Digital OUTPUT Pins
 pinMode(Pos1, OUTPUT);
 pinMode(Pos2, OUTPUT);

76

 pinMode(Pos3, OUTPUT);
 pinMode(Pos4, OUTPUT);
 pinMode(Pos5, OUTPUT);
 pinMode(Pos6, OUTPUT);
 pinMode(ReturnPos, OUTPUT);

 pinMode(Sw1, OUTPUT);
 pinMode(Sw2, OUTPUT);
 pinMode(Sw3, OUTPUT);
 pinMode(Sw4, OUTPUT);

//Define Digital and Analog INPUT Pins
//Switch 1
 pinMode(Sw1Pos1TLM, INPUT_PULLUP); //Activate Internal Pullup Resistor
 pinMode(Sw1Pos2TLM, INPUT_PULLUP);
 pinMode(Sw1Pos3TLM, INPUT_PULLUP);
 pinMode(Sw1Pos4TLM, INPUT_PULLUP);
 pinMode(Sw1Pos5TLM, INPUT_PULLUP);
 pinMode(Sw1Pos6TLM, INPUT_PULLUP);

//Switch 2
 pinMode(Sw2Pos1TLM, INPUT_PULLUP);
 pinMode(Sw2Pos2TLM, INPUT_PULLUP);
 pinMode(Sw2Pos3TLM, INPUT_PULLUP);
 pinMode(Sw2Pos4TLM, INPUT_PULLUP);
 pinMode(Sw2Pos5TLM, INPUT_PULLUP);
 pinMode(Sw2Pos6TLM, INPUT_PULLUP);

//Switch 3
 pinMode(Sw3Pos1TLM, INPUT_PULLUP);
 pinMode(Sw3Pos2TLM, INPUT_PULLUP);
 pinMode(Sw3Pos3TLM, INPUT_PULLUP);
 pinMode(Sw3Pos4TLM, INPUT_PULLUP);
 pinMode(Sw3Pos5TLM, INPUT_PULLUP);
 pinMode(Sw3Pos6TLM, INPUT_PULLUP);

//Switch 4
 pinMode(Sw4Pos1TLM, INPUT_PULLUP);
 pinMode(Sw4Pos2TLM, INPUT_PULLUP);
 pinMode(Sw4Pos3TLM, INPUT_PULLUP);
 pinMode(Sw4Pos4TLM, INPUT_PULLUP);
 pinMode(Sw4Pos5TLM, INPUT_PULLUP);
 pinMode(Sw4Pos6TLM, INPUT_PULLUP);

//Define Emergency Safe Button Inputs
 pinMode(EmergencySafe, INPUT);

77

delay(2000); //Delay to allow for initialization

 Serial.begin(9600); // Opens serial port, sets data rate to 9600 bps
///NOTE: Serial Monitor is only used for code Troubleshooting///

Serial.println("Start");

Ethernet.begin(mac, ip); //for manual setup. Begins Ethernet Connection
server.begin();
Serial.println(Ethernet.localIP()); //Prints IP address in Serial Monitor

 mySerial.begin(9600); // set up LCD display serial port for 9600 baud
 delay(500); // wait for display to boot up

 //mySerial.write(124); // set LCD Contrast
 //mySerial.write(155); (128 MIN - 157 MAX)

 mySerial.write(254); // cursor to beginning of first line
 mySerial.write(128);

 mySerial.write(" "); // clear display + legends

 mySerial.write(254); // cursor to beginning of second line
 mySerial.write(192);
 mySerial.write(" ");

}

void loop()
{
 CheckForClient(); //Looks for Ethernet Commands; goes to loop
 TelemetryCode(); //Loops TLM Code
 EmergencySafeCode(); //Looks for Emergency Safe Button
 Watchdog(); //'Pats' the Watchdog Heartbeat Monitor and Displays
Heartbeat
 }

void CheckForClient()
{
 EthernetClient client = server.available();

 if (client) {

78

 Serial.println("Connected");

 while (client.connected()) {
 if (client.available()) {
 char c = client.read();

 // command parser is implemented as a simple state machine
 switch (state){
 case 0:
 if (c == '*') {
 SCPI_IDENTITY(); //Goes to SCPI Identity Test Function
 }
 if (c == 'T') {
 EEPROMCounterRead(); //Goes to Switch Activation Counter
Function
 }
 if (c == 'S') state++;
 else { //Reset the State Machine
 state = 0;
 SwSelect = NULL;
 SwPos = NULL;
 return;
 }
 break;
 case 1:
 if (c == '(')

{
state++;
break;
}

 if (c == '1' || c == '2' || c == '3' || c == '4')
{

 SwSelect = c - 48;
 state = 0;

 SCPI_Telemetry(); //Goes to Switch Position GUI Display
Function

}
 else { //Reset the State Machine
 state = 0;
 SwSelect = NULL;
 SwPos = NULL;
 client.flush();
 delay(100);
 return;
 }
 break;

79

 case 2:
 SwSelect = c - 48;
 state++;
 break;
 case 3:
 if ((c == ':') || (c == ',') || (c == '.') || (c == ';')) state++;
 else { //Reset the State Machine
 state = 0;
 SwSelect = NULL;
 SwPos = NULL;
 client.flush();
 delay(100);
 return;
 }
 break;
 case 4:
 SwPos = c - 48;
 state++;
 break;
 case 5:
 if (c == ')') {
 Serial.println("SwSelect:");
 Serial.println(SwSelect);
 Serial.println("SwPos:");
 Serial.println(SwPos);
// client.println("Command Loaded");
// client.println("Selected Switch: ");
// client.println(SwSelect);
// client.println("Position: ");
// client.println(SwPos);
 executeCommand(); //Goes to Command Execute
Function
 state = 0;
 delay(100);
 return;
 }
 else { //Reset the State Machine
 state = 0;
 SwSelect = NULL;
 SwPos = NULL;
 client.flush();
 delay(100);
 return;
 }
 break;
 }

80

 }
 }
 }
}

void executeCommand() { //This function drives all required Arduino Pins to
activate appropriate switch and position

 //Commanding for Switch 1
 if(SwSelect == 1)
 {
 if(SwPos == 1) {
 digitalWrite(ReturnPos, HIGH); //Resets all Switch 1 Positions to OPEN

delay(5);
digitalWrite(Sw1, HIGH);
delay(75);
digitalWrite(Sw1, LOW);
delay(5);
digitalWrite(ReturnPos, LOW);

 delay(250);
 digitalWrite(Pos1, HIGH); //Drives Switch 1 latch to desired Position

delay(5);
digitalWrite(Sw1, HIGH);
delay(75);
digitalWrite(Sw1, LOW);
delay(5);
digitalWrite(Pos1, LOW);

 EEPROM_readAnything(0, Sw1Pos1Counter); //Read EEPROM counter
 Sw1Pos1Counter = Sw1Pos1Counter + 1; //Add +1 to EEPROM
counter
 EEPROM_writeAnything(0, Sw1Pos1Counter); //Write new value to
EEPROM counter

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("S(1,1) "); // write out the CMD
 return;
 }

 if(SwPos == 2) {
 digitalWrite(ReturnPos, HIGH);

delay(5);
digitalWrite(Sw1, HIGH);
delay(75);
digitalWrite(Sw1, LOW);

81

delay(5);
digitalWrite(ReturnPos, LOW);

 delay(250);
 digitalWrite(Pos2, HIGH);

delay(5);
digitalWrite(Sw1, HIGH);
delay(75);
digitalWrite(Sw1, LOW);
delay(5);
digitalWrite(Pos2, LOW);

 EEPROM_readAnything(5, Sw1Pos2Counter);
 Sw1Pos2Counter = Sw1Pos2Counter + 1;
 EEPROM_writeAnything(5, Sw1Pos2Counter);

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("S(1,2) "); // write out the CMD
 return;
 }

 if(SwPos == 3) {
 digitalWrite(ReturnPos, HIGH);

delay(5);
digitalWrite(Sw1, HIGH);
delay(75);
digitalWrite(Sw1, LOW);
delay(5);
digitalWrite(ReturnPos, LOW);

 delay(250);
 digitalWrite(Pos3, HIGH);

delay(5);
digitalWrite(Sw1, HIGH);
delay(75);
digitalWrite(Sw1, LOW);
delay(5);
digitalWrite(Pos3, LOW);

 EEPROM_readAnything(10, Sw1Pos3Counter);
 Sw1Pos3Counter = Sw1Pos3Counter + 1;
 EEPROM_writeAnything(10, Sw1Pos3Counter);

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("S(1,3) "); // write out the CMD
 return;
 }

82

 if(SwPos == 4) {
 digitalWrite(ReturnPos, HIGH);

delay(5);
digitalWrite(Sw1, HIGH);
delay(75);
digitalWrite(Sw1, LOW);
delay(5);
digitalWrite(ReturnPos, LOW);

 delay(250);
 digitalWrite(Pos4, HIGH);

delay(5);
digitalWrite(Sw1, HIGH);
delay(75);
digitalWrite(Sw1, LOW);
delay(5);
digitalWrite(Pos4, LOW);

 EEPROM_readAnything(15, Sw1Pos4Counter);
 Sw1Pos4Counter = Sw1Pos4Counter + 1;
 EEPROM_writeAnything(15, Sw1Pos4Counter);

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("S(1,4) "); // write out the CMD
 return;
 }

 if(SwPos == 5) {
 digitalWrite(ReturnPos, HIGH);

delay(5);
digitalWrite(Sw1, HIGH);
delay(75);
digitalWrite(Sw1, LOW);
delay(5);
digitalWrite(ReturnPos, LOW);

 delay(250);
 digitalWrite(Pos5, HIGH);

delay(5);
digitalWrite(Sw1, HIGH);
delay(75);
digitalWrite(Sw1, LOW);
delay(5);
digitalWrite(Pos5, LOW);

 EEPROM_readAnything(20, Sw1Pos5Counter);
 Sw1Pos5Counter = Sw1Pos5Counter + 1;
 EEPROM_writeAnything(20, Sw1Pos5Counter);

83

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("S(1,5) "); // write out the CMD
 return;
 }

 if(SwPos == 6) {
 digitalWrite(ReturnPos, HIGH);

delay(5);
digitalWrite(Sw1, HIGH);
delay(75);
digitalWrite(Sw1, LOW);
delay(5);
digitalWrite(ReturnPos, LOW);

 delay(250);
 digitalWrite(Pos6, HIGH);

delay(5);
digitalWrite(Sw1, HIGH);
delay(75);
digitalWrite(Sw1, LOW);
delay(5);
digitalWrite(Pos6, LOW);

 EEPROM_readAnything(25, Sw1Pos6Counter);
 Sw1Pos6Counter = Sw1Pos6Counter + 1;
 EEPROM_writeAnything(25, Sw1Pos6Counter);

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("S(1,6) "); // write out the CMD
 return;
 }
//Unlactch Switch to Return Position
 if(SwPos == 7) {
 digitalWrite(ReturnPos, HIGH);

delay(5);
digitalWrite(Sw1, HIGH);
delay(75);
digitalWrite(Sw1, LOW);
delay(5);
digitalWrite(ReturnPos, LOW);

 return;

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("S(1,7) "); // write out the CMD
 }

84

 }

 //Commanding for Switch 2
 if(SwSelect == 2)
 {
 if(SwPos == 1) {
 digitalWrite(ReturnPos, HIGH);

delay(5);
digitalWrite(Sw2, HIGH);
delay(75);
digitalWrite(Sw2, LOW);
delay(5);
digitalWrite(ReturnPos, LOW);

 delay(250);
 digitalWrite(Pos1, HIGH);

delay(5);
digitalWrite(Sw2, HIGH);
delay(75);
digitalWrite(Sw2, LOW);
delay(5);
digitalWrite(Pos1, LOW);

 EEPROM_readAnything(30, Sw2Pos1Counter);
 Sw2Pos1Counter = Sw2Pos1Counter + 1;
 EEPROM_writeAnything(30, Sw2Pos1Counter);

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("S(2,1) "); // write out the CMD
 return;
 }

 if(SwPos == 2) {
 digitalWrite(ReturnPos, HIGH);

delay(5);
digitalWrite(Sw2, HIGH);
delay(75);
digitalWrite(Sw2, LOW);
delay(5);
digitalWrite(ReturnPos, LOW);

 delay(250);
 digitalWrite(Pos2, HIGH);

delay(5);
digitalWrite(Sw2, HIGH);
delay(75);
digitalWrite(Sw2, LOW);
delay(5);

85

digitalWrite(Pos2, LOW);
 EEPROM_readAnything(35, Sw2Pos2Counter);
 Sw2Pos2Counter = Sw2Pos2Counter + 1;
 EEPROM_writeAnything(35, Sw2Pos2Counter);

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("S(2,2) "); // write out the CMD
 return;
 }

 if(SwPos == 3) {
 digitalWrite(ReturnPos, HIGH);

delay(5);
digitalWrite(Sw2, HIGH);
delay(75);
digitalWrite(Sw2, LOW);
delay(5);
digitalWrite(ReturnPos, LOW);

 delay(250);
 digitalWrite(Pos3, HIGH);

delay(5);
digitalWrite(Sw2, HIGH);
delay(75);
digitalWrite(Sw2, LOW);
delay(5);
digitalWrite(Pos3, LOW);

 EEPROM_readAnything(40, Sw2Pos3Counter);
 Sw2Pos3Counter = Sw2Pos3Counter + 1;
 EEPROM_writeAnything(40, Sw2Pos3Counter);

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("S(2,3) "); // write out the CMD
 return;
 }

 if(SwPos == 4) {
 digitalWrite(ReturnPos, HIGH);

delay(5);
digitalWrite(Sw2, HIGH);
delay(75);
digitalWrite(Sw2, LOW);
delay(5);
digitalWrite(ReturnPos, LOW);

 delay(250);

86

 digitalWrite(Pos4, HIGH);
delay(5);
digitalWrite(Sw2, HIGH);
delay(75);
digitalWrite(Sw2, LOW);
delay(5);
digitalWrite(Pos4, LOW);

 EEPROM_readAnything(45, Sw2Pos4Counter);
 Sw2Pos4Counter = Sw2Pos4Counter + 1;
 EEPROM_writeAnything(45, Sw2Pos4Counter);

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("S(2,4) "); // write out the CMD
 return;
 }

 if(SwPos == 5) {
 digitalWrite(ReturnPos, HIGH);

delay(5);
digitalWrite(Sw2, HIGH);
delay(75);
digitalWrite(Sw2, LOW);
delay(5);
digitalWrite(ReturnPos, LOW);

 delay(250);
 digitalWrite(Pos5, HIGH);

delay(5);
digitalWrite(Sw2, HIGH);
delay(75);
digitalWrite(Sw2, LOW);
delay(5);
digitalWrite(Pos5, LOW);

 EEPROM_readAnything(50, Sw2Pos5Counter);
 Sw2Pos5Counter = Sw2Pos5Counter + 1;
 EEPROM_writeAnything(50, Sw2Pos5Counter);

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("S(2,5) "); // write out the CMD
 return;
 }

 if(SwPos == 6) {
 digitalWrite(ReturnPos, HIGH);

delay(5);

87

digitalWrite(Sw2, HIGH);
delay(75);
digitalWrite(Sw2, LOW);
delay(5);
digitalWrite(ReturnPos, LOW);

 delay(250);
 digitalWrite(Pos6, HIGH);

delay(5);
digitalWrite(Sw2, HIGH);
delay(75);
digitalWrite(Sw2, LOW);
delay(5);
digitalWrite(Pos6, LOW);

 EEPROM_readAnything(55, Sw2Pos6Counter);
 Sw2Pos6Counter = Sw2Pos6Counter + 1;
 EEPROM_writeAnything(55, Sw2Pos6Counter);

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("S(2,6) "); // write out the CMD
 return;
 }
//Unlactch Switch to Return Position
 if(SwPos == 7) {
 digitalWrite(ReturnPos, HIGH);

delay(5);
digitalWrite(Sw2, HIGH);
delay(75);
digitalWrite(Sw2, LOW);
delay(5);
digitalWrite(ReturnPos, LOW);

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("S(2,7) "); // write out the CMD
 return;
 }
 }

//Commanding for Switch 3
 if(SwSelect == 3)
 {
 if(SwPos == 1) {
 digitalWrite(ReturnPos, HIGH);

delay(5);
digitalWrite(Sw3, HIGH);

88

delay(75);
digitalWrite(Sw3, LOW);
delay(5);
digitalWrite(ReturnPos, LOW);

 delay(250);
 digitalWrite(Pos1, HIGH);

delay(5);
digitalWrite(Sw3, HIGH);
delay(75);
digitalWrite(Sw3, LOW);
delay(5);
digitalWrite(Pos1, LOW);

 EEPROM_readAnything(60, Sw3Pos1Counter);
 Sw3Pos1Counter = Sw3Pos1Counter + 1;
 EEPROM_writeAnything(60, Sw3Pos1Counter);

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("S(3,1) "); // write out the CMD
 return;
 }

 if(SwPos == 2) {
 digitalWrite(ReturnPos, HIGH);

delay(5);
digitalWrite(Sw3, HIGH);
delay(75);
digitalWrite(Sw3, LOW);
delay(5);
digitalWrite(ReturnPos, LOW);

 delay(250);
 digitalWrite(Pos2, HIGH);

delay(5);
digitalWrite(Sw3, HIGH);
delay(75);
digitalWrite(Sw3, LOW);
delay(5);
digitalWrite(Pos2, LOW);

 EEPROM_readAnything(65, Sw3Pos2Counter);
 Sw3Pos2Counter = Sw3Pos2Counter + 1;
 EEPROM_writeAnything(65, Sw3Pos2Counter);

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("S(3,2) "); // write out the CMD
 return;

89

 }

 if(SwPos == 3) {
 digitalWrite(ReturnPos, HIGH);

delay(5);
digitalWrite(Sw3, HIGH);
delay(75);
digitalWrite(Sw3, LOW);
delay(5);
digitalWrite(ReturnPos, LOW);

 delay(250);
 digitalWrite(Pos3, HIGH);

delay(5);
digitalWrite(Sw3, HIGH);
delay(75);
digitalWrite(Sw3, LOW);
delay(5);
digitalWrite(Pos3, LOW);

 EEPROM_readAnything(70, Sw3Pos3Counter);
 Sw3Pos3Counter = Sw3Pos3Counter + 1;
 EEPROM_writeAnything(70, Sw3Pos3Counter);

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("S(3,3) "); // write out the CMD
 return;
 }

 if(SwPos == 4) {
 digitalWrite(ReturnPos, HIGH);

delay(5);
digitalWrite(Sw3, HIGH);
delay(75);
digitalWrite(Sw3, LOW);
delay(5);
digitalWrite(ReturnPos, LOW);

 delay(250);
 digitalWrite(Pos4, HIGH);

delay(5);
digitalWrite(Sw3, HIGH);
delay(75);
digitalWrite(Sw3, LOW);
delay(5);
digitalWrite(Pos4, LOW);

 EEPROM_readAnything(75, Sw3Pos4Counter);
 Sw3Pos4Counter = Sw3Pos4Counter + 1;

90

 EEPROM_writeAnything(75, Sw3Pos4Counter);

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("S(3,4) "); // write out the CMD
 return;
 }

 if(SwPos == 5) {
 digitalWrite(ReturnPos, HIGH);

delay(5);
digitalWrite(Sw3, HIGH);
delay(75);
digitalWrite(Sw3, LOW);
delay(5);
digitalWrite(ReturnPos, LOW);

 delay(250);
 digitalWrite(Pos5, HIGH);

delay(5);
digitalWrite(Sw3, HIGH);
delay(75);
digitalWrite(Sw3, LOW);
delay(5);
digitalWrite(Pos5, LOW);

 EEPROM_readAnything(80, Sw3Pos5Counter);
 Sw3Pos5Counter = Sw3Pos5Counter + 1;
 EEPROM_writeAnything(80, Sw3Pos5Counter);

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("S(3,5) "); // write out the CMD
 return;
 }

 if(SwPos == 6) {
 digitalWrite(ReturnPos, HIGH);

delay(5);
digitalWrite(Sw3, HIGH);
delay(75);
digitalWrite(Sw3, LOW);
delay(5);
digitalWrite(ReturnPos, LOW);

 delay(250);
 digitalWrite(Pos6, HIGH);

delay(5);
digitalWrite(Sw3, HIGH);

91

delay(75);
digitalWrite(Sw3, LOW);
delay(5);
digitalWrite(Pos6, LOW);

 EEPROM_readAnything(85, Sw3Pos6Counter);
 Sw3Pos6Counter = Sw3Pos6Counter + 1;
 EEPROM_writeAnything(85, Sw3Pos6Counter);

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("S(3,6) "); // write out the CMD
 return;
 }
//Unlactch Switch to Return Position
 if(SwPos == 7) {
 digitalWrite(ReturnPos, HIGH);

delay(5);
digitalWrite(Sw3, HIGH);
delay(75);
digitalWrite(Sw3, LOW);
delay(5);
digitalWrite(ReturnPos, LOW);

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("S(3,7) "); // write out the CMD
 return;
 }
 }

//Commanding for Switch 4
 if(SwSelect == 4)
 {
 if(SwPos == 1) {
 digitalWrite(ReturnPos, HIGH);

delay(5);
digitalWrite(Sw4, HIGH);
delay(75);
digitalWrite(Sw4, LOW);
delay(5);
digitalWrite(ReturnPos, LOW);

 delay(250);
 digitalWrite(Pos1, HIGH);

delay(5);
digitalWrite(Sw4, HIGH);
delay(75);

92

digitalWrite(Sw4, LOW);
delay(5);
digitalWrite(Pos1, LOW);

 EEPROM_readAnything(90, Sw4Pos1Counter);
 Sw4Pos1Counter = Sw4Pos1Counter + 1;
 EEPROM_writeAnything(90, Sw4Pos1Counter);

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("S(4,1) "); // write out the CMD
 return;
 }

 if(SwPos == 2) {
 digitalWrite(ReturnPos, HIGH);

delay(5);
digitalWrite(Sw4, HIGH);
delay(75);
digitalWrite(Sw4, LOW);
delay(5);
digitalWrite(ReturnPos, LOW);

 delay(250);
 digitalWrite(Pos2, HIGH);

delay(5);
digitalWrite(Sw4, HIGH);
delay(75);
digitalWrite(Sw4, LOW);
delay(5);
digitalWrite(Pos2, LOW);

 EEPROM_readAnything(95, Sw4Pos2Counter);
 Sw4Pos2Counter = Sw4Pos2Counter + 1;
 EEPROM_writeAnything(95, Sw4Pos2Counter);

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("S(4,2) "); // write out the CMD
 return;
 }

 if(SwPos == 3) {
 digitalWrite(ReturnPos, HIGH);

delay(5);
digitalWrite(Sw4, HIGH);
delay(75);
digitalWrite(Sw4, LOW);
delay(5);

93

digitalWrite(ReturnPos, LOW);
 delay(250);
 digitalWrite(Pos3, HIGH);

delay(5);
digitalWrite(Sw4, HIGH);
delay(75);
digitalWrite(Sw4, LOW);
delay(5);
digitalWrite(Pos3, LOW);

 EEPROM_readAnything(100, Sw4Pos3Counter);
 Sw4Pos3Counter = Sw4Pos3Counter + 1;
 EEPROM_writeAnything(100, Sw4Pos3Counter);

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("S(4,3) "); // write out the CMD
 return;
 }

 if(SwPos == 4) {
 digitalWrite(ReturnPos, HIGH);

delay(5);
digitalWrite(Sw4, HIGH);
delay(75);
digitalWrite(Sw4, LOW);
delay(5);
digitalWrite(ReturnPos, LOW);

 delay(250);
 digitalWrite(Pos4, HIGH);

delay(5);
digitalWrite(Sw4, HIGH);
delay(75);
digitalWrite(Sw4, LOW);
delay(5);
digitalWrite(Pos4, LOW);

 EEPROM_readAnything(105, Sw4Pos4Counter);
 Sw4Pos4Counter = Sw4Pos4Counter + 1;
 EEPROM_writeAnything(105, Sw4Pos4Counter);

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("S(4,4) "); // write out the CMD
 return;
 }

 if(SwPos == 5) {

94

 digitalWrite(ReturnPos, HIGH);
delay(5);
digitalWrite(Sw4, HIGH);
delay(75);
digitalWrite(Sw4, LOW);
delay(5);
digitalWrite(ReturnPos, LOW);

 delay(250);
 digitalWrite(Pos5, HIGH);

delay(5);
digitalWrite(Sw4, HIGH);
delay(75);
digitalWrite(Sw4, LOW);
delay(5);
digitalWrite(Pos5, LOW);

 EEPROM_readAnything(110, Sw4Pos5Counter);
 Sw4Pos5Counter = Sw4Pos5Counter + 1;
 EEPROM_writeAnything(110, Sw4Pos5Counter);

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("S(4,5) "); // write out the CMD
 return;
 }

 if(SwPos == 6) {
 digitalWrite(ReturnPos, HIGH);

delay(5);
digitalWrite(Sw4, HIGH);
delay(75);
digitalWrite(Sw4, LOW);
delay(5);
digitalWrite(ReturnPos, LOW);

 delay(250);
 digitalWrite(Pos6, HIGH);

delay(5);
digitalWrite(Sw4, HIGH);
delay(75);
digitalWrite(Sw4, LOW);
delay(5);
digitalWrite(Pos6, LOW);

 EEPROM_readAnything(115, Sw4Pos6Counter);
 Sw4Pos6Counter = Sw4Pos6Counter + 1;
 EEPROM_writeAnything(115, Sw4Pos6Counter);

 mySerial.write(254);

95

 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("S(4,6) "); // write out the CMD
 return;
 }
//Unlactch Switch to Return Position
 if(SwPos == 7) {
 digitalWrite(ReturnPos, HIGH);

delay(5);
digitalWrite(Sw4, HIGH);
delay(75);
digitalWrite(Sw4, LOW);
delay(5);
digitalWrite(ReturnPos, LOW);

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("S(4,7) "); // write out the CMD
 return;
 }
 }

 return;
}

void SCPI_IDENTITY(){ //Function is called when user wants to see unit
identity information
 EthernetClient client = server.available();

 if (client) {
 while (client.connected()) {
 if (client.available()) {
 char c = client.read();

 // command parser is implemented as a simple state machine
 switch (state){
 case 0:

 if (c == 'I') state++;
 else { //Reset the State Machine
 state = 0;
 SwSelectCounter = NULL;
 SwPosCounter = NULL;
 client.flush();
 delay(100);
 return;
 }

96

 break;

 case 1:

 if (c == 'D') state++;
 else { //Reset the State Machine
 state = 0;
 SwSelectCounter = NULL;
 SwPosCounter = NULL;
 client.flush();
 delay(100);
 return;
 }
 break;

 case 2:

 if (c == 'N') state++;
 else { //Reset the State Machine
 state = 0;
 SwSelectCounter = NULL;
 SwPosCounter = NULL;
 client.flush();
 delay(100);
 return;
 }
 break;

 case 3:

 if (c == '?'){
 client.print("SSL,LCU/Switch Matrix,Prototype,A1.00\n");
 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("*IDN? SSL:A1.00"); // write out the CMD

 state = 0;
 delay(100);
 return;
 }

 else { //Reset the State Machine
 state = 0;
 SwSelectCounter = NULL;
 SwPosCounter = NULL;
 client.flush();
 delay(100);
 return;
 }

97

 break;
 }

 }
 }
 }
}

void EEPROMCounterRead(){ //Function is called when user wants to see
Activation Counter for a desired switch and position

 EthernetClient client = server.available();

 if (client) {
 while (client.connected()) {
 if (client.available()) {
 char c = client.read();

 // command parser is implemented as a simple state machine
 switch (state){
 case 0:

 if (c == '1' || c == '2' || c == '3' || c == '4')
{

 SwSelect = c - 48;
 state++;

 }
 else { //Reset the State Machine
 state = 0;
 SwSelectCounter = NULL;
 SwPosCounter = NULL;
 client.flush();
 delay(100);
 return;
 }
 break;
 case 1:
 if (c == '?'){

if (SwSelect == 1)
{

 EEPROM_readAnything(0, Sw1Pos1Counter);
 EEPROM_readAnything(5, Sw1Pos2Counter);
 EEPROM_readAnything(10, Sw1Pos3Counter);
 EEPROM_readAnything(15, Sw1Pos4Counter);
 EEPROM_readAnything(20, Sw1Pos5Counter);
 EEPROM_readAnything(25, Sw1Pos6Counter);

 client.print(Sw1Pos1Counter);

98

 client.print(',');
 client.print(Sw1Pos2Counter);
 client.print(',');
 client.print(Sw1Pos3Counter);
 client.print(',');
 client.print(Sw1Pos4Counter);
 client.print(',');
 client.print(Sw1Pos5Counter);
 client.print(',');
 client.print(Sw1Pos6Counter);
 client.print('\n');

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on
second line
 mySerial.write("T1? "); // write out the
CMD
 return;
 }

 if(SwSelect == 2)
 {
 EEPROM_readAnything(30, Sw2Pos1Counter);
 EEPROM_readAnything(35, Sw2Pos2Counter);
 EEPROM_readAnything(40, Sw2Pos3Counter);
 EEPROM_readAnything(45, Sw2Pos4Counter);
 EEPROM_readAnything(50, Sw2Pos5Counter);
 EEPROM_readAnything(55, Sw2Pos6Counter);

 client.print(Sw2Pos1Counter);
 client.print(',');
 client.print(Sw2Pos2Counter);
 client.print(',');
 client.print(Sw2Pos3Counter);
 client.print(',');
 client.print(Sw2Pos4Counter);
 client.print(',');
 client.print(Sw2Pos5Counter);
 client.print(',');
 client.print(Sw2Pos6Counter);
 client.print('\n');
 return;

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on
second line

99

 mySerial.write("T2? "); // write out the
CMD
 }

 if(SwSelect == 3)
 {
 EEPROM_readAnything(60, Sw3Pos1Counter);
 EEPROM_readAnything(65, Sw3Pos2Counter);
 EEPROM_readAnything(70, Sw3Pos3Counter);
 EEPROM_readAnything(75, Sw3Pos4Counter);
 EEPROM_readAnything(80, Sw3Pos5Counter);
 EEPROM_readAnything(85, Sw3Pos6Counter);

 client.print(Sw3Pos1Counter);
 client.print(',');
 client.print(Sw3Pos2Counter);
 client.print(',');
 client.print(Sw3Pos3Counter);
 client.print(',');
 client.print(Sw3Pos4Counter);
 client.print(',');
 client.print(Sw3Pos5Counter);
 client.print(',');
 client.print(Sw3Pos6Counter);
 client.print('\n');

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on
second line
 mySerial.write("T3? "); // write out the
CMD
 return;
 }

 if(SwSelect == 4)
 {
 EEPROM_readAnything(90, Sw4Pos1Counter);
 EEPROM_readAnything(95, Sw4Pos2Counter);
 EEPROM_readAnything(100, Sw4Pos3Counter);
 EEPROM_readAnything(105, Sw4Pos4Counter);
 EEPROM_readAnything(110, Sw4Pos5Counter);
 EEPROM_readAnything(115, Sw4Pos6Counter);

 client.print(Sw4Pos1Counter);
 client.print(',');
 client.print(Sw4Pos2Counter);

100

 client.print(',');
 client.print(Sw4Pos3Counter);
 client.print(',');
 client.print(Sw4Pos4Counter);
 client.print(',');
 client.print(Sw4Pos5Counter);
 client.print(',');
 client.print(Sw4Pos6Counter);
 client.print('\n');

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on
second line
 mySerial.write("T4? "); // write out the
CMD
 return;
 }
 state = 0;
 delay(100);
 return;
 }
 else { //Reset the State Machine
 state = 0;
 SwSelectCounter = NULL;
 SwPosCounter = NULL;
 client.flush();
 delay(100);
 return;
 }
 break;
 }
 }
 }
 }
}

void SCPI_Telemetry(){ //Function is called when user wants to see Switch
Position for a desired switch

 EthernetClient client = server.available();

 if (client) {
 while (client.connected()) {
 if (client.available()) {
 char c = client.read();

101

 // command parser is implemented as a simple state machine
 switch (state){
 case 0:
 if (c == '?') {

if (SwSelect == 1)
{

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on
second line
 mySerial.write("S1? "); // write out the CMD

 mySerial.write(254);
 mySerial.write(196); // cursor to 1st position on
second line
 mySerial.write(Sw1TLM); // write out the TLM

 Sw1TLM = Sw1TLM - 48;
 Serial.println(Sw1TLM);
 client.print(Sw1TLM);
 client.print('\n');

}

if (SwSelect == 2)
{

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on
second line
 mySerial.write("S2? "); // write out the CMD

 mySerial.write(254);
 mySerial.write(196); // cursor to 1st position on
second line
 mySerial.write(Sw2TLM); // write out the TLM

 Sw2TLM = Sw2TLM - 48;
 Serial.println(Sw2TLM);
 client.print(Sw2TLM);
 client.print('\n');

}
if (SwSelect == 3)

{
 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on
second line
 mySerial.write("S3? "); // write out the CMD

102

 mySerial.write(254);
 mySerial.write(196); // cursor to 1st position on
second line
 mySerial.write(Sw3TLM); // write out the TLM

 Sw3TLM = Sw3TLM - 48;
 Serial.println(Sw3TLM);
 client.print(Sw3TLM);
 client.print('\n');

}
if (SwSelect == 4)

{
 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on
second line
 mySerial.write("S4? "); // write out the CMD

 mySerial.write(254);
 mySerial.write(196); // cursor to 1st position on
second line
 mySerial.write(Sw4TLM); // write out the TLM

 Sw4TLM = Sw4TLM - 48;
 Serial.println(Sw4TLM);
 client.print(Sw4TLM);
 client.print('\n');
 }
 state = 0;
 delay(100);
 return;
 }
 else { //Reset the State Machine
 state = 0;
 SwSelectCounter = NULL;
 SwPosCounter = NULL;
 client.flush();
 delay(100);
 return;
 }
 break;
 }
 }
 }
 }
}

103

void TelemetryCode(){
 //TELEMETRY CODE
//SWITCH 1
 Sw1Pos1TLMstate = digitalRead(Sw1Pos1TLM);
 Sw1Pos2TLMstate = digitalRead(Sw1Pos2TLM);
 Sw1Pos3TLMstate = digitalRead(Sw1Pos3TLM);
 Sw1Pos4TLMstate = digitalRead(Sw1Pos4TLM);
 Sw1Pos5TLMstate = digitalRead(Sw1Pos5TLM);
 Sw1Pos6TLMstate = digitalRead(Sw1Pos6TLM);

//SWITCH 2
 Sw2Pos1TLMstate = digitalRead(Sw2Pos1TLM);
 Sw2Pos2TLMstate = digitalRead(Sw2Pos2TLM);
 Sw2Pos3TLMstate = digitalRead(Sw2Pos3TLM);
 Sw2Pos4TLMstate = digitalRead(Sw2Pos4TLM);
 Sw2Pos5TLMstate = digitalRead(Sw2Pos5TLM);
 Sw2Pos6TLMstate = digitalRead(Sw2Pos6TLM);

//SWITCH 3
 Sw3Pos1TLMstate = digitalRead(Sw3Pos1TLM);
 Sw3Pos2TLMstate = digitalRead(Sw3Pos2TLM);
 Sw3Pos3TLMstate = digitalRead(Sw3Pos3TLM);
 Sw3Pos4TLMstate = digitalRead(Sw3Pos4TLM);
 Sw3Pos5TLMstate = digitalRead(Sw3Pos5TLM);
 Sw3Pos6TLMstate = digitalRead(Sw3Pos6TLM);

//SWITCH 4
 Sw4Pos1TLMstate = digitalRead(Sw4Pos1TLM);
 Sw4Pos2TLMstate = digitalRead(Sw4Pos2TLM);
 Sw4Pos3TLMstate = digitalRead(Sw4Pos3TLM);
 Sw4Pos4TLMstate = digitalRead(Sw4Pos4TLM);
 Sw4Pos5TLMstate = digitalRead(Sw4Pos5TLM);
 Sw4Pos6TLMstate = digitalRead(Sw4Pos6TLM);

//SWITCH 1 WRITE TO LCD
 if (Sw1Pos1TLMstate == LOW) {

Sw1TLM = '1';
 }
 if (Sw1Pos2TLMstate == LOW) {

Sw1TLM = '2';
 }
 if (Sw1Pos3TLMstate == LOW) {

Sw1TLM = '3';
 }

104

 if (Sw1Pos4TLMstate == LOW) {
Sw1TLM = '4';

 }
 if (Sw1Pos5TLMstate == LOW) {

Sw1TLM = '5';
 }
 if (Sw1Pos6TLMstate == LOW) {

Sw1TLM = '6';
 }
 if (Sw1Pos1TLMstate == HIGH && Sw1Pos2TLMstate == HIGH &&
Sw1Pos3TLMstate == HIGH && Sw1Pos4TLMstate == HIGH &&
Sw1Pos5TLMstate == HIGH && Sw1Pos6TLMstate == HIGH) {

Sw1TLM = '0';
 }

//SWITCH 2 WRITE TO LCD
 if (Sw2Pos1TLMstate == LOW) {

Sw2TLM = '1';
 }
 if (Sw2Pos2TLMstate == LOW) {

Sw2TLM = '2';
 }
 if (Sw2Pos3TLMstate == LOW) {

Sw2TLM = '3';
 }
 if (Sw2Pos4TLMstate == LOW) {

Sw2TLM = '4';
 }
 if (Sw2Pos5TLMstate == LOW) {

Sw2TLM = '5';
 }
 if (Sw2Pos6TLMstate == LOW) {

Sw2TLM = '6';
 }
 if (Sw2Pos1TLMstate == HIGH && Sw2Pos2TLMstate == HIGH &&
Sw2Pos3TLMstate == HIGH && Sw2Pos4TLMstate == HIGH &&
Sw2Pos5TLMstate == HIGH && Sw2Pos6TLMstate == HIGH) {

Sw2TLM = '0';
 }

//SWITCH 3 WRITE TO LCD
 if (Sw3Pos1TLMstate == LOW) {

Sw3TLM = '1';
 }
 if (Sw3Pos2TLMstate == LOW) {

Sw3TLM = '2';

105

 }
 if (Sw3Pos3TLMstate == LOW) {

Sw3TLM = '3';
 }
 if (Sw3Pos4TLMstate == LOW) {

Sw3TLM = '4';
 }
 if (Sw3Pos5TLMstate == LOW) {

Sw3TLM = '5';
 }
 if (Sw3Pos6TLMstate == LOW) {

Sw3TLM = '6';
 }
 if (Sw3Pos1TLMstate == HIGH && Sw3Pos2TLMstate == HIGH &&
Sw3Pos3TLMstate == HIGH && Sw3Pos4TLMstate == HIGH &&
Sw3Pos5TLMstate == HIGH && Sw3Pos6TLMstate == HIGH) {

Sw3TLM = '0';
 }

//SWITCH 4 WRITE TO LCD
 if (Sw4Pos1TLMstate == LOW) {

Sw4TLM = '1';
 }
 if (Sw4Pos2TLMstate == LOW) {

Sw4TLM = '2';
 }
 if (Sw4Pos3TLMstate == LOW) {

Sw4TLM = '3';
 }
 if (Sw4Pos4TLMstate == LOW) {

Sw4TLM = '4';
 }
 if (Sw4Pos5TLMstate == LOW) {

Sw4TLM = '5';
 }
 if (Sw4Pos6TLMstate == LOW) {

Sw4TLM = '6';
 }
 if (Sw4Pos1TLMstate == HIGH && Sw4Pos2TLMstate == HIGH &&
Sw4Pos3TLMstate == HIGH && Sw4Pos4TLMstate == HIGH &&
Sw4Pos5TLMstate == HIGH && Sw4Pos6TLMstate == HIGH) {

Sw4TLM = '0';
 }

 mySerial.write(254);

106

 mySerial.write(128); // cursor to 1st position on first line

 mySerial.write(Sw1TLM); // write out the TLM value

 mySerial.write(254);
 mySerial.write(132); // cursor to 5th position on first line

 mySerial.write(Sw2TLM); // write out the TLM value

 mySerial.write(254);
 mySerial.write(137); // cursor to 10th position on first line

 mySerial.write(Sw3TLM); // write out the TLM value

 mySerial.write(254);
 mySerial.write(141); // cursor to 14th position on first line

 mySerial.write(Sw4TLM); // write out the TLM value

 return;
}

void EmergencySafeCode(){ //Emergency Safe is activated by a button on
the Switch Matrix, it returns all Switches to OPEN position.

 EmergencySafeState = digitalRead(EmergencySafe);
 if (EmergencySafeState == LOW) {

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("Safing... "); // write out the CMD

 //Unlatch Switch 1
 digitalWrite(ReturnPos, HIGH);

 delay(5);
 digitalWrite(Sw1, HIGH);
 delay(75);
 digitalWrite(Sw1, LOW);
 delay(5);
 digitalWrite(ReturnPos, LOW);

 delay(250);

 //Unlatch Switch 2
 digitalWrite(ReturnPos, HIGH);

 delay(5);
 digitalWrite(Sw2, HIGH);

107

 delay(75);
 digitalWrite(Sw2, LOW);
 delay(5);
 digitalWrite(ReturnPos, LOW);

 delay(250);
 //Unlatch Switch 3
 digitalWrite(ReturnPos, HIGH);

 delay(5);
 digitalWrite(Sw3, HIGH);
 delay(75);
 digitalWrite(Sw3, LOW);
 delay(5);
 digitalWrite(ReturnPos, LOW);

 delay(250);
 //Unlatch Switch 4
 digitalWrite(ReturnPos, HIGH);

 delay(5);
 digitalWrite(Sw4, HIGH);
 delay(75);
 digitalWrite(Sw4, LOW);
 delay(5);
 digitalWrite(ReturnPos, LOW);

 delay(250);

delay(1000); // Delay to prevent constant 28V Pulses.

 mySerial.write(254);
 mySerial.write(192); // cursor to 1st position on second line
 mySerial.write("Safe "); // write out the CMD
 return;
 }
 else {return;}
}

void Watchdog() //Function "pats" Watchdog Circuit and Displays
Heartbeat on LCD screen. AKA Heartbeat Monitor
{
 pinMode(WatchdogPin, OUTPUT); //The WatchdogPin line goes Low
 delay(50); //Wait for capacitor discharge
 pinMode(WatchdogPin, INPUT); //The WatchdogPin line goes Hi-Z

i = i + 1;
if(i < 20)
{
 //Display Heartbeat on LCD Screen

108

 mySerial.write(254);
 mySerial.write(207); // cursor to 16th position on second line
 mySerial.write('*'); // write out the TLM value
 }

if(i > 20)
{
 //Blink Heartbeat on LCD Screen
 mySerial.write(254);
 mySerial.write(207); // cursor to 16th position on second line
 mySerial.write(' '); // write out the TLM value
}
if(i == 40) i=0; //reset counter
return;
}

109

APPENDIX J: Switch Matrix Full Wiring Schematic

110

APPENDIX K: Front Plate CAD Drawing

111

112

APPENDIX L: Back Plate CAD Drawing

113

	1.0 INTRODUCTION
	1.1 MOTIVATION
	1.2 LITERATURE REVIEW
	Figure 1.2‑1: 4x4 Switch Matrix Function View
	Figure 1.2‑2: Common Highway Design
	Figure 1.2‑4: Full Access (Blocking) Design
	Figure 1.2‑5: Full Access (Non-Blocking) Design

	2.0 SYSTEM REQUIREMENTS
	3.0 SYSTEM OVERVIEW DESIGN
	Figure 3‑3: Switch Matrix System Overview

	4.0 CRITICAL HARDWARE
	4.1 MICROWAVE SWITCHES
	
	Figure 4.1-1: Radiall R583833250 Switch
	Figure 4.1-2: Single Position Schematic
	4.2 CONTROL SYSTEM

	Figure 4.2-1: Sparkfun Arduino Mega Pro 5V
	4.3 LAN / ETHERNET CONNECTION

	Figure 4.3-1: Arduino Ethernet Shield

	5.0 SWITCH DRIVE MATRIX CIRCUIT
	Figure 5-1: Switch Drive Matrix Concept
	Figure 5-2: Single Electrical Pathway Schematic
	5.1 Switch Select Component Design

	Figure 5.1-1: Critical TIP31 & TIP 32 Transistor Data
	5.2 Position Select Component Design
	5.2.1 Single Coil Low Side Switching
	5.2.2 Return Coil Low Side Switching

	Figure 5.2.2-1: Critical TIP120 Transistor Data

	6.0 TELEMETRY CIRCUIT
	6.1 SWITCH TELEMETRY
	Figure 6.1-1: Switch Telemetry Diagram
	6.2 DISPLAY

	Figure 6.2-1: Sparkfun LCD Screen
	Figure 6.2-2: LCD Wiring Diagram

	7.0 INTERFACE CIRCUIT
	
	Figure 7-1: Interface Cable

	8.0 POWER REGULATION CIRCUIT
	
	Figure 8-1: 9 Volt Power Regulation Circuit
	
	Figure 8-2: Built 9 Volt Power Regulation Circuit with Heat sink

	9.0 WATCHDOG CIRCUIT
	
	Figure 9-1: Watchdog Circuit Concept
	
	Figure 9-2: Watchdog Circuit

	10.0 SWITCH MATRIX FEATURES
	10.1 EMERGENCY SAFING
	
	Figure 10.1-1: Emergency Safe Before
	
	Figure 10.1-2: Emergency Safe After
	10.2 EXTERNAL RESET BUTTON
	10.3 SWITCH ACTIVATION COUNTER

	11.0 PROGRAMMING DEVELOPMENT
	11.1 STANDARD COMMANDS FOR PROGRAMMABLE INSTRUMENTS
	Figure 11.1-1: Commands for Switch Actuations
	Figure 11.1-2: Commands for Switch Matrix Telemetry
	11.2 CODE LOGIC

	Figure 11.2-1: Switch Matrix Program Flowchart
	11.3 GENERAL USER INTERFACE

	Figure 11.3-1: Switch Matrix GUI
	
	Figure 11.3-2: Switch Position Block Diagram

	12.0 MECHANICAL INTEGRATION
	12.1 SWITCH MATRIX WIRING
	12.2 UNIT DESIGN
	12.3 SYSTEM INTEGRATION
	Figure 12.3-1: Switch Matrix Fully Integrated

	13.0 CONCLUSION
	Figure 13-1: Finished Switch Matrix

	REFERENCES
	APPENDICES
	APPENDIX A: System Overview Drawing
	APPENDIX B: R583833250 Internal Switch Schematic
	
	APPENDIX C: Switch Drive Matrix Schematic
	
	APPENDIX D: Telemetry Circuit Schematic
	
	APPENDIX E: Interface Circuit Schematic
	
	APPENDIX F: Power Regulation Circuit Schematic
	
	APPENDIX G: Watchdog Circuit Schematic
	APPENDIX H: EEPROMAnything Library
	APPENDIX I: Switch Matrix Program
	APPENDIX J: Switch Matrix Full Wiring Schematic
	APPENDIX K: Front Plate CAD Drawing
	
	APPENDIX L: Back Plate CAD Drawing
	

