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ABSTRACT 
 

DESIGN OF A LINEAR PARAMETER VARYING CONTROL SYSTEM FOR A 

DELIVERY QUADROTOR  

by Hussam Okasha  

Developing flight control systems for quadrotors capable of grasping, carrying, and 

dropping payloads is an active research area. Applications include package delivery, post-

disaster relief and rescue, and firefighting. The purpose of this project is to propose a suitable 

controller for a quadrotor capable of delivery of small packages up to 2.3 kg. The action of 

picking up or dropping off payloads can significantly affect the dynamic response of a 

quadrotor, possibly preventing the successful completion of a mission. Furthermore, during 

flight the battery voltage decreases leading to varying propeller speeds with losses in the control 

effectiveness of thrust and torque factors of the propellers. A linear parameter varying (LPV) 

control solution is proposed with a focus on the implementation of its adaptive structure and 

investigating its stability, performance, and robustness in controlling the quadrotor and 

counteracting adverse effects. The quadrotor is modeled as an LPV system and the LPV 

controller is designed utilizing an ℋ∞ self-scheduling technique in which the payload mass is 

treated as a scheduling parameter. To estimate the mass online, an adaptive estimator based on 

the gradient descent method is developed. The controller gains are updated automatically based 

on the convex constructions of fixed controllers at the vertices of a parameter box. These 

controllers are determined by solving a system of linear matrix inequalities (LMIs) which 

synthesize gain-scheduled ℋ∞ controllers that act within a bounded parameter space. A two-

degrees-of-freedom control structure, with reference and error signals fed into the LPV 

controller, is developed to counteract system variations while providing tracking control. 

Finally, the LPV control system with added modifications is tested against the nonlinear system 

to validate the control algorithm meets requirements by picking up an unknown payload and 

tracking a reference trajectory subject to actuator dynamics and disturbances. 
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NOMENCLATURE 
 

𝐾𝐹 = thrust factor of the propeller 

𝐾𝑀 = drag factor of the propeller 

𝑔 = acceleration due to gravity 

𝐽𝑥 = moment of inertia along the 𝑥 direction 

𝐽𝑦 = moment of inertia along the 𝑦 direction 

𝐽𝑧 = moment of inertia along the 𝑧 direction 

𝑙 = distance from center of quadrotor to center of each propeller 

𝑚 = total mass of the quadrotor  

𝑚𝑝 = mass of the package payload 

𝑝 = roll rate 

𝑞 = pitch rate 

𝑟 = yaw rate  

𝐹𝑧 = lift thrust factor in 𝑧 direction 

𝜏𝜃 = pitching torque factor in θ direction 

𝜏𝜑 = rolling torque factor in φ direction 

𝜏𝜓 = yawing torque factor in ψ direction 

𝑢 = velocity in the 𝑥-axis direction 

𝑣 = velocity in the 𝑦-axis direction 

𝑤 = velocity in the 𝑧-axis direction 

𝑋 = 𝑥 inertial coordinate of quadrotor at the center of mass 

𝑌 = 𝑦 inertial coordinate of quadrotor at the center of mass 

𝑍 = 𝑧 inertial coordinate of quadrotor at the center of mass 

θ = pitch angle 

φ = roll angle 

ψ = yaw angle 

𝛺𝑓 = front propeller speed 

𝛺𝑟 = right propeller speed 

𝛺𝑏 = rear propeller speed 

𝛺𝑙 = left propeller speed 

𝑐𝑚 = motor constant 

𝜏 = motor time constant 
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𝜔𝑛 = natural frequency 

𝜁 = damping ratio 

𝒖 = control input vector  

𝒘𝒅 = disturbance input vector 

𝒆 = error between reference set point and real output of plant  

𝒓 = reference set point  

𝑲 = control gains  

𝑹, 𝑺, 𝑿 = LPV synthesis separation parameters  

𝑷 = positive definite matrix  

𝝆 = scheduling parameter vector 

𝒙 = state vector   

𝒚 = measurement vector  

𝒛 = performance output vector   

𝑘𝑟 = reference input scaling factor  

𝑘𝑢 = control input scaling factor  

𝐺 = plant model 

𝑊𝑑 = disturbance weight 

𝑊𝑝 = performance or sensitivity weight 

𝑊𝑟 = setpoint weight 

𝑊𝑢 = control or robustness weight 

𝛾 = closed-loop ℋ∞ norm 

𝜆 = rate of convergence constant  

𝜏𝑟𝑒𝑓 = model reference signal time constant 

𝛼 = convex coordinate 

Ω  = polytope  

𝜎 = maximum singular value 

𝜎 = minimum singular value 

𝐾𝛱  = vertex controller 

𝐴𝐾 , 𝐵𝐾 , 𝐶𝐾, 𝐷𝐾 = LPV controller matrices 

𝒜,𝔅, 𝒞,𝒟 = closed-loop state space matrices 

(∙)𝐵 = expressed in body frame 

(∙)𝐸 = expressed in inertial frame 
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1. CHAPTER 1  

 

INTRODUCTION 

1.1 Motivation 

 

A quadrotor is an aerospace vehicle with four propellers in a cross configuration. The 

front and rear rotors rotate counterclockwise while the left and right rotors rotate clockwise, as 

shown in Figure 1.1 with a quadrotor in hovering condition where all four propeller speeds have 

the same magnitude. Adjacent propellers counter rotates to remove the need for a tail rotor. The 

quadrotor’s motion can be controlled by changing the speed of the rotors [1].  

 
Figure 1.1 - Propeller speeds in hovering condition [1] 

 

Compared to fixed-wing and rotary-wing aircraft, a quadrotor provides engineering 

advantages such as energy efficiency, a simple mechanical structure, vertical takeoff and 

landing (VTOL) ability, and lower cost and maintenance requirements. However, there are three 

main challenges involving quadrotor control: under-actuation, model uncertainty, and actuator 

failure [2]. Despite its advantages, the physical consequence of under-actuation means a 

quadrotor cannot follow an arbitrary trajectory due to the limits imposed by the number of 

system configurations that can be directly controlled [1]. A quadrotor has six degrees of 

freedom and four independent control inputs which results in two degrees of under-actuation. 

This means the vehicle can reach a desired set-point in four degrees [2]. Therefore, there are 

four basic movements that allow a quadrotor to reach a desired altitude and attitude: 

• Throttle (𝐹𝑧)  

• Pitch (𝜏𝜃) 

• Roll (𝜏𝜑) 

• Yaw (𝜏𝜓) 
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These control actions are graphically represented in Figure 1.2. Throttle control is 

achieved by increasing or decreasing all propeller speeds by the same amount. Roll control 

about 𝑥𝐵 is provided by increasing the left propeller speed while decreasing the right one, or the 

opposite configuration. Similarly, pitch control about 𝑦𝐵 is achieved by increasing the rear 

propeller speed while decreasing the front one. By increasing the paired front-rear propeller 

speed while decreasing the paired left-right propeller speed, yaw control is achieved about 𝑧𝐵 

[1].  

  

 
Figure 1.2 - Basic quadrotor control actions [3] 

 

Due to the under-actuation problem, to reach a desired trajectory in all coordinates, 

tracking control for a quadrotor requires more modern strategies than classical control 

techniques which were developed for fully actuated systems [2].  Quadrotors also experience 

uncertainties in the plant and external disturbances during flight. Model uncertainty corresponds 

to two types: unmodeled plant dynamics caused by high-frequency or nonlinear behavior and 

parametric uncertainty resulting from physical parameters being inaccurately measured or from 

variations of these values during operation [4]. Developing flight control systems for 

underactuated systems and quadrotors capable of grasping, carrying, and dropping payloads is 

an active research area. The action of picking up or dropping off payloads can significantly 

affect the dynamic response of the quadrotor [5]. According to [2], a UAV carrying unknown 

payloads is a famous example of parametric uncertainty. It requires a “nontraditional control” 

strategy to compensate for the varying mass [6].  
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Furthermore, during flight the battery voltage decreases leading to varying propeller 

speeds with losses in the control effectiveness of thrust and torque factors of the propellers [5]. 

Unexpected failure of an actuator can also lead to a complete loss of an independent control 

input. This led to research in fault tolerant control (FTC) which combines fault diagnosis 

detection and a reconfigurable controller [2]. The goal of FTC is to provide “graceful 

degradation” of the system’s performance when a fault is detected, and its adverse effect 

accurately estimated and compensated for by the controller [5].      

 

Applications for this research include commercial package delivery, medical supply 

delivery, post-disaster relief and rescue, environmental sampling, and firefighting [5]. For 

example, in late 2019, Amazon is expected to begin its drone delivery service Prime Air in 

select cities. The service utilizes autonomous, hybrid aircrafts to deliver packages less than 5 

pounds within a 15-mile radius of a participating fulfillment center [7]. Amazon promises 

delivery within 30 minutes of a customer order. Current FAA regulations require drones to fly 

no higher than 400 ft with a 100-mph maximum speed constraint [8]. Amazon’s planned 

mission requirements are summarized in Table 1.1.  

Table 1.1 – Summary of mission requirements for Amazon Prime Air 

  

UPS Flight Forward announced on October 1st, 2019 they were awarded the first drone 

airline certificate from the FAA allowing them to fly multiple drones beyond line of sight 

during deliveries [9]. In March of 2019, they began using quadcopters to deliver blood and 

medical samples to a North Carolina hospital as part of a test program. The quadcopters are 

built by California-based Matternet. They fly along predetermined flight paths and have a 

maximum range of 12.5 miles before they need to be recharged [9].  

A package delivery UAV is subject to disturbances and uncertainties in its plant 

dynamics and operating environment that requires an adaptive-robust approach in control [2]. 

Most quadrotor controllers proposed in the literature focus on a narrow aspect related to 

tracking or system stability. Furthermore, control systems designed to handle the three main 

Altitude Range Package Weight Flight Speed Flight Radius Flight Time 

200 𝑓𝑡 <  ℎ <  500 𝑓𝑡 <  5 𝑙𝑏 <  50 𝑚𝑝ℎ <  15 𝑚𝑖 <  30 𝑚𝑖𝑛 
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challenges discussed in this section have not been well investigated in the literature. The 

purpose of this project therefore is to develop a suitable control system for a delivery quadrotor 

model that can counteract system variations while tracking a desired trajectory and satisfying 

stability and performance criteria.  

  

1.2 Literature Review 

 

This section is a survey of the literature describing solutions proposed to tackle the three 

main challenges addressed in Section 1.1 as it pertains to control of a delivery quadrotor: 

• Tracking control subject to under-actuation constraints  

• The mass variation and disturbance problem causing instability and performance 

losses 

• The battery drainage problem causing losses in control effectiveness 

 

As an underactuated system with nonlinear dynamics, many control strategies have been 

proposed in the literature. These include PID control, model reference adaptive control (MRAC), 

LQR and LQG control, nonlinear dynamic inversion (NDI), model predictive control (MPC), and 

linear parameter varying (LPV) control.  

A common approach for tracking control is to divide the overall quadrotor dynamics 

into an inner loop and outer loop representing the attitude and position dynamics, respectively 

[2]. Utilizing a cascade feedback structure for each loop, the overall closed loop system 

provides attitude and position control. Typically, the inner loop runs at a frequency 5-10 times 

faster than the outer loop [10]. A sample cascade structure for a quadrotor is shown in Figure 1.3.  
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Figure 1.3 -  Successive loop closure for a quadrotor [10] 

 

 

 

 A two-degrees-of-freedom controls structure for a quadrotor is shown in Figure 1.4. Here, 

the command signals and the feedback signals are independently processed by the controller 

[11]. For many tracking problems, a one-degree-of-freedom controller may not be sufficient to 

meet time domain specifications set on the output response [11]. The advantage of this structure 

is the response to command signals and disturbances are decoupled [10]. This allows the 

designer flexibility in meeting multiple control objectives by designing feedback and 

feedforward paths to handle disturbance rejection and provide tracking control.  

 
Figure 1.4 - Two-degrees-of-freedom quadrotor control structure [10] 
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Several strategies have been proposed for the mass variation problem. To demonstrate 

the inadequacy of a fixed gain PID controller in handling payload changes, the authors in [12] 

designed an experiment where a 200g payload was added to a quadrotor frame in level flight. 

The PID controller was not able to compensate for the change in the overall weight and dropped 

to ground within 3 seconds. The authors then proposed an adaptive control scheme that 

estimates the system mass in real time which feeds into the control law to adapt to the new 

system weight. The same test was repeated, and the resultant response is greatly improved. The 

authors in [13] used gain scheduled PID control and MPC algorithms to control the vertical 

position of a quadrotor while carrying or dropping a payload. During an experiment with a 

laboratory quadrotor, a fixed-gain PID controller was not able to eliminate unwanted overshoot 

at the instant of a payload drop. The control setup was replaced with a gain scheduled PID 

controller and then an MPC algorithm. Both controllers produced improved system reaction and 

reduced overshoot of the vertical position. The authors conclude that although the two 

controllers met some performance criteria, there was no guarantee of stability based on their 

control structure and suggested applying LPV theory to address the stability question and to 

improve system performance. An adaptive command-filtered backstepping controller for a 

quadrotor was developed in [14] to compensate for changes in uncertain parameters of mass, 

inertia, actuator efficiency, and thruster misalignment. The controller was able to track 

commands subject to physical constraints and parameter uncertainty.  

In [15], a nonlinear adaptive-robust controller (ARC) developed with an LMI-based 

approach is used to provide attitude and altitude control of a quadrotor subject to disturbances 

due to wind gusts and uncertain parameters. The quadrotor’s mass and moments of inertia were 

treated as uncertain parameters subject to changes in flight. In an illustrative example to 

demonstrate the robustness of the controller, the quadrotor follows a reference trajectory subject 

to wind gusts and delivers a package of unknown weight in midflight. The ARC controller was 

able to track the desired trajectory in the presence of wind gusts and maintain performance 

while subject to abrupt changes in the mass dependent parameters of the dynamics model.  
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1.2.1 Introduction to LPV Systems 

 

Linear parameter varying (LPV) systems are plants that can be described by the state-

space model ( 1.1) where 𝝆(𝒕) is a vector of time-varying parameters representing the range of 

possible plant dynamics and the matrices 𝐴(∙), 𝐵(∙), 𝐶(∙), 𝐷(∙) are fixed functions of those 

parameters [4]. LPV systems can be interpreted as a model of a more general linear time 

varying (LTV) system or as a result of linearization of a nonlinear system along the variation of 

the parameters [16].  

�̇�(𝒕) = 𝑨(𝝆(𝒕))𝒙(𝒕) + 𝑩(𝝆(𝒕))𝒖(𝒕) 

𝒚(𝒕) = 𝑪(𝝆(𝒕))𝒙(𝒕) + 𝑫(𝝆(𝒕))𝒖(𝒕) 

In many linear robust control problems, a single controller is designed for some defined 

parametric uncertainty associated with an LPV system. This is considered a conservative 

approach and can result in poor performance if the system parameters change rapidly or 

abruptly during operation [4]. Furthermore, a single LTI controller might not even be able to 

stabilize an LPV system [4]. Another approach to handle model uncertainties is gain scheduling 

techniques in the field of adaptive control. In gain scheduling, controllers are designed for 

different equilibrium points within a flight envelope and interpolated in between based on the 

flight condition using look-up tables. However, stability is not guaranteed in such a setup other 

than at the design points [17]. LPV control methodologies were developed as an alternative 

approach to resolve shortcomings of fixed-gain robust controllers and classical gain-scheduling.  

In LPV control, the parameters are used as scheduling variables to develop 

automatically gain-scheduled controllers that update based on weighting functions or convex 

constructions. The scheduling parameter vector 𝝆(𝒕) is assumed to be measurable and restricted 

to a set of admissible trajectories based on operating conditions of the system. In an aerospace 

context, the parameter 𝜌 can include variables such as airspeed, altitude, mass, center of gravity, 

or angle of attack. There are several approaches to LPV system representation and controls 

design. Generally, the state feedback controller may take the form of 𝒖 = 𝑲[𝝆|[𝟎,𝒕]]𝒙(𝒕) where 

the feedback gain 𝑲 is a function of the current parameter values or the entire history of 

( 1.1) 
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parameter measurements [18]. The range of parameter variations is specified by the control 

designer, but no other a priori knowledge is necessary [4].  

A specific methodology for LPV controls design is LPV ℋ∞ synthesis. It is a robust-

adaptive technique that has found applications in air-breathing hypersonic vehicle control [19], 

control of aeroelastic effects for a flexible wing [20], missile autopilot design [16], control of 

robotic manipulators [21], and flutter suppression of UAVs [22]. The control law is determined 

by solving a system of linear matrix inequalities (LMIs) to synthesize the controllers that would 

act within a bounded parameter space. The methodology for this procedure is described in 

references [4], [16], and [17]. In such a control strategy, the controller takes advantage of the 

available parameter information to adjust to the current dynamics of the plant [16].  

 
Figure 1.5 -  LPV control of an LPV system [16] 

 

LPV control of an LPV system is illustrated in Figure 1.5. The plant 𝐺(∙) and the 

controller 𝐾(∙) are parameter dependent. The exogenous input 𝑤 includes reference signals and 

disturbances into the plant. The input 𝑢 is the control under the designer’s authority. The output 

𝑞 is the performance output used to assess the controller and 𝑦 is the measured output available 

to the designer to develop the controller 𝐾 which calculates the control signals 𝑢. The LPV 

structure provides automatic gain scheduling with respect to the measured parameters and the 

closed-loop system guarantees a prescribed quadratic ℋ∞ performance level [16]. Therefore, 

LPV theory offers an appealing solution to the stability issues of gain scheduling and the 
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performance issues of a fixed-gain robust controller, but it comes at the cost of the higher 

complexity required to produce the controller.  

In recent years, the theory has been applied to control quadrotor UAVs. In reference [5], 

the authors propose a fault tolerant LPV controller that can compensate for mass variation and 

battery drainage. The authors in [23] use LPV ℋ∞ synthesis to develop a hybrid fault tolerant 

controller which was robust under fault occurrence. In their approach, the parameter vector was 

used to schedule between uncertain linear time invariant (LTI) systems, and a reference model 

was used to generate the desired trajectories to track. An LPV control strategy is proposed in 

[24] to compensate for a complete actuator loss of a quadrotor by using the yaw rate as a 

scheduling parameter to produce a controller to align the thrust axis for safe recovery and 

continuation of flight.   

1.3 Proposal 

 

Developing robust, adaptive controllers for quadrotors that experience model variations 

ensure their safe and efficient operation in the airspace. The goal of this research is to develop a 

control system for a quadrotor model capable of delivery of small packages in the range of 0.3 

kg and 2.3 kg that can compensate for the adverse effects caused by mass variation, actuator 

effectiveness losses, and disturbance rejection while providing attitude and position tracking. 

Based on the literature review, it is surmised that LPV control is well suited to provide a 

solution to the tracking and uncertainty challenges for a delivery quadrotor. Using LPV theory 

in which the payload mass is used as a scheduling parameter, estimated online using an adaptive 

estimator, this project proposes a control strategy to achieve the control objectives utilizing a 

2DOF LPV controller and a 2DOF PI actuator controller, as shown in Figure 1.6. 
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Figure 1.6 - Proposed two-degrees-of-freedom control structure 

 

 

The automatic gain scheduling policy and LPV controller is obtained through the ℋ∞ 

self-scheduling technique. To demonstrate the stability, performance, and robustness of the 

proposed LPV control system, nonlinear simulations with actuator dynamics and disturbances 

applied to the actuator and quadrotor outputs will be performed. To validate the control 

algorithm meets requirements, several payload masses within the design range are tested. 

1.4 Methodology  

 

The research project will be organized into two major parts. The goal of Part I is to 

develop the control strategy to solve the mass variation problem, disturbance rejection, and 

provide tracking control. An adaptive estimator is developed to estimate the mass online. For 

Part II, linear and nonlinear simulations are completed to validate the proposed LPV control 

strategy meets system requirements A detailed breakdown of the tasks to achieve these goals is 

presented below.      
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Part I: LPV Modeling and Control 

1.) Specify mission requirements for “last mile” deliveries and design quadrotor’s geometry 

and actuator requirements based on desired flight time and mass range.    

2.) Develop nonlinear model representing the equations of motion and actuator dynamics. 

Linearize about hovering conditions to derive linear, parameter dependent model. 

Develop a Simulink model of the quadrotor dynamics for 6DOF simulation.  

3.) Literature review of LPV theory and ℋ∞ self-scheduling techniques.  

4.) Develop a mass estimation scheme to determine the payload mass online.  

5.) In a MATLAB script, develop the LPV representation of the model.  

6.) In a MATLAB script, determine the two-degrees-of-freedom control structure using 

weighting functions and LMI’s with the aid of MATLAB’s Robust Control Toolbox.  

7.) Design PI controller for actuator compensation due to battery drainage and augment to 

LPV control system.   

Part II: Linear and Nonlinear Simulation    

1.) Test the LPV controller against the linear model at a set payload mass value and track a 

reference trajectory. Assess its stability, performance, and robustness. 

2.) If satisfactory, test the LPV controller against the nonlinear system without actuator 

dynamics using the desired forces and torques as the control inputs into the quadrotor 

plant. Adjust the weights of LPV controller, iterate as necessary, until the desired 

performance is achieved for a given reference trajectory.  

3.) If satisfactory, simulate the control system against the nonlinear system with actuator 

dynamics using a propeller speed based LPV controller.  

4.) Stress the control system by adding disturbance sources on the voltage input, actuator 

outputs, and velocity states to test the performance and robustness of the LPV controller 

when tracking the reference trajectory. 

5.) Validate the control algorithm meets performance requirements by testing multiple 

payload masses in the design range.  
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1.5 Chapters Overview 

 

 In Chapter 1, a literature review of the challenges of quadrotor control given its 

nonlinear, underactuated dynamics and its operation in an uncertain environment is described. 

The review includes a discussion of parameter variations and its adverse effects on the 

performance of a control system. Approaches to control a quadrotor with uncertain parameters 

are described as well. This chapter also includes an introduction to LPV systems. 

 In Chapter 2, the actuator and rigid body dynamics of the delivery quadrotor are 

developed with design parameters consistent with mission requirements for a delivery system. 

The linear, parameter dependent model is also developed. In Chapter 3, an overview of the 

mathematics required for LPV control theory is presented. The process to develop the LPV 

controller using the ℋ∞ self-scheduling technique and LMIs is also outlined.  

 In Chapter 4, an adaptive estimator based on the gradient descent method is developed 

to estimate the payload mass online. The mass estimate is later fed into the LPV controller for 

automatic gain scheduling. This chapter also includes a hover state conditioning system to 

control the switching operation of the mass estimator and control commands.  

 In Chapter 5, the linear parameter dependent model developed in Chapter 2 is extended 

to build a generalized ℋ∞ plant that is structured for gain-scheduled ℋ∞ control. In Chapter 6, 

the LPV controller is developed including a linear simulation to demonstrate the tracking 

quality of the controller. This chapter also includes a description of the process to build the 

reference trajectory. In Chapter 7, a 2DOF PI controller is designed to regulate the propeller 

speeds subject to changes in the input voltage using a first-order motor model.  

 In Chapter 8, the LPV controller is tested against the nonlinear system subject to 

actuator dynamics and disturbance sources. A propeller speed based LPV controller is 

developed to control the nonlinear system with actuator dynamics. A control conditioning 

subsystem is introduced to compensate for the equilibrium point and the hover state 

conditioning subsystem is modified to remove control input switching so that the LPV 

commands are used for the entire operation.  
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 In Chapter 9, the advantages of the LPV controller and its limitations is discussed. 

Possible solutions to address the limitations are proposed. A qualitative comparison between 

multivariable and SISO control methods is also discussed. Finally, an assessment of the LPV 

controller function in an overall GNC system is presented along with future research to improve 

the performance of the controller and expand the system to include optimal guidance.   
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2. CHAPTER 2  

 

DELIVERY QUADROTOR MODEL 

 

2.1 Mission Requirements  

 

A typical flight profile for a package delivery drone is shown in Figure 2.1 [25]. The main 

profile consists of two critical segments for the purposes of this study:  

• two cruise segments at level flight  

• two hover segments, one with a payload and one without a payload  

 

This profile will be simulated as the reference trajectory to test the efficacy of the proposed 

controller.  

 
Figure 2.1 - Package delivery mission profile 

 

2.2 Actuator Model 

2.2.1 Motor Mixing 

 

The relationship between the thrust and drag factors [𝐹𝑧 𝜏𝜙 𝜏𝜃 𝜏𝜓] and the motor 

commands [𝛿𝑓 𝛿𝑟 𝛿𝑏 𝛿𝑙] are determined by (2.1) where 𝑘1 and 𝑘2 are constants that can be 

determined experimentally [10] and 𝑙 is the moment arm from the center of mass to the center of 

the rotor shown in Figure 2.4. 
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(

𝐹𝑧
𝜏𝜙
𝜏𝜃
𝜏𝜓

) = (

𝑘1 𝑘1 𝑘1 𝑘1
0 −𝑙𝑘1 0 𝑙𝑘1
𝑙𝑘1 0 −𝑙𝑘1 0
−𝑘2 𝑘2 −𝑘2 𝑘2

)(

𝛿𝑓
𝛿𝑟
𝛿𝑏
𝛿𝑙

)  

 

(2.1) 

 

A rotor with an angular speed Ω produced a vertical force 𝐹𝑖 = 𝑘𝐹Ω𝑖
2
 and a moment 

𝑀𝑖 = 𝑘𝑀Ω𝑖
2
, where 𝑘𝐹 and 𝑘𝑀 are the rotor drag and motor thrust factors, respectively [10]. 

Figure 2.2 illustrates the rotor vertical forces and moment reactions rotations for the front, right, 

back, and left rotors of the quadrotor. Note that the reaction moments are opposite to the 

direction the propellers are rotating.  

 
Figure 2.2 – Schematic for rotor and rigid body rotations  

 

The net thrust force 𝐹𝑧 and the torque factors 𝜏𝜙, 𝜏𝜃, and 𝜏𝜓 are defined in (2.2).   

 𝐹𝑧 = 𝐹𝑓 + 𝐹𝑟 + 𝐹𝑏 + 𝐹𝑙 

𝜏𝜙 = 𝑙(𝐹𝑙 − 𝐹𝑟) 

𝜏𝜃 = 𝑙(𝐹𝑓 − 𝐹𝑏) 

𝜏𝜓 = 𝜏𝑟 + 𝜏𝑙 − 𝜏𝑓 − 𝜏𝑏 

 

(2.2) 

 

The equations in (2.3) combined with the results that the thrust and drag factors are related to the 

square of the propeller speeds can be rewritten in matrix form.  
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(

𝐹𝑧
𝜏𝜙
𝜏𝜃
𝜏𝜓

) = (

𝑘𝐹 𝑘𝐹 𝑘𝐹 𝑘𝐹
0 −𝑙𝑘𝐹 0 𝑙𝑘𝐹
𝑙𝑘𝐹 0 −𝑙𝑘𝐹 0
−𝑘𝑀 𝑘𝑀 −𝑘𝑀 𝑘𝑀

)

(

 
 

𝛺𝑓
2

𝛺𝑟
2

𝛺𝑏
2

𝛺𝑙
2
)

 
 

 
(2.3) 

 

 

Inverting (2.3) results in the determination of the squared propeller speeds.  

 

(

 
 

𝛺𝑓
2

𝛺𝑟
2

𝛺𝑏
2

𝛺𝑙
2
)

 
 
=

1

4𝑙𝑘𝐹𝑘𝑀
(

𝑙𝑘𝑀 0 2𝑘𝑀 −𝑙𝑘𝐹
𝑙𝐾𝑀 −2𝑘𝑀 0 𝑙𝑘𝐹
𝑙𝑘𝑀 0 −2𝑘𝑀 𝑙𝑘𝐹
𝑙𝑘𝑀 2𝑘𝑀 0 𝑙𝑘𝐹

)(

𝐹𝑧
𝜏𝜙
𝜏𝜃
𝜏𝜓

) 

 

 
( 2.4) 

 
 

 

2.2.2 Actuator Dynamics 

 

Actuator dynamics can be described by a first order model [26] 

 

 �̇�𝑖 = 𝑐𝑚(𝛺𝑖,𝑑 − 𝛺𝑖),   

 

( 2.5) 

 

where 𝛺𝑖 are the actual propeller speeds of the four quadrotor motors, 𝛺𝑖,𝑑 are the desired 

speeds, and 𝑐𝑚 is the motor gain constant taken from reference [26] to be 20 𝑠−1.    

The block diagram representation of the actuator model is shown in Figure 2.3. The 

desired thrust and torque factors commanded by the control law are translated to desired 

propeller speeds by the motor mixing block. However, the motors will not be able to ramp up to 

this desired angular speed instantly, therefore, the time delay to reach the desired levels is 

accounted for in the actuator dynamics block. The real speeds 𝛺𝑓 , 𝛺𝑟 , 𝛺𝑏 , 𝛺𝑙 are the inputs to the 

quadrotor dynamics and used to control the quadrotor motion.  

 
Figure 2.3 – Motor Mixing and Actuator Dynamics 
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2.3 Delivery Quadrotor Parameters  

 

The quadrotors parameters are selected based on the mission requirements for small package 

delivery. Figure 2.4 is a schematic showing the design parameters to be determined for the 

delivery quadrotor.  

 
Figure 2.4 – Quadrotor top-view schematic for design parameters 

 

 To estimate the moments of inertia, the ( 2.6) simplification is used to calculate the 

inertial parameters [10] 

 
𝐽𝑥 =

2𝑀𝑅2

5
+ 2𝑙2𝑚𝑚𝑜𝑡𝑜𝑟 

𝐽𝑦 =
2𝑀𝑅2

5
+ 2𝑙2𝑚𝑚𝑜𝑡𝑜𝑟 

𝐽𝑧 =
2𝑀𝑅2

5
+ 4𝑙2𝑚𝑚𝑜𝑡𝑜𝑟 

 

( 2.6) 

 

where 𝑀 is defined by ( 2.7) and 𝑅 is the estimated radius of the mass center. The parameter 

𝑚𝑞𝑢𝑎𝑑 is the mass of the quadrotor not including the payload mass, motor mass, and battery 
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mass. It is a design choice, chosen to be 3.8 𝑘𝑔 based on similarly sized quadrotors for delivery 

purposes.   

 𝑀 =  𝑚𝑞𝑢𝑎𝑑 +𝑚𝑏𝑎𝑡𝑡 +𝑚𝑝 

𝑚𝑏𝑎𝑠𝑒 = 𝑚𝑞𝑢𝑎𝑑 + 4 ∗ 𝑚𝑚𝑜𝑡𝑜𝑟 +𝑚𝑏𝑎𝑡𝑡 

𝑚 = 𝑚𝑏𝑎𝑠𝑒 +𝑚𝑝 

 

( 2.7) 

 

Since 𝐽𝑥, 𝐽𝑦, 𝐽𝑧 , 𝑚 are functions of the package mass 𝑚𝑝, an abrupt change in the payload 

mass results in a change in the total mass 𝑚 = 𝑚𝑏𝑎𝑠𝑒 +𝑚𝑝 which alters these system 

parameters during flight when a package is picked up or dropped off. As documented in the 

literature review, this can have adverse effects on the performance of a conventional controller 

and can lead to instability issues. The design parameters defined in Section 2.2 and Section 2.3 

are summarized in Table 2.1. For the purposes of the simulation model, the actuator parameters 

𝐾𝐹 and 𝐾𝑀 are taken from a previous design [27].   

Table 2.1 – Summary of design parameters 

Parameter Description Value Unit 

𝑚𝑏𝑎𝑡𝑡 battery mass 3.673 𝑘𝑔 

𝑚𝑚𝑜𝑡𝑜𝑟 single motor mass 0.325 𝑘𝑔 

𝑚𝑞𝑢𝑎𝑑 base quadrotor mass 3.8 𝑘𝑔 

𝑙 length 0.6 𝑚 

𝑅 radius of mass center 0.15 𝑚 

𝐾𝐹 rotor drag factor 4.5𝑥10−4 𝑘𝑔 ∙ 𝑚2 

𝐾𝑀 motor thrust factor 0.45𝑥10−5 𝑘𝑔 ∙ 𝑚 

𝑐𝑚 motor gain 0.2𝑥102 1/𝑠 
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2.4 Rigid Body Dynamics of Delivery Quadrotor 

 

The equations of motion for the quadrotor are derived assuming the structure connecting the 

four rotors is a rigid body and the body axes coincides with the principal axes of rotation so that 

the moment of inertia tensor 

 

𝑱 = (

 𝐽
𝑥

0 0

0 𝐽
𝑦

0

0 0 𝐽
𝑧

) 

 

(2.8) 

 

is diagonal. The origin of the body axes is set to the center of mass. It is assumed the mass is 

distributed symmetrically along the 𝑥 and 𝑦 axes so that the moments of inertia 𝐽𝑥 = 𝐽𝑦. The 

package mass is assumed to be rigidly attached to the base of the quadrotor. The equations for 

the rigid body dynamics of a quadrotor are taken from references [10], [26] and summarized 

from (2.9) to (2.12). The equations were developed with the rotation conventions shown in Figure 

2.2. A summary of the variables used to describe the motion of the quadrotor is summarized in 

Table 2.2. 

 

Table 2.2 – Summary of variables for rigid body quadrotor dynamics 

Variable Description 

𝑋 inertial north position along 𝐼�̂� 

𝑌 inertial east position 𝐽�̂�  

𝑍 altitude measured along −𝐾�̂� 

𝑢 body frame velocity measured along 𝑖�̂� 

𝑣 body frame velocity measured along 𝑗�̂� 

𝑤 body frame velocity measured along 𝑘�̂� 

ϕ Euler defined roll angle 

θ Euler defined pitch angle 

ψ Euler defined yaw angle 

𝑝 roll rate measured along 𝑖�̂� 

𝑞 pitch rate measured along 𝑗�̂� 

𝑟 yaw rate measured along 𝑘�̂� 
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Applying the motor dynamics summarized in (2.2) and (2.3) yields the control input equations in 

(2.13). 

Table 2.3 – Summary of equations of motion for rigid body quadrotor dynamics 

 KINEMATIC EQUATIONS – TRANSLATION 

 

�̇� = (𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜃)𝑢 + (−𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙 + 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙)𝑣 + (𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙 + 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙)𝑤 

�̇� = (𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜃)𝑢 + (𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙 + 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙)𝑣 + (−𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜙 + 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙)𝑤 

�̇� = (𝑠𝑖𝑛𝜃)𝑢 + (−𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙)𝑣 + (−𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙)𝑤 

 

(2.9) 
 

 FORCE EQUATIONS 

 

�̇� = (𝑣𝑟 − 𝑤𝑞) − 𝑔𝑠𝑖𝑛𝜃 

�̇� = (𝑤𝑝 − 𝑢𝑟) + 𝑔𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙 

�̇� = (𝑢𝑞 − 𝑣𝑝) + 𝑔𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙 −
𝑈𝑧
𝑚

 

 

(2.10) 
 
 

 KINEMATIC EQUATIONS – ROTATION  

 

�̇� = 𝑝 + (𝑠𝑖𝑛𝜙𝑡𝑎𝑛𝜃)𝑞 + (𝑐𝑜𝑠𝜙𝑡𝑎𝑛𝜃)𝑟 

�̇� = (𝑐𝑜𝑠𝜙)𝑞 + (−𝑠𝑖𝑛𝜙)𝑟 

�̇� = (𝑠𝑖𝑛𝜙/𝑐𝑜𝑠𝜃)𝑞 + (𝑐𝑜𝑠𝜙/𝑐𝑜𝑠𝜃)𝑟 

 

(2.11) 
 
 

 MOMENT EQUATIONS 

 

�̇� =
𝐽𝑦  − 𝐽𝑧

𝐽𝑥
𝑞𝑟 +

𝑈𝜙

𝐽𝑥
 

�̇� =
𝐽𝑧  −  𝐽𝑥
𝐽𝑦

𝑝𝑟 +
𝑈𝜃
𝐽𝑦

 

�̇� =
𝐽𝑥  −  𝐽𝑦

𝐽𝑧
𝑝𝑞 +

𝑈𝜓

𝐽𝑧
 

(2.12) 
 

 CONTROL INPUT EQUATIONS 

 

𝐹𝑧 = 𝐾𝐹(𝛺𝑓
2 +𝛺𝑟

2 + 𝛺𝑏
2 + 𝛺𝑙

2) 

𝜏𝜙 = 𝑙𝐾𝐹(−𝛺𝑟
2 + 𝛺𝑙

2) 

𝜏𝜃 = 𝑙𝐾𝐹(𝛺𝑓
2 − 𝛺𝑏

2) 

𝜏𝜓 = 𝐾𝑀(−𝛺𝑓
2 + 𝛺𝑟

2 − 𝛺𝑏
2 + 𝛺𝑙

2) 

 

  
(2.13) 
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2.5 State Variable Representation of Nonlinear Model  

 

The equations of motion can be represented in a state variable representation by defining 

the state vector 𝒙 as 𝑥 = [𝑋𝑌𝑍𝑢𝑣𝑤𝜙𝜃𝜓𝑝𝑞𝑟]𝑇 = [𝑥1 𝑥2 ∙∙∙ 𝑥12]
𝑇 and the control vector 𝒖 as 𝑢 =

[𝐹𝑧 𝜏𝜙 𝜏𝜃 𝜏𝜓]
𝑇
= [𝑢1𝑢2𝑢3𝑢4]

𝑇. The equations from (2.9) to (2.13) can be written compactly as a 

system of differential equations �̇� = 𝑓(𝑥 , 𝑢). These equations are summarized in Appendix B.1 

and implemented in Simulink in the subsystem structures shown in Appendix B.2 for a 

complete nonlinear model of the quadrotor system.  

2.6 Simulink Model and Simulation  

 

2.6.1 Quadrotor and Actuator Dynamics  

 

Ultimately, the controller developed in the next chapters must be tested against the 

complete nonlinear model of the quadrotor dynamics. Therefore, a 6DOF Simulink model was 

developed using the actuator dynamics and the equations of motions summarized in Sections 

2.2 through 2.6. The equations were developed using Simulink block structures shown in 

Appendix B.2 and condensed into the system shown in Figure 2.5 with subsystems representing 

the motor mixing, actuator dynamics, quadrotor dynamics, and data logging. This comprises the 

“open-loop system” of the quadrotor.   

 

 
Figure 2.5 – Simulink model of actuator and quadrotor dynamics 

 

 A test nonlinear simulation is completed using the system parameters in Table 2.4. The 

output of the motor mixing and actuator dynamics to the commanded thrust and torque factors 

summarized in Table 2.5 are shown in Section 2.7.3. The output of the payload estimator is 
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shown in Section 2.7.2 with a convergence of the estimated payload mass 𝑚�̂� to the real mass 

𝑚𝑝. The open-loop, unstable state responses to the propeller speeds listed in Table 2.5 are shown 

in Section 2.7.4.  

Table 2.4 – Simulation system parameters 

Parameter Description Value Unit 

𝑚 quadrotor mass without payload 8.733 𝑘𝑔 

𝑚𝑝 payload mass 1.0 𝑘𝑔 

𝑔 gravitational acceleration 9.81 𝑚/𝑠2 

𝐽𝑥 moment of inertia 0.3103 𝑘𝑔 ∙ 𝑚2 

𝐽𝑦 moment of inertia 0.3103 𝑘𝑔 ∙ 𝑚2 

𝐽𝑧 moment of inertia 0.5443 𝑘𝑔 ∙ 𝑚2 

 

Table 2.5 – Input parameters 

Parameter Description Value Unit 

𝐹𝑧 net thrust force 95.87 𝑁 

𝜏𝜙 rolling torque 0 𝑁 ∙ 𝑚 

𝜏𝜃 pitching torque 0 𝑁 ∙ 𝑚 

𝜏𝜓 yawing torque 0 𝑁 ∙ 𝑚 

𝛺𝑓 front propeller speed 230.79 𝑟𝑎𝑑/𝑠 

𝛺𝑟 right propeller speed 461.57 𝑟𝑎𝑑/𝑠 

𝛺𝑏 rear propeller speed 230.79 𝑟𝑎𝑑/𝑠 

𝛺𝑙 left propeller speed 923.14 𝑟𝑎𝑑/𝑠 
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2.6.2 Actuator Responses 

 

 
Figure 2.6 – Motor mixing 
 

2.6.3 Open-Loop State Responses 

 

 
Figure 2.7 – Open-loop response of inertial positions 
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Figure 2.8 – Body frame velocity open-loop response 
 

 
Figure 2.9 – Euler angle open-loop responses 
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Figure 2.10 – Euler rate open-loop responses 

 

2.7 Linear, Parameter Dependent Model 

 

 To develop a controller using methods from linear systems theory, the nonlinear 

equations of motion are linearized using Jacobian linearization at hovering conditions. At this 

state, the quadrotor must counteract the downward force of gravity. Therefore, the motor 

angular speeds 𝛺𝑖 are equal in magnitude and the vertical forces 𝐹𝑖 from each propeller must 

produce a thrust equal to 𝑚𝑔/4 yielding 𝐹𝑧 = 𝑚𝑔. From equation (2.13), the motor speeds at 

hover are given by 

 

 
𝛺ℎ𝑜𝑣 = √

𝑚𝑔

4𝐾𝐹
. 

 

(2.14) 

 

Also, the position 𝑟0 = [𝑋0 𝑌𝑜 𝑍0] and the heading (yaw) angle 𝜓 = 𝜓0 are fixed in a nominal 

hover state. Since the roll and pitch angles are assumed to be small in this state, small angle 

approximations are applied, 𝑐𝑜𝑠𝜙 ≌ 1, 𝑐𝑜𝑠𝜃 ≌ 1, 𝑠𝑖𝑛𝜙 ≌ 𝜙, 𝑠𝑖𝑛𝜃 ≌ 𝜃.    
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Note that in a hover state, from equation (2.11), the body angular speeds are roughly equal to the 

Euler angle rates,  [𝑝𝑞𝑟] ≌ [�̇��̇��̇�]. 

With these assumptions, the nonlinear equations are linearized with an equilibrium point 

at 𝑥∗ = [𝑋0 𝑌𝑜 𝑍0 0 0 0 0 0 𝜓0 0 0 0] and an operating point at 𝑢∗ = 𝑚𝑔 ∙

[1 0 0 0]. This is accomplished using the linearization function at the end of the 

MALTAB script in Appendix A.1 applied to the nonlinear system derive the linear, parameter 

dependent model given by (2.15). 

 

 �̇� = 𝐴𝒙 + 𝐵𝒖 

 

(2.15) 

 

 

where 𝐴 =  

[
 
 
 
 
03𝑥3 𝑆3𝑥3

1 03𝑥3 03𝑥3
03𝑥3 03𝑥3 𝑆3𝑥3

2 03𝑥3
03𝑥3 03𝑥3 03𝑥3 𝑆3𝑥3

3

03𝑥3 03𝑥3 03𝑥3 03𝑥3]
 
 
 
 

 and 𝐵 =

[
 
 
 
 
 
05𝑥1 05𝑥1 05𝑥1 05𝑥1
−1/𝑚 0 0 0
03𝑥1 03𝑥1 03𝑥1 03𝑥1
0 1/𝐽𝑥 0 0
0 0 1/𝐽𝑦 0

0 0 0 1/𝐽𝑧]
 
 
 
 
 

. The 

smaller matrix entries are defined by ( 2.16). Recall the moment of inertias are also mass 

dependent. Also note that 𝑥∗ and 𝑢∗ satisfy the equilibrium condition 𝑓(𝑥, 𝑢)|𝑥∗,𝑢∗ = 0.  

 

 

 

 
𝑆3𝑥3
1 = (

𝑐𝑜𝑠𝜓0 −𝑠𝑖𝑛𝜓0 0
𝑠𝑖𝑛𝜓0 𝑐𝑜𝑠𝜓0 0
0 0 −1

) 

 

𝑆3𝑥3
2 = (

0 −𝑔 0
𝑔 0 0
0 0 0

) 

 

𝑆3𝑥3
3 = (

1 0 0
0 1 0
0 0 1

) 

 

( 2.16) 
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This model is extended in Chapter 5 to derive an LPV model specified for a parameter 

space as the parameter ρ varies in a bounded parameter box. The LPV model is then used to 

derive the automatically gain scheduled controller.  

2.8 Controllability and Observability  

 

A check on the controllability and observability of the state space model at a sample 

parameter is completed. Using the MATLAB functions 𝑐𝑡𝑟𝑏 and 𝑜𝑏𝑠𝑣, the rank of both the 

controllability and observability matrix is full rank, 𝑛 = 12. Therefore, the system (2.15) is fully 

controllable and fully observable. However, for the LPV system, quadratic stabilizability and 

quadratic detectability must be satisfied, which is discussed in Chapter 3 and 6. 
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3. CHAPTER 3  

 

LPV CONTROL THEORY  

 

3.1 Introduction 

 

This chapter presents a linear parameter varying control strategy to control the general LPV 

system ( 1.1) based on the LPV ℋ∞ self-scheduling technique introduced in the literature review. 

The mathematical tools required to develop this controller are summarized. For the systems 

discussed, the closed-loop linear system 

 �̇� = 𝐴𝑥 + 𝐵𝑤 

𝑦 = 𝐶𝑥 + 𝐷𝑤 

 

(3.1) 

 

and closed loop LPV system with state space matrices 

 𝐴(𝜌), 𝐵(𝜌), 𝐶(𝜌), 𝐷(𝜌) ≜ 𝒜,𝔅, 𝒞, 𝒟  

 

(3.2) 

 

are considered in the formulations presented in the next sections. Linear matrix inequalities 

(LMIs) are utilized to transform suitable control problems into tractable formats which can be 

solved using optimization solvers. The development of numerical methods and availability of 

greater computing power has made it possible to efficiently solve LMIs. An important 

advantage of LMIs in control theory is they can be formulated as convex optimization problems 

that are computationally tractable [28]. In such a formulation, many types of control problems 

for which no analytical solution has been found can be solved using LMI methods [28]. LMI 

problems can be solved with tools such as the MATLAB Robust Control Toolbox [29] or the 

software package CVX, a MATLAB-based modeling system for convex optimization [30]. 

Many controls problems can be formulated in terms of LMIs [11]. For this study, the ℋ∞ 

controller design is utilized to develop the proposed LPV controller. It was shown by Apkarian 

and Gahinet in [4] this control problem can be solved by posing it as an LMI. Therefore, a brief 

overview of the mathematical properties and techniques of LMIs is presented.  
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3.2 Linear Matrix Inequalities  

 

Matrix inequalities that are linear or affine in a set of matrix variables are called linear 

matrix inequalities. The basic form of an LMI can be written as  

 
𝐹(𝑥) ≜ 𝐹0 +∑𝑥𝑖𝐹𝑖

𝑚

𝑖=1

> 0, 

 

(3.3) 

 

where 𝑥 ∈ ℛ𝑚 is the variable of interest and 𝐹𝑖, 𝐹0 are constant, symmetric, and real matrices. 

The variable 𝑥𝑖 is composed of a single vector composed by stacking column vectors from one 

or many matrices [11]. Therefore, the function 𝐹(𝑥) is expanded 

 
𝐹(𝑥) = 𝐹(𝑋1, 𝑋2, … , 𝑋𝑛) = 𝐹0 +∑𝐺𝑖𝑋𝑖𝐻𝑖

𝑚

𝑖=1

> 0, 
(3.4) 

 

 

where 𝑋𝑖 ∈ ℛ
𝑞𝑖𝑥𝑝𝑖 are the matrix variables of interest and 𝐺𝑖 , 𝐻𝑖 are given matrices. Several 

types of LMI problems are categorized in the literature. For this study, the LMI feasibility and 

linear objective minimization problems are applicable and summarized below [11].  

• The feasibility problem seeks to find a solution 𝑋1, 𝑋2, … , 𝑋𝑛 such that the inequality 

(3.4) 𝐹(𝑥) > 0 holds with no consideration of the optimality of the solution and no 

guarantee of the uniqueness of the solution.  

• The goal of the linear objective minimization problem is to minimize or maximize a 

linear scalar function 𝛼(𝑋𝑖) subject to satisfying the LMI constraints 𝐹(𝑋𝑖) > 0.  

3.3 Assumptions of the LPV Plant 

 

A general LPV plant can be described by the model (3.5), where exogeneous inputs 𝑤 and 

control inputs 𝑢 are mapped to controlled outputs 𝑧 and measured outputs 𝑦 [16]. 

 

𝛴𝜌 {

�̇�(𝑡) = 𝐴(𝜌)𝑥(𝑡) + 𝐵1(𝜌)𝑤(𝑡) + 𝐵2(𝜌)𝑢(𝑡)

     𝑧(𝑡) = 𝐶1(𝜌)𝑥(𝑡) + 𝐷11(𝜌)𝑤(𝑡) + 𝐷12(𝜌)𝑢(𝑡)

      𝑦(𝑡) = 𝐶2(𝜌)𝑥(𝑡) + 𝐷21(𝜌)𝑤(𝑡) + 𝐷22(𝜌)𝑢(𝑡)

 

 

(3.5) 
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The goal is to develop an LPV controller of the form (3.6) that guarantees quadratic ℋ∞ 

performance for the closed-loop system in Figure 1.5 

 �̇�𝐾 = 𝐴𝑘(𝜌)𝑥 + 𝐵𝑘(𝜌)𝑦 
𝑢 = 𝐶𝑘(𝜌)𝑥 + 𝐷𝑘(𝜌)𝑦 

 

(3.6) 

 

The methodology for the self-scheduling ℋ∞ technique given by [16] is used to control the 

quadrotor. This technique is restricted to LPV plants whose matrix descriptions depend affinely 

on the parameter 𝜌 ∈ ℛ𝑘 which varies in a polytope Ω of vertices 2𝑘. Furthermore, the 

following assumptions of the plant (3.5) must be satisfied.  

 𝐷22(𝜌) = 0 (A1) 
 

 𝐵2(𝜌), 𝐶2(𝜌), 𝐷12(𝜌), 𝐷21(𝜌) are parameter independent (A2) 
 

 The pairs (𝐴(𝜌), 𝐵2) and (𝐴(𝜌), 𝐶2) are quadratically stabilizable and 

quadratically detectable over the polytope Ω 

(A3) 
 

 

The assumption (A2) can be alleviated by filtering the control inputs and/or measurement 

outputs [16]. This is applied to the control inputs in Chapter 5 to remove the parameter 

dependence of the 𝐵 matrix.  

3.4 Bounded Real Lemma and 𝓗∞ Norm 

 

To synthesize an LPV controller, the bounded-real lemma (BRL) is used. Following the 

description of the BRL in [28], the LMI 

where P is positive definite and symmetric is considered. The LMI is feasible if and only the 

linear system (3.1) satisfies the “non-expansive” condition 

 

 
∫ 𝑦𝑇𝑦 𝑑𝑡 ≤  ∫ 𝑢𝑇𝑢 𝑑𝑡

∞

0

∞

0

 

 

(3.8) 

 

 (𝐴
𝑇𝑃 + 𝑃𝐴 + 𝐶𝑇𝐶 𝑃𝐵 + 𝐶𝑇𝐷
𝐵𝑇𝑃 + 𝐷𝑇𝐶 𝐷𝑇𝐷 − 𝐼

) ≤ 0  

𝑃 > 0 

 

            (3.7) 
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for all solutions of (3.1) with zero initial conditions. An equivalent form is the bounded-real 

condition applied to the transfer function matrix of the linear system (3.1) 

 𝐺(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷 (3.9) 

 

expressed as ‖𝐺‖∞ ≤ 1 where ‖𝐺‖∞ = 𝑠𝑢𝑝{‖𝐺(𝑠)‖ | 𝑅𝑒(𝑠) > 0}. This is called the ℋ∞ norm 

of 𝐺(𝑠).  

To calculate the ℋ∞ norm of the transfer function from 𝑤 to 𝑧 for the system (3.1) is 

equivalent to solving the optimization problem  

 𝑚𝑖𝑛 𝛾 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (
𝐴𝑇 + 𝑃𝐴 𝑃𝐵 𝐶𝑇

𝐵𝑇𝑃 −𝛾𝐼 𝐷𝑇

𝐶 𝐷 −𝛾𝐼
) < 0 

 

(3.10) 

 

in 𝑃 > 0 [11]. The uniqueness of 𝑃 > 0 is not guaranteed, but 𝛾 > 0 is unique.    

For a closed-loop LPV system (3.2), the system has quadratic ℋ∞ performance 𝛾 if and 

only if there exists a positive definite matrix 𝑃 such that (3.11) holds for the operating range of 

the parameter vector 𝜌 [17]. 

 

(

𝐴𝑇(𝜌) + 𝑃𝐴(𝜌) 𝑃𝐵(𝜌) 𝐶𝑇(𝜌)

𝐵𝑇(𝜌)𝑃 −𝛾𝐼 𝐷𝑇(𝜌)

𝐶(𝜌) 𝐷(𝜌) −𝛾𝐼

) < 0 

 

(3.11) 
 

 

3.5 LPV Control Using 𝓗∞ Self-Scheduling Technique 

 

Recall the parameter dependent LPV controller expressed in the form 

where 𝐾 represents the controller and 𝑦 represents the measurement vector. After finding the 

matrix 𝑃, the existence of a quadratic Lyapunov function 𝑉(𝑥) = 𝑥𝑇𝑃𝑥 is required to guarantee 

ℋ∞ performance and asymptotic stability for the entire parameter space of ρ [17]. Using the 

 �̇�𝐾 = 𝐴𝑘(𝜌)𝑥 + 𝐵𝑘(𝜌)𝑦 

𝑢 = 𝐶𝑘(𝜌)𝑥 + 𝐷𝑘(𝜌)𝑦 

 

(3.12) 
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methodology in [31], the parameter dependent controller gains 𝐾(𝜌) are obtained by expressing 

LTI vertices of a parameter space in an affine polytopic form and finding the resultant gains 

 𝐾(𝜌) = ∑ ∑ 𝜎1,𝑖𝜎2,𝑗
𝑞
𝑗=1 𝐾𝑟

𝑞
𝑖=1 , 

 

(3.13) 
 

where 𝑞 is the number of LTI vertices, 𝐾𝑟 = (
𝐴𝐾𝑖,𝑗 𝐵𝐾𝑖,𝑗
𝐶𝐾𝑖,𝑗 𝐷𝐾𝑖,𝑗

) , and 𝜎1,𝑖𝜎2,𝑗 are two weighting 

functions used in the interpolation of the controller gains. With the ℋ∞ self-scheduling 

technique, the LPV system and LPV controller interpolate automatically based on the weighting 

functions to produce the gains and update based on the condition of the parameter ρ. The 

parameter dependent gains (3.13) and the controller form (3.12) can be computed using the 

Robust Control Toolbox’s hinfgs function. A summary for the characteristic LMI system 

calculation is provided below.  

Characteristic LMI System Calculation 

1. LPV controller guarantees some quadratic ℋ∞ performance level 𝛾 for the closed 

loop system acting in the polytope Ω if and only if there exist two symmetric matrices 

𝑅 and 𝑆 satisfying the following LMI’s: 

(
𝑅 𝐼
𝐼 𝑆

) ≥ 0 

 

(
𝒩𝑅 0
0 𝐼

)
𝑇

(

𝐴𝑖𝑅 + 𝑅𝐴𝑖
𝑇 𝑅𝐶1𝑖

𝑇 𝐵1𝑖
𝐶1𝑖𝑅 −𝛾𝐼 𝐷1𝑖
𝐵1𝑖

𝑇 𝐷1𝑖
𝑇 −𝛾𝐼

)(
𝒩𝑆 0
0 𝐼

) < 0 

 

(
𝒩𝑆 0
0 𝐼

)
𝑇

(
𝐴1𝑖

𝑇𝑆 + 𝑆𝐴𝑖 𝑆𝐵1𝑖 𝐶1𝑖
𝑇

𝐵1𝑖
𝑇𝑆 −𝛾𝐼 𝐷1𝑖

𝑇

𝐶1𝑖 𝐷1𝑖 −𝛾𝐼

) (
𝒩𝑆 0
0 𝐼

) < 0 

𝑖 = 1…𝑞 

where 𝒩𝑅 and 𝒩𝑆 are the bases of the null spaces of (𝐵2
𝑇 , 0) and (𝐶2, 𝐷2). 

2. From the R and S matrices found in Step 1:  
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a. Compute full-rank matrices M,N such that MNT = I − RS, where I is the identity 

matrix. 

b. Compute XCL as the unique solution of the matrix equation Π2 = XCLΠ1,  

        where Π2 = (
S I
NT 0

)  and Π1 = (
I R
0 MT). 

3. With XCL, a possible controller Ωi = (
Aki Bki
Cki Dki

) is any solution of the matrix 

inequality 

(

ACL(wi)
TXCL + XCLACL(wi) XCLBCL(wi) CCL(wi)

T

BCL(wi)
TXCL −γI DCL(wi)

T

CCL(wi) DCL(wi) −γI

) < 0 

 

This process is internally computed by the hinfgs function. The LMI approach to LPV 

controls design can be summarized as follows [32]. 

1. For a desired closed-loop system property, derive a sufficiency analysis condition.  

2. Evaluate this condition on the LPV closed loop system with the generalized structure of 

the plant and controller in feedback. 

3. Find the control parameters using a convex search with LMIs. 

4. If the search is successful, extract the controller parameters. 

Note this process is based on a sufficiency condition, meaning if the search is unsuccessful, the 

LMI constraints applied to the system can be adjusted in an iterative process until a controller 

candidate is found. The LPV representation of the quadrotor using affine and polytopic forms is 

described in Chapter 5 and the LPV control is developed in Chapter 6.  
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4 CHAPTER 4  

 

ONLINE ADAPTIVE PARAMETER ESTIMATION 
 

4.1 Introduction 

 

For the control law to be developed, LPV theory depends on the parameters to be measured 

or estimated in real-time. Estimation of unknown parameters linear in the equations of motion is 

a common problem in robotics and control applications [26]. To estimate the mass, an adaptive 

estimator based on the gradient descent method is utilized. The estimate is determined online 

and fed into convex constructions which determine the controller gains.  

4.2 Gradient Descent Adaptive Law  

 

The adaptive estimator based on the gradient descent method is described in this section. A 

process to develop this estimator is taken from [33], a set of adaptive control notes, and 

summarized as follows. Define a transfer function 𝐺(𝑠) as 

 
𝐺(𝑠) =

𝑧𝑚𝑠
𝑚 + 𝑧𝑚−1𝑠

𝑚−1+. . . +𝑧0
𝑠𝑛 + 𝑝𝑛−1𝑠𝑛−1+. . . +𝑝0

, 

 

(4.1) 

 

where 𝐺(𝑠) is strictly proper with 𝑚 = 𝑛 + 1 and represents a SISO system. Let 𝐺(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
 

and rearrange, 

 𝑠𝑛𝑌(𝑠) + 𝑝𝑛−1𝑠
𝑛−1𝑌(𝑠) + . . . + 𝑝0𝑌(𝑠) = 𝑧𝑚𝑠

𝑚𝑈(𝑠) + 𝑧𝑚−1𝑠
𝑚−1𝑈(𝑠) + . . . + 𝑧0 

 

(4.2) 

 

To ensure stable parameter convergence, define a Hurwitz characteristic polynomial Λ(𝑠) 

 Λ(𝑠) = 𝑠𝑛 + λ𝑛−1𝑠
𝑛−1 + λ𝑛−2𝑠

𝑛−2 +⋯+ λ0. 

 

(4.3) 

 

In a parameter estimation problem, for any 𝐺(𝑠) there is a set of known and unknown 

coefficients for 𝑝𝑖 and 𝑧𝑖. The unknown coefficients are the parameters to be estimated. 

Rearrange (4.2) so that the known terms are on the left-hand side and the unknown terms are on 

the right-hand side. Dividing each side by Λ(𝑠) and rearranging results in the equations (4.4) 

 



35 
 

 �̅�(𝑠) = 𝑌(𝑠) + 𝑌�̅�(𝑠) + 𝑈𝑓̅̅ ̅(𝑠) 

�̅�(𝑡) = 𝑦(𝑡) + 𝑦𝑓(𝑡) + 𝑢𝑓(𝑡) 

�̅�(𝑠) = 𝛷𝑇(𝑠)𝛩, 

 

(4.4) 

 

where 𝛷(𝑠) and 𝛩 are defined by (4.5).  

 

 

            

(4.5) 

 

 

 Input and output filter generators are defined by (4.6)  

  

ξ̇ = 𝐴ξ + 𝐵𝑢(𝑡) 

η̇ = Aη + By(t) 

 

(4.6) 

 

where 𝐴 and 𝐵 are written in control canonical form,  

𝐴 =

[
 
 
 
 
0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1
−𝜆0 −𝜆1 −𝜆2 ⋯ −𝜆𝑛−1]

 
 
 
 

 and 𝐵 =

[
 
 
 
 
0
0
⋮
0
1]
 
 
 
 

. 

These state equations guarantee stability of the adaptive process through 𝛬(𝑠). The filtered 

input and output defined in (4.7) correspond to the known coefficients in the expressions in (4.4) 

for �̅�(𝑠) where 𝐶𝑢 and 𝐶𝑦 are vectors whose entries are the known values based on the order of 

𝑠. 

 𝑢𝑓(𝑡) = 𝐶𝑢ξ 

𝑦𝑓(𝑡) = 𝐶𝑦η 

(4.7) 
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Similarly, the state selectors 𝐶𝐼 and 𝐶0 in (4.8) select the transfer functions defined in 𝛷(𝑠) 

based on the order of 𝑠.  

 𝑅 = 𝐶𝐼ξ 

𝑄 = 𝐶0η 

ϕ(t) = [
𝑅
𝑄
] 

 

(4.8) 

 

With ϕ(t) and normalizing function 𝑚2, the gradient descent adaptive law is given by (4.9)   

The gradient law updates the estimate �̂� based on information of 𝑦(𝑡) and 𝜙(𝑡) [34]. An 

important requirement for the adaptive estimator is it must satisfy the “persistency of 

excitation” condition to ensure parameter convergence [34]. A bounded signal x(t) is 

persistently exciting if there exist 𝛿 > 0 and 𝛼0 > 0 such that  

 ∫ x(t)x𝑇(𝑡)𝑑𝑡
𝜎+𝛿

𝜎
≥ 𝛼0𝐼, ∀ 𝜎 ≥ 𝑡0. 

 

(4.10) 

 

This means the control input must have at least an equal number of frequencies and number of 

unknown parameters. 

4.3 Application to Quadrotor Mass Estimation 

 

The linearized model derived in Section 2.8 is used to derive the transfer function 𝐺(𝑠) for 

the estimator design. In pure translation in the 𝐸�̂� direction, only the control input 𝐹𝑧 is of 

interest. The first column of 𝐵 is set to 𝐵𝑆𝐼. The transfer function from 𝐹𝑧  to each state are then 

found by 

 𝐺(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵𝑆𝐼 

𝐶 = 𝐼12𝑥12 

𝐵𝑆𝐼 = [01𝑥5 −1/𝑚 01𝑥6]
𝑇. 

(4.11) 

 

  

𝑚2 = 1 + ϕ𝑇ϕ 

𝜐 = �̅� − ϕ𝑇�̂� 

�̂� = [𝑧0̂ . . . 𝑧�̂� | 𝜆0 − 𝑝0̂ . . . 𝜆𝑛−1 − 𝑝𝑛−1̂]
𝑇 

�̇̂� =
ϕ𝜐

𝑚2
 

𝛩0̂ = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒. 

 

(4.9) 
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The resultant vector of transfer functions is given by (4.12) with 𝐺𝐹𝑧→𝑍(𝑠) =
1

𝑚𝑠2
  and 

𝐺𝐹𝑧→𝑤(𝑠) =
−1

𝑚𝑠
. 

 
𝐺(𝑠) = [0 0

1

𝑚𝑠2
0 0

−1

𝑚𝑠
0 0 0 0 0 0]

𝑇

. 

 

(4.12) 

 

Since only a single parameter is to be estimated and the transfer functions are first and 

second order, the gradient descent method procedure is greatly simplified. Also, since there is 

only one unknown, the input only needs a single frequency to satisfy the persistency of 

excitation condition. Choosing 𝐺𝐹𝑧→𝑤(𝑠) to be the simplest transfer function to implement the 

gradient descent algorithm yields the gradient law 

  

�̇� = −10𝜉 + 𝐹𝑧 

�̇� = −10𝜂 + 𝑤 

�̂� = 1 𝑚⁄̂  

�̇̂� = 𝛾
𝜉(𝑤 − 10𝜂 − 𝜉�̂�)

1 + 𝜉2
, 𝛩0̂ = 𝛩(0), 𝛾 > 0 

 

(4.13) 

 

 

 

Derivation 

Let 𝛬(𝑠) = 𝑠 + 𝜆0 be a stable characteristic polynomial and define 
𝑌(𝑠)

𝑈(𝑠)
=

−1

𝑚𝑠
.  

Then 𝑠 = 𝛬(𝑠) − 𝜆0 and −𝑠𝑌(𝑠) =
1

𝑚
𝑈(𝑠). To avoid a zero crossing of the parameter, define 

𝑧0 = 1/𝑚. 

 

The negative sign is neglected in the subsequent derivation, but it is noted that the sign on the 

transfer function is accounted for by negating the time domain output in implementation. 

Dividing 𝛬(𝑠) on both sides,  

 
𝑠𝑌(𝑠)

𝛬(𝑠)
=
𝑧0𝑈(𝑠)

𝛬(𝑠)
 → 

(𝛬(𝑠)−𝜆0)𝑌(𝑠)

𝛬(𝑠)
=
𝑧0𝑈(𝑠)

𝛬(𝑠)
 → Y(s) − 𝜆0

𝑌(𝑠)

𝛬(𝑠)
=
𝑧0𝑈(𝑠)

𝛬(𝑠)
  

 

Define �̅�(𝑠) = 𝑌(𝑠) − 𝜆0
𝑌(𝑠)

𝛬(𝑠)
 → �̅�(𝑡) = 𝑦(𝑡) − 𝑦𝑓(𝑡) 
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For the right-hand side, set 𝛷(𝑠) =
𝑈(𝑠)

𝛬(𝑠)
 and 𝛩 = 𝑧0 → �̅�(𝑠) = 𝛷(𝑠)𝛩 

➢ Input Filter Generator  

�̇� = −𝜆0𝜉 + 𝑢 and 𝑅 = 1 ∙ 𝜉 

 

➢ Output Filter Generator 

�̇� = −𝜆0𝜂 + 𝑦 and 𝑦𝑓(𝑡) = 𝜆0𝜂 

 

Set ϕ(t) = R and choose −10 as a stable pole:  𝛬(𝑠) = 𝑠 + 10 

 

➢ Gradient Law  

�̇� = −10𝜉 + 𝐹𝑧 

�̇� = −10𝜂 + −𝑤 

𝑚2 = 1 + ϕ2 = 1 + 𝜉2 

�̂� = 𝑧0̂ = 1/�̂� 

�̅� = 𝑤 − 10𝜂 

𝜐 = �̅� − ϕ𝑇�̂� = 𝑤 − 10𝜂 − 𝜉�̂� 

�̇̂� =
ϕ𝜐

𝑚2
 → �̇̂� =

𝜉(𝑤−10𝜂−𝜉�̂�)

1+𝜉2
 

Adding a rate of convergence gain 𝛾, 𝛾 > 0, to be tuned in simulation, results in the final 

equations 

�̇� = −10𝜉 + 𝐹𝑧 

�̇� = −10𝜂 + 𝑤 

�̂� = 1 𝑚⁄̂  

�̇̂� = 𝛾
𝜉(𝑤 − 10𝜂 − 𝜉�̂�)

1 + 𝜉2
, �̂� = 𝛩(0), 𝛾 > 0 

 

 

If necessary, 𝜆0 can be treated as a design variable along with 𝛾. There is a tradeoff 

between convergence time and estimation error. The gain 𝛾 is tuned so that a desired 

convergence time is achieved without causing the parameter trajectory to diverge. In general, 

allowing more energy into the system can result in fast convergence and reduced error, but with 

the consequence of increased computational demands.  

The above gradient law is applicable to the linear system ( 2.16). Applying the estimator 

against the nonlinear system requires a further modification. Recall the equilibrium point of the 

control input used to linearize the plant is 𝑢𝑒 = [𝑚𝑔 0 0 0]. Neglecting the rise time due 
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to the actuator dynamics, the linear input 𝑈𝐿 = 𝐶 is a constant signal. Therefore, with respect to 

the input 𝐹𝑧 into the nonlinear system,  

 𝑈𝐿 = 𝐹𝑧 − 𝑢𝑒 = 𝐹𝑧 −𝑚𝑔 

𝐹𝑧 = 𝑈𝐿 +𝑚𝑔 

 

(4.14) 

 

This shows applying 𝐹𝑧 directly would require knowledge of the unknown mass to be 

estimated, defeating the purpose of the estimator. The following modification is made. 

Modification 

Let 
𝑌𝐿(𝑠)

𝑈𝐿(𝑠)
=

1

𝑚𝑠
 and 𝐹𝑧 = 𝑈𝐿 +𝑚𝑔.  

It follows 𝑌(𝑠) = (
𝑌𝐿

𝑈𝐿
) 𝐹𝑧 → 𝑌(𝑠) = (

1

𝑚𝑠
) (𝐶 + 𝑚𝑔) 

𝑌(𝑠) =
𝐶

𝑚𝑠
+
𝑚𝑔

𝑚𝑠
 →𝑌(𝑠) =

𝐶

𝑚𝑠
+
𝑔

𝑠
 

Note the mass in the additional term in 𝑌(𝑠) cancels out for this formulation. Therefore, the 

output 𝑦(𝑡) is adjusted by adding in the time domain ∫𝑔𝑑𝑡 to the state -𝑤. 

 

The implementation of the mass estimator in Simulink is shown in Figure 4.1. Note that 

𝑤 is negated in an outside subsystem and the ∫𝑔𝑑𝑡 is added to account for the operating point 

used to linearize the nonlinear system. The estimate �̂� is inverted at the output of the estimator 

to obtain the estimate total mass �̂�. Subtracting 𝑚𝑏𝑎𝑠𝑒 from �̂� yields the estimate package mass 

𝑚�̂�.   

 
Figure 4.1 – Simulink implementation of mass estimator based on gradient descent law 

4.4 Hover State Conditioning 

 

The mass estimation is engaged only when the quadrotor is in a hover state at the point of 

payload pickup or drop off, typically done at launch. In a hover state, the mass cannot be 
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estimated using the estimator as this will not satisfy the persistency of excitation condition. 

Therefore, a “hover up” control input needs to be applied with enough force to translate the 

quadrotor in vertical flight. This action allows the estimator to function as the persistency of 

excitation condition is satisfied. A hover trigger signal is introduced to control when this control 

input is activated. An enable signal is defined by 𝐻𝑂𝑉_𝐸𝑁 in (4.15) and the trigger action is 

illustrated in Figure 4.2.  

 𝐻𝑂𝑉_𝐸𝑁 = {
1, 0 < 𝑡 < 𝜏 
0,                𝑡 > 𝜏  

 

 

(4.15) 
 

 

 
Figure 4.2 – Hover trigger enable signal and “persistency of excitation” requirement 
 

 When 𝐻𝑂𝑉_𝐸𝑁 is true, the control commands switch to the lifting input and the 

estimator produces a new mass estimate. It is assumed this signal is triggered by a latching, 

gripping mechanism when a package is attached or dropped off. The quadrotor needs to be able 

to carry the unknown weight and fly vertically to estimate the mass. Therefore, an additional 

mass of 0.1 𝑘𝑔 and gain of 1.05 is included to 𝑈𝑝 to provide a factor of safety and the requisite 

force needed to transition from hover to vertical flight. This input also satisfies the persistency 

of excitation condition. The input 𝑈𝑝 is applied when the hover trigger is enabled. 
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 𝑚𝑎𝑥(𝑚)  =  𝑚𝑏𝑎𝑠𝑒 +𝑚𝑎𝑥(𝑚𝑝)  +  0.1

= 11.173 𝑘𝑔 

𝐹𝑧𝑝 = 1.05 ∗ 𝑚𝑎𝑥(𝑚) ∗ 𝑔 

 

(4.16) 

 

The remaining three torque inputs 𝜏𝜙, 𝜏𝜃, 𝜏𝜓 are zeroed out. Therefore, the control signal 

when the quadrotor is in the hover state for package pick up or drop-off is 𝑈𝑝 =

[𝐹𝑧𝑝 0 0 0]
𝑇
. Applying this input guarantees that the quadrotor will be able to pick up and 

lift any payload within its design specifications.  

The subsystem for hover state conditioning is detailed in Figure 4.3. Its implementation 

in Simulink is shown in Figure 4.4. As shown, the mass estimation gives a new estimate of the 

mass when the hover trigger is enabled. Otherwise, it uses the previous mass estimate. 

Additionally, the control signal is switched from the LPV commands to the input 𝑈𝑝. 

 
Figure 4.3 – Hover state conditioning subsystem  
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Figure 4.4 – Simulink implementation of hover state conditioning 
 

4.5 Simulation  

 

The mass estimator and hover state conditioning subsystems are added to the nonlinear 

system in Simulink as shown in Figure 4.5. A simulation was run for an initial estimate 𝛩0̂ =

1/𝑚𝑏𝑎𝑠𝑒, a convergence rate gain 𝛾 = 10, and the true package mass is set to 𝑚𝑝 = 2 𝑘𝑔. The 

hover trigger signal (4.15) is modeled in Simulink by a pulse generator with an amplitude of 1, 

pulse width of 50%, and 𝜏 = 10 𝑠. The input 𝑈𝑝 is applied to the system. Simulated against the 

nonlinear system, the estimator converges to the true system mass 𝑚 = 10.773 𝑘𝑔 as seen in 

Figure 4.6. 
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Figure 4.5 – Simulink system with mass estimation and hover state conditioning subsystems  
 

 
Figure 4.6 – Estimation of unknown mass with information from 𝐹𝑧 and w 
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4.6 Discussion 

 

Several methods exist in the literature for mass estimation. Therefore, justification for 

choosing an adaptive approach is necessary. As an example, consider an equilibrium search 

algorithm which enables the mass to be calculated directly when the acceleration �̇� = 0 is 

sensed after a sequence of quadrotor maneuvers. Such an approach might cause instability 

issues as the quadrotor can move towards the ground as it is searching for this point. The 

gradient law allows the mass estimation to be completed safely in the air and safeguards the 

estimation process, guaranteeing �̂� is bounded by estimating over a time period rather than 

computing at a single point in time. It also provides flexibility in the mission operations; the 

quadrotor can fly up while the mass estimation takes place and continues its planned course 

without having to run through a separate mass determination phase. It should also be noted that 

the hover state conditioning subsystem for a new mass estimate can be applied during midflight, 

providing a measure of security during mission operations in case the trigger mechanism is 

suddenly enabled. The mass can be verified or re-estimated if the package was lost. 

The convergence rate gain γ was tuned in simulation to a desired convergence time with 

zero error. The time to convergence shown in Figure 4.6 is around 0.5 𝑠. This is a reasonable 

time since the quadrotor will be in the hover state for a longer time period and represents a 

worst-case scenario since an upper bound package mass was used as the test mass. Convergence 

time and error can be decreased by adjusting the parameters of the gradient law, thereby 

allowing more energy into the system, but that offers no performance advantages in the hover 

state. The estimator also has robustness qualities. If a disturbance occurred on the input, such as 

from a wind gust, resulting in a perturbed input 𝑈 = 𝐹𝑧 + 𝑢𝛥, the mass can still be estimated 

accurately because the estimator is designed to adapt to changes in the input. The mass �̂�𝑝 is 

fed into convex constructions which give the parameter dependent gains determined online for 

the LPV controller. This is the subject of Chapter 5 and 6.  
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5 CHAPTER 5  

 

LPV SYSTEM REPRESENTATION OF QUADROTOR 
 

5.1 Introduction 

 

 The purpose of this chapter is to extend the linear, parameter dependent model described 

in Chapter 2 to develop a general LPV system that is structured for gain-scheduled ℋ∞ control. 

Functions from the MATLAB Robust Toolbox are utilized to facilitate this process. The 

generalized LPV system is parametrized by a parameter vector that varies within a bounded 

parameter box. The reader can refer to Appendix A.1 for the code developed using the functions 

referenced in this chapter.     

5.2 Parameter Space 

 

 Substituting the inertia equations ( 2.6) into the quadrotor equations of motion and 

applying the same linearization process in Section 2.7 results in a linear, parameter dependent 

model (5.1) in terms of the payload mass 𝑚𝑝. 

 �̇� = 𝐴(𝜌)𝒙 + 𝐵(𝜌)𝒖, 

 

𝐴 =  

[
 
 
 
 
03𝑥3 𝑆3𝑥3

1 03𝑥3 03𝑥3
03𝑥3 03𝑥3 𝑆3𝑥3

2 03𝑥3
03𝑥3 03𝑥3 03𝑥3 𝑆3𝑥3

3

03𝑥3 03𝑥3 03𝑥3 03𝑥3]
 
 
 
 

 and 𝐵 =

[
 
 
 
 
 
 
05𝑥1 05𝑥1 05𝑥1 05𝑥1
𝜌
1

0 0 0

03𝑥1 03𝑥1 03𝑥1 03𝑥1
0 𝜌

2
0 0

0 0 𝜌
2

0

0 0 0 𝜌
3 ]
 
 
 
 
 
 

 

(5.1) 

  

 

 

 The parameters 𝜌1, 𝜌2, 𝜌3 are fixed functions of 𝑚𝑝, defined by (5.2). From the design 

specifications, 𝑚𝑝 can vary according to 0 ≤ 𝑚𝑝 ≤ 2.3. The parameter vector 𝝆 is then defined as 

𝝆 = [𝜌1 𝜌2 𝜌3]𝑇. 
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𝜌1 =

−1

𝑚𝑝 +𝑚𝑏𝑎𝑠𝑒
 

𝜌2 =
1

0.009 ∗ 𝑚𝑝 + 0.3013
 

𝜌3 =
1

0.009 ∗ 𝑚𝑝 + 0.5353
 

 

(5.2) 

 

To specify a parameter-dependent system, a parameter box is defined by finding the 

lower and upper bounds for each parameter function in 𝝆. These parameters are defined in (5.3)  

and collected in matrix 𝑃. 

 

 𝑝𝐿1 = 𝜌
1
(𝑚𝑝)|𝑚𝑝=0

 ,   𝑝𝑈1 = 𝜌1(𝑚𝑝)|𝑚𝑝=2.3 

𝑝𝐿2 = 𝜌
2
(𝑚𝑝)|𝑚𝑝=2.3

 , 𝑝𝑈2 = 𝜌2(𝑚𝑝)|𝑚𝑝=0 

𝑝𝐿3 = 𝜌
3
(𝑚𝑝)|𝑚𝑝=2.3

 , 𝑝𝑈3 = 𝜌3(𝑚𝑝)|𝑚𝑝=0
 

 

𝛲 = (

𝑝𝐿1 𝑝𝑈1
𝑝𝐿2 𝑝𝑈2
𝑝𝐿3 𝑝𝑈3

) 

 

(5.3) 

 

 

The parameter box takes on values in a hyperrectangle of ℛ𝑘 defined by 2𝑘 vertices. 

Using the Robust Control Toolbox function pvec with input 𝛲, the parameter box for this 

system is shown in Figure 5.1. The columns give the coordinates of the 8 corners of the box. The 

parameter vector 𝝆 ranges within the box and is bounded by the vertices.  

 
Figure 5.1 – Vertices of parameter box 
 

Let 𝛱𝑖 denote the column vector of the 𝑖𝑡ℎ vertex of the parameter box and 𝝆
∗
 the 

measurement of the parameter vector online. The measured parameter is then expressed as a 

convex decomposition over the set of vertices of the parameter box [29].  
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[

𝜌1
𝜌2
𝜌3
]

∗

= 𝛼1𝛱1+. . . +𝛼8𝛱8, 𝛼𝑖 ≥ 0,∑𝛼𝑖

8

𝑖=1

= 1 

 

(5.4) 

 

This is generated by the polydec function. The parameter box vertices are stored offline 

while the convex coordinates 𝛼𝑖 are calculated online as 𝝆
∗
 is measured at time 𝑡. Note that if 

the parameter vector matched a vertex’s coordinates, representing a bound on the measurement, 

the convex set {𝛼1. . . 𝛼8} would have entry 1 corresponding to the vertex column with all other 

entries equal to 0. This function is used to compute the controller state-space matrices as the 

convex combination of controllers at the vertices, as discussed in Chapter 3 and implemented in 

Chapter 6.  

5.3 Control Input Filter 

 

The LPV control theory outlined in Chapter 3 assumes the control and measurement 

matrices are parameter independent (A2). Therefore, the control inputs are filtered to transform 

(5.1) and remove the parameter dependence of the matrix 𝐵, offloading the parameter functions 

to the transformed 𝐴 matrix. The input filter (5.5) is proposed by [16] with �̃� defined as the new 

control input, 𝐴𝑢 is Hurwitz with fast poles compared to the quadrotor poles, and 𝐵𝑢 = 𝐶𝑢 =

𝐼4𝑥4. 

 �̇�𝑢(𝑡) = 𝐴𝑢𝑥𝑢(𝑡) + 𝐵𝑢�̃�(𝑡) 

𝑢(𝑡) = 𝐶𝑢𝑥𝑢(𝑡) 

(5.5) 

 

 

With entries 𝐴(𝜌) ∈  ℛ12𝑥12, 𝐵(𝜌) ∈  ℛ12𝑥4, 𝐴𝑢 ∈  ℛ
4𝑥4, and 𝐵𝑢 ∈  ℛ

4𝑥4, the transformed 

system is given by (5.6). 

 
(
�̇�
�̇�𝑢
) = (

𝐴(𝜌) 𝐵(𝜌)𝐶𝑢
04𝑥12 𝐴𝑢

) (
𝑥
𝑥𝑢
) + (

012𝑥4
𝐵𝑢

) �̃� 

𝐴𝑢 = −100 ∗ 𝐼4𝑥4 

(5.6) 
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The system can be written compactly as (5.7) with 𝐴𝑝(𝜌) ∈  ℛ
16𝑥16 and 𝐵𝑝(𝜌) ∈  ℛ

16𝑥4. 

 �̇�𝑝(𝑡) = 𝐴𝑝(𝜌)𝑥𝑝(𝑡) + 𝐵𝑝(𝜌)�̃�(𝑡) 

 

(5.7) 

 

Note the dimension of the transformed system has increased from the original system due to the 

applied filter and �̃�(𝑡) are still the control forces defined as [𝐹𝑧 𝜏𝜙 𝜏𝜃 𝜏𝜓]
𝑇
= [𝑢1𝑢2𝑢3𝑢4]

𝑇. The 

controlled outputs 𝑧(𝑡) is given by (5.8) where 𝐶1(𝜌) = 𝐼12𝑥12 and 𝐷12(𝜌) = 012𝑥4. 

 𝑧 = (𝐶1(𝜌) 𝐷12(𝜌)𝐶𝑢) (
𝑥
𝑥𝑢
) 

 

(5.8) 

 

5.4 Disturbance Model 

 

Matched disturbances are added to the model by assuming they occur on each state equation 

containing 𝐹𝑧 , 𝜏𝜑 , 𝜏𝜃, 𝜏𝜓. This can be due to wind gusts or disturbances in a dynamic 

environment. Estimation of the actual disturbance is not utilized, instead the uncertainty 

associated with the disturbance inputs is modeled into the LPV model and the controller 

synthesis takes this information into account. 

 

𝐵1 =

[
 
 
 
 
 
05𝑥1 05𝑥1 05𝑥1 05𝑥1
1 0 0 0
03𝑥1 03𝑥1 03𝑥1 03𝑥1
0 1 0 0
0 0 1 0
0 0 0 1 ]

 
 
 
 
 

 

 

(5.9) 
 

The addition of the disturbance matrix 𝐵1 ∈ ℛ
12𝑥4 to the system (5.6) yields (5.10) where 

𝐷11(𝜌) = 𝐷12 = 012𝑥4. 

 
(
�̇�
�̇�𝑢
) = (

𝐴(𝜌) 𝐵(𝜌)𝐶𝑢
04𝑥12 𝐴𝑢

) (
𝑥
𝑥𝑢
) + (

012𝑥4
𝐵𝑢

) �̃� + (
𝐵1
04𝑥4

)𝑤𝑑 

 

𝑧 = (𝐶1(𝜌) 𝐷12(𝜌)𝐶𝑢) (
𝑥
𝑥𝑢
) + 𝐷11(𝜌)𝑤𝑑 + 𝐷12�̃� 

 

(5.10) 
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5.5 Augmented Model 

 

The general parameter dependent model (3.5) is written as (5.11) for consistency with the 

LPV assumptions (A2). 

 

𝛴𝜌 {

�̇�(𝑡) = 𝐴(𝜌)𝑥(𝑡) + 𝐵1(𝜌)𝑤(𝑡) + 𝐵2𝑢(𝑡)

     𝑧(𝑡) = 𝐶1(𝜌)𝑥(𝑡) + 𝐷11(𝜌)𝑤(𝑡) + 𝐷12𝑢(𝑡)

𝑦(𝑡) = 𝐶2𝑥(𝑡) + 𝐷21𝑤(𝑡) + 𝐷22𝑢(𝑡)

 

 

(5.11) 

 

The system can also be written as the structured system matrix 𝑆(𝜌).  

 

𝑆(𝜌) = [

𝐴(𝜌)

𝐶1(𝜌)
𝐶2

|

𝐵1(𝜌) 𝐵2

𝐷11(𝜌) 𝐷12
𝐷21       𝐷22

] 

 

(5.12) 

 

These forms are useful to visualize the model, but for implementation in MATLAB, they must 

be modified so that the system is in the basic state space form, �̇� = 𝐴𝑥 + 𝐵𝑢 and 𝑦 = 𝐶𝑥 + 𝐷𝑢. 

Define a new matrix 𝐻𝑝 and input �̃�. 

 𝐻𝑝 = [𝐵𝑝(𝜌) 𝐵1(𝜌)] 

�̃� = [
�̃�
𝑤𝑑
] 

 

(5.13) 

 

Applying the definitions (5.13) to the system (5.10) results in the equations  

 
(
�̇�
�̇�𝑢
) = (

𝐴(𝜌) 𝐵(𝜌)𝐶𝑢
04𝑥12 𝐴𝑢

) (
𝑥
𝑥𝑢
) + (𝐵𝑝(𝜌) 𝐵1(𝜌)) (

�̃�
𝑤𝑑
) 

 

𝑧 = (𝐶1(𝜌) 𝐷12(𝜌)𝐶𝑢) (
𝑥
𝑥𝑢
) + (𝐷12 𝐷11(𝜌))�̃�, 

 

(5.14) 

 

where 𝐵𝑝(𝜌) = [012𝑥4 𝐵𝑢]
𝑇 and 𝐵1(𝜌) = [𝐵1 04𝑥4]

𝑇. Note the dimensions 𝐻𝑝 ∈ ℛ
16𝑥8 and 

�̃� ∈ ℛ8 are consistent with the overall system dimensions. For the controlled outputs 𝑧(𝑡), let 

𝐶𝑝(𝜌) = (𝐶1(𝜌) 𝐷12(𝜌)𝐶𝑢) and 𝐷𝑝(𝜌) = [𝐷12 𝐷11(𝜌)]. The resultant system is written 

compactly as, 
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 �̇�𝑝(𝑡) = 𝐴𝑝(𝜌)𝑥𝑝(𝑡) + 𝐻𝑝(𝜌)�̃�(𝑡) 

𝑧𝑝(𝑡) = 𝐶𝑝(𝜌)𝑥𝑝(𝑡) + 𝐷𝑝(𝜌)�̃�(𝑡) 

(5.15) 

 

To keep the notation easier for the rest of the report, the parameter dependence is dropped on all 

matrices except for 𝐴𝑝(𝜌). Let 𝐻𝑝(𝜌) = 𝐵𝑝 and 𝐷𝑝(𝜌) = 𝐷𝑝. For this study, all states are 

assumed to be measurable, therefore 𝑦(𝑡) = 𝑧𝑝(𝑡). The LPV controller needs the 𝑥 states vector 

only, the 𝑥𝑢 states constitute a 4 − 𝑝𝑜𝑙𝑒 pre-filter before the LPV controller. Therefore, the 

measurement matrix 𝐶𝑝(𝜌) is redefined to 𝐶𝑝 = (𝐼12𝑥12|012𝑥4) to extract only the 𝑥 states. 

Redefining �̃� = 𝑢, the final system is described by (5.16). 

 �̇�𝑝(𝑡) = 𝐴𝑝(𝜌)𝑥𝑝(𝑡) + 𝐵𝑝�̃�(𝑡) 

𝑦(𝑡) = 𝐶𝑝𝑥𝑝(𝑡) + 𝐷𝑝�̃�(𝑡) 

𝑥𝑝 = [
𝑥
𝑥𝑢
] , �̃� = [

𝑢
𝑤𝑑
] 

 

(5.16) 

 

5.6 LPV Model 

 

 To obtain the overall LPV system, the parameter dependent model (5.16) is parametrized 

by the vector 𝝆 to produce an affine model. The system matrices 𝐴(𝜌), 𝐵(𝜌), 𝐶(𝜌), 𝐷(𝜌) can be 

rewritten as an affine combination of 𝝆 and parameter independent system matrices. The 

number of matrices necessary is 𝑘 + 1. These equations are summarized in Table 5.1. Note that 

matrix 𝐴 of (2.15) is evaluated at 𝜓0 = 0
°. 

Table 5.1 – Summary of matrices for LPV model  

 𝐴𝑝(𝜌) = 𝐴0 + 𝜌1𝐴1 + 𝜌2𝐴2 + 𝜌3𝐴3 

𝐴0 =

(

 
 

03𝑥3 𝑀1 03𝑥3 03𝑥3 03𝑥4
03𝑥3 03𝑥3 𝑀2 03𝑥3 03𝑥4
03𝑥3 03𝑥3 03𝑥3 𝑀3 03𝑥4
03𝑥3 03𝑥3 03𝑥3 06𝑥3 03𝑥4
04𝑥3 04𝑥3 04𝑥3 01𝑥3 𝐴𝑢 )

 
 

 

𝐴1 = (
012𝑥12 05𝑥1 012𝑥3
02𝑥12 1 02𝑥3
02𝑥12 010𝑥1 02𝑥3

 ) 

𝐴2 = (
012𝑥13 09𝑥3
02𝑥13 𝑀4
02𝑥13 04𝑥3

 ) 
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𝐴3 = (
012𝑥15 011𝑥1
02𝑥15 1
02𝑥15 04𝑥1

 ) 

 

𝑀1 = (
1 0 0
0 1 0
0 0 −1

), 𝑀2 = (
0 −𝑔 0
𝑔 0 0
0 0 0

), 

𝑀3 = (
1 0 0
0 1 0
0 0 1

),    𝑀4 = (
1 0 0
0 1 0
0 0 0

) 

 𝐵𝑝(𝜌) = 𝐵0 + 𝜌1𝐵1 + 𝜌2𝐵2 + 𝜌3𝐵3 

𝐵0 = 𝐵𝑝 

𝐵1 = 𝐵2 = 𝐵3 = 016𝑥8 

 

 𝐶𝑝(𝜌) = 𝐶0 + 𝜌1𝐶1 + 𝜌2𝐶2 + 𝜌3𝐶3 

𝐶0 = 𝐶𝑝 

𝐶1 = 𝐶2 = 𝐶3 = 012𝑥16 

 

 𝐷𝑝(𝜌) = 𝐷0 + 𝜌1𝐷1 + 𝜌2𝐷2 + 𝜌3𝐷3 

𝐷0 = 𝐷𝑝 

𝐷1 = 𝐷2 = 𝐷3 = 012𝑥8 

 

 

 The matrices (∙)𝑖, 𝑖 = 0, . . . ,3, summarized in Table 5.1 can be interpreted as “frozen” 

LTI system matrices whose affine combination translate into 𝐴(∙), 𝐵(∙), 𝐶(∙), 𝐷(∙) which are 

fixed functions of the uncertain parameter vector 𝝆. Now, each system {𝐴𝑖 , 𝐵𝑖, 𝐶𝑖, 𝐷𝑖} has a state 

space representation 𝑆𝑖 defined by a structured matrix using the MATLAB function ltisys. The 

overall LPV system is represented by 𝑆(𝜌) defined by (5.17). 

 

 
[
𝐴𝑝(𝜌) 𝐵𝑝(𝜌)

𝐶𝑝(𝜌) 𝐷𝑝(𝜌)
]

⏟          
𝑆(𝜌)

= [
𝐴0 𝐵0
𝐶0 𝐷0

]
⏟      

𝑆0

+ 𝜌1 [
𝐴1 𝐵1
𝐶1 𝐷1

]
⏟      

𝑆1

+ 𝜌2 [
𝐴2 𝐵2
𝐶2 𝐷2

]
⏟      

𝑆2

+ 𝜌3 [
𝐴3 𝐵3
𝐶3 𝐷3

]
⏟      

𝑆3

 

 

(5.17) 

 

   

 With the parameter box and the 𝑆(𝜌) representation, the MATLAB function psys 

specifies an affine parameter-dependent system with 4 systems and 3 parameters as a structured 

matrix of dimension 29𝑥110. Each system has 16 states, 8 inputs, and 12 outputs. The 

MATLAB code in Appendix A.1 was used to produce this LPV system representation. To 
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obtain the polytopic representation of the affine parameter-dependent system, the function 

aff2pol is used to build the vertex system. In this case, the polytopic model has 8 vertex systems 

of dimension 29𝑥214 representing the instances of the LPV system at the corners of the box 

defined previously by pvec. Let these vertex systems be 𝑆(𝛱𝑖). Therefore, 𝑆(𝜌) over the corners 

𝛱𝑖 can be expressed by  

 

𝑆(𝜌) = 𝛼1𝑆(𝛱1)+. . . +𝛼8(𝛱8), 𝛼𝑖 ≥ 0,∑𝛼𝑖

8

𝑖=1

= 1 

 

(5.18) 

 

5.7 Interconnected LPV System 

 

 The design of the gain-scheduled ℋ∞ controller is developed according to Figure 5.2, 

modified from reference [35]. The open-loop plant 𝐺(𝑠) is defined by the system matrix 𝑆(𝜌). 

This structure utilizes a two-degrees-of-freedom controller 𝐶(𝑠) to achieve better performance. 

The blocks 𝑊𝑟(𝑠) and 𝑊𝑑(𝑠) are weighting functions applied to the reference input 𝑟 and 

disturbance inputs 𝑤𝑑, respectively, used to properly scale the magnitudes. The weights 𝑊𝑢(𝑠) 

and 𝑊𝑝(𝑠) are applied to the control input 𝑢 and the system error 𝑒 to penalize control effort 

while achieving the desired performance in terms of transient response and stability margins.  

 
Figure 5.2 – Simplified interconnected LPV System with 2DOF controller  
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6 CHAPTER 6 

 

LPV CONTROL OF QUADROTOR 
 

6.1 Problem Definition and Control Objectives 

 

The goal of the delivery quadrotor is to track a given reference trajectory and deliver a 

package of unknown mass. Due to the quadrotor’s uncertain environment and unmodeled 

dynamics, the controller is to handle tracking, disturbance rejection, and to compensate for 

uncertainty due to modeling errors and parameter variations. Therefore, the following objectives 

must be achieved by the stabilizing controller, 

• The closed-loop system is quadratically stable over the polytope Ω. 

• Minimize closed-loop quadratic ℋ∞ norm, ‖𝐹(𝑃, 𝐶)‖∞ < 𝛾𝑚𝑖𝑛, where 𝑃 is the 

generalized plant containing the LPV plant 𝐺, 𝐶 is the LPV controller, and 𝐹(𝑃, 𝐶) is 

the closed-loop system, subject to actuator dynamics and disturbances.      

The ℋ∞ norm can be interpreted as the peak gain of the plant across all frequencies and input 

directions [36]. Therefore, the objective of the gain-scheduled ℋ∞ controller is to “push down” 

the peaks of the frequency response of 𝐹(𝑃, 𝐶). The performance level 𝛾𝑚𝑖𝑛 is set to 1, 

however, this is a design goal rather than a requirement. As long the controller achieves 

adequate performance [37], a 𝛾 > 1 is acceptable, but the result is a more conservative 

controller. Once the controller is synthesized with minimum norm, analysis of whether the 

controller met the objectives is completed in Section 6.4. The reader can refer to Appendix A.1 

for the LPV code developed using the functions referenced in this chapter.     

6.2 Weights Selection and 𝓗∞ Mixed-Sensitivity Design  

 

The purpose of the tracking, disturbance, performance, and control weights selection is to 

meet specifications over the plant operating domain. Weights selection is not an exact science, 

but an LTI closed-loop analysis can be performed at sample parameters of 𝑚𝑝 to give starting 

weights for controls synthesis. The weights can then be tuned in simulation until the desired 

performance and robustness is achieved. A guide to weights selection for ℋ∞ control is 
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provided by the helicopter control case study in reference [11] and design examples in reference 

[32]. The filters chosen were taken from these examples.   

The setpoint weight, 𝑊𝑟(𝑠), is used to scale the reference states. These will be static gains 

on a diagonal matrix. The purpose of this is to normalize the magnitudes of the reference states 

based on the units of the measured states. Similarly, a common scaling factor is applied to the 

disturbance inputs through 𝑊𝑑(𝑠). For the purposes of simulation to demonstrate the 

disturbance rejection, a scalar value 𝛽 ≥ 1, is applied on each entry of the diagonal matrix.  

The performance weight, also called the sensitivity weight, is applied to the error of the 

closed-loop system. The entries 𝑊𝑝𝑥𝑖
(𝑠) are applied to each state in the controlled output which 

can be a mix of low-pass filters and static gains. The weight is expressed as a diagonal matrix of 

transfer functions or static gains. Similarly, the control or robustness weight, is applied to the 

control input. Typically, it is a high-pass filter applied to each input. The main idea of the 

performance and robustness weights is to shape the response so that the gain of the loop transfer 

function 𝐿 = 𝐺𝐾 is high at a lower frequency range and low at a higher frequency range. The 

resultant system operates within this space. The frequency ranges are set by disturbance 

rejection, command following at the lower frequencies and set by noise and plant uncertainty at 

the higher frequencies [38]. The goal of the weight selection is then to properly identify the 

cutoff frequencies for these two ranges as it pertains to the quadrotor’s dynamics and operating 

environment. This analysis is done in the frequency domain. One approach is to first determine 

the 𝑊𝑝(𝑠) that achieves the best performance with no robustness weight applied, then adjust 

𝑊𝑢(𝑠) and iterate until a suitable 𝛾𝑚𝑖𝑛 is achieved.  

The weights are summarized by (6.1) and (6.2). 

 

𝑊𝑟(𝑠) =

(

 
 

𝑊𝑟𝑥1(𝑠) ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑊𝑟𝑥12(𝑠))

 
 

 

 

𝑊𝑝(𝑠) =

(

 
 

𝑊𝑝𝑥1(𝑠) ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑊𝑝𝑥12(𝑠))

 
 

 

 

(6.1) 
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𝑊𝑑(𝑠) =

(

 
 

𝑊𝑑𝑤1(𝑠) ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑊𝑑𝑤4(𝑠))

 
 

 

 

𝑊𝑢(𝑠) =

(

 
 

𝑊𝑢𝑢1(𝑠) ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝑊𝑢𝑢4(𝑠))

 
 

 

 

(6.2) 

 

The performance weights (6.3) are applied to the system 

 
𝑊𝑝𝑗(𝑠) =

2.01

𝑠 + 0.201
 

 

𝑊𝑝𝑟𝑎𝑡𝑒𝑠(𝑠) =
2𝑠

𝑠2 + 8.5𝑠 + 18
 

 

(6.3) 

 

where 𝑊𝑝𝑗(𝑠) is a low-pass filter applied to the position, velocity, and Euler angle states with 

cutoff frequency 𝜔𝑐 = 20 𝑟𝑎𝑑/𝑠. The filter 𝑊𝑝𝑟𝑎𝑡𝑒𝑠(𝑠) is applied to the attitude rates. The high-

pass filter with a cutoff frequency of 𝜔𝑐 = 1000 𝑟𝑎𝑑/𝑠 was selected for the control weight and 

applied for each control input.  

 
𝑊𝑢𝑖(𝑠) =

9.678 𝑠3 + 0.029 𝑠2

𝑠3 + 1.206𝑒4 𝑠2 + 1.136𝑒7 𝑠 + 1.066𝑒10
 

 

(6.4) 
 

𝑊𝑟, 𝑊𝑑, 𝑊𝑝, and 𝑊𝑢 are specified as LTI systems using the function ltisys. Their respective 

singular values plot are shown in Figure 6.2 and Figure 6.3. The weights are inputs to the function 

sconnect which constructs the ℋ∞ plant 𝑃(𝑠) associated with the control structure shown in 

Figure 5.2. The control structure is expanded in Figure 6.1 to reflect the feedback and feedforward 

control as well as the disturbance inputs into the plant. Recall the augmented input �̃� from 

Chapter 5. The output of the unweighted plant 𝐺(𝑠) can be rewritten in terms of 𝐺1(𝑠) and 

𝐺2(𝑠) and the inputs 𝑢(𝑠), 𝑤(𝑠). 

 𝑌(𝑠) = 𝐺(𝑠)�̃�(𝑠) 

𝑌(𝑠) = [𝐺1(𝑠) 𝐺2(𝑠)] [
𝑢(𝑠)
𝑤(𝑠)

] 

 

(6.5) 
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Figure 6.1 – Expanded 2DOF control structure 
 

The weights are then formulated as an ℋ∞ mixed sensitivity problem. The advantage of 

mixed sensitivity is it allows the designer to simultaneously shape the frequency responses for 

tracking and disturbance rejection, noise reduction and robustness, and controller effort [39]. 

The objective is to minimize the cost function, 

 
[
𝑧1
𝑧2
] = [

𝐻11 𝐻12
𝐻21 𝐻22

] [
𝑟
𝑤𝑑
] 

 

𝐻 = [
𝑊𝑟𝑊𝑝 −𝑊𝑟𝑊𝑝(𝐶1 + 𝐶2)𝐺1𝑆1 −𝑊𝑑𝑊𝑝𝐺2𝑆1

𝑊𝑟𝑊𝑢(𝐶1 + 𝐶2)𝑆1 −𝑊𝑑𝑊𝑢𝐶1𝐺2𝑆1
] 

 
‖𝐻‖∞ < 𝛾𝑚𝑖𝑛, 

 

(6.6) 

 

where ‖𝐻‖∞ is the ℋ∞ norm of the MIMO transfer function 𝐻 from [
𝑟
𝑤𝑑
] to [

𝑧1
𝑧2
].  

Derivation of (6.6) Transfer Function 𝐻 
 

From Figure 6.1, the following equations are written from the block diagram relationships. The 

𝑠 notation is dropped for convenience. 

 

𝑦 = 𝐺1𝑢 +𝑊𝑑𝐺2𝑤𝑑 

𝑒 = 𝑊𝑟𝑟 − 𝑦 

𝑢 = 𝑊𝑟𝐶2𝑟 + 𝐶1𝑒 
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Substituting the error 𝑒 and output 𝑦 into the control equation 𝑢, 

𝑢 = 𝑊𝑟𝐶2𝑟 + 𝐶1(𝑊𝑟𝑟 − 𝑦) → 

(1 + 𝐺1𝐶1)𝑦 = (𝑊𝑟𝐶2𝐺1 +𝑊𝑟𝐶1𝐺1)𝑟 + (𝑊𝑑𝐺2)𝑤𝑑 

 

Let 𝑆1 = (1 + 𝐶1𝐺1)
−1 be the sensitivity function. Then, 

 

𝑦 = [𝑊𝑟(𝐶1 + 𝐶2)𝐺1𝑆1]𝑟 + (𝑊𝑑𝐺2𝑆1)𝑤𝑑 

 

Also, from Figure 6.1,  

 

𝑧1 = 𝑊𝑝𝑒 

𝑧2 = 𝑊𝑢𝑢 

 

Substituting the results from above into 𝑧1, 𝑧2 and rearranging until 𝑧1 and 𝑧2 are expressed in 

terms of only the inputs 𝑟 and 𝑤𝑑 yields, 

 

𝑧1 = [𝑊𝑟𝑊𝑝 −𝑊𝑟𝑊𝑝(𝐶1 + 𝐶2)𝐺1𝑆1]𝑟 − (𝑊𝑑𝑊𝑝𝐺2𝑆1)𝑤𝑑 

𝑧2 = [𝑊𝑟𝑊𝑢(𝐶1 + 𝐶2)𝑆1]𝑟 − (𝑊𝑑𝑊𝑢𝐶1𝐺2𝑆1)𝑤𝑑 

 

Written in matrix form, 

[
𝑧1
𝑧2
] = [

𝑊𝑟𝑊𝑝 −𝑊𝑟𝑊𝑝(𝐶1 + 𝐶2)𝐺1𝑆1 −𝑊𝑑𝑊𝑝𝐺2𝑆1
𝑊𝑟𝑊𝑢(𝐶1 + 𝐶2)𝑆1 −𝑊𝑑𝑊𝑢𝐶1𝐺2𝑆1

] [
𝑟
𝑤𝑑
] 

 

 

With respect to the closed-loop system, the interpretation of ℋ∞ norm minimization is 

interpreted as minimizing the effects of the reference demands and disturbances on the system 

error and control effort in the mapping from [
𝑟
𝑤𝑑
] to [

𝑧1
𝑧2
]. 
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Figure 6.2 – Singular values of performance (sensitivity) weight 𝑊𝑝(𝑠) 

 

 
Figure 6.3 – Singular values of control (robustness) weight 𝑊𝑢(𝑠) 

 

With the weights selected, the augmented plant 𝑃(𝑠) is expressed in polytopic form with 

eight vertex systems. Each system has 43 states, 20 inputs, and 56 outputs.  
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6.3 Synthesis of Gain-Scheduled 𝓗∞ Controllers 

 

The general procedure to produce the gain-scheduled controller using the MATLAB Robust 

Control Toolbox is provided by references [35] and [32]. The function sconnect is first used to 

construct the ℋ∞ plant 𝑃(𝑠). Then two-degrees-of-freedom LPV controller C(s) consisting of 

feedback and feedforward gains acting on the closed-loop error and reference.  

 𝐾(𝜌) = [𝐾1(𝜌) 𝐾2(𝜌)] 

𝑧 = [
𝑒
𝑟
] 

 

(6.7) 

 

The reference states 𝒓 and error 𝒆 = 𝒓 − 𝒚 are each of dimension 12𝑥1 and the control inputs 𝒖 

are of dimension 4𝑥1. Therefore, the gains 𝐾1, 𝐾1 are dimension 4𝑥12. The control 𝒖 is 

expressed as (6.8) or written compactly as 𝒖 = 𝐾(𝜌)𝒛, 𝐾 ∈ ℛ4𝑥24, 𝑧 ∈ ℛ24. 

 𝒖 = [𝐾1(𝜌) 𝐾2(𝜌)] [
𝑒
𝑟
] = 𝐾1(𝜌)𝒆 + 𝐾2(𝜌)𝒓 

 

(6.8) 

 

As described in Chapter 3, the control commands 𝑢 are generated from the controller state space 

system (6.9). 

 
𝐾𝜌 {

𝜁̇ = 𝐴𝐾(𝜌)𝜁 + 𝐵𝐾(𝜌)𝑧

𝑢 = 𝐶𝐾(𝜌)𝜁 + 𝐷𝐾(𝜌)𝑧
 

 

(6.9) 

The vertex controllers 𝐾𝛱𝑖 given by (6.10) in terms of the controller matrices are determined 

offline with the functions hinfgs and psinfo. 

 
𝐾𝛱𝑖 = (

𝐴𝐾(𝛱𝑖) 𝐵𝐾(𝛱𝑖)
𝐶𝐾(𝛱𝑖) 𝐷𝐾(𝛱𝑖)

) 

 

(6.10) 

Recall the parameter vector measurement 𝝆∗ at time 𝑡 is expressed as a convex combination 

with 𝛼𝑖. The controller state space matrices are then computed as the convex interpolation of the 

vertex controllers 𝐾𝛱𝑖 as shown in (6.11). Note the gain-scheduled ℋ∞ controller (6.11) is 

specified in polytopic form.  

 
∑𝛼𝑖𝐾𝛱𝑖

𝑞

𝑖=1

= (
𝐴𝐾(𝜌) 𝐵𝐾(𝜌)

𝐶𝐾(𝜌) 𝐷𝐾(𝜌)
) 

(6.11) 
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Now, the controller matrices 𝐴𝐾 ∈ ℛ
43𝑥43, 𝐵𝐾 ∈ ℛ

43𝑥24, 𝐶𝐾 ∈ ℛ
4𝑥43, 𝐷𝐾 ∈ ℛ

4𝑥24 of  

(6.11) can be updated with the new controller as 𝝆∗ is calculated from the estimate 𝑚�̂�. Stated 

another way, the vertex controllers 𝐾𝛱𝑖 are stored offline. As the convex decomposition 

coefficients 𝛼𝑖 are calculated online, the combination of 𝛼𝑖 and 𝐾𝛱𝑖 give the current controller 

matrices at 𝝆∗. These matrices update the controller equations (6.9). With the state error and 

reference fed into the control law, the control commands 𝒖 are generated. The process to obtain 

the controller matrices is shown in Figure 6.4 to visualize the process more clearly.  

 
Figure 6.4 – High-level representation of controller matrices generation 
     

After several iterations adjusting the weights and testing the controller against the LPV 

system using the functions pdsimul and sigma, the final LPV control system with eight vertex 

controllers is chosen, reflected in the code provided in Appendix A.1 and shown in the 

subsequent analysis plots in Section 6.4. The linear objective minimization feasibility problem 

under LMI constraints, discussed in Chapter 3, is completed using the function hinfgs, returning 

the quadratic performance 𝛾 = 10.068 for the closed-loop system. 
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Figure 6.5 – Closed-loop quadratic performance 
 

 A check on the location of the eigenvalues of the 𝐴𝐾 controller matrix of each vertex 

controller to demonstrate the stability of the LPV controller is confirmed using the code 

provided in Appendix A.1. Note the LPV controller is a dynamic controller with a mix of 

shaping filters and ℋ∞ controllers.  

6.4 Control Analysis – Assessment of Controller  

6.4.1 Lyapunov Stability Analysis 

 

 For the closed-loop system determined from the generalized plant and the LPV 

controller, a Lyapunov matrix 𝑄 is sought such that  

 𝐴𝑐𝑙(𝜌)𝑄 + 𝑄𝐴𝑐𝑙(𝜌)
𝑇 < 0 

 

(6.12) 
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for all values of the parameter vector ρ within the parameter box. If 𝑄 is found through an LMI 

optimization, the existence of a Lyapunov function 𝑉(𝑥), 

 𝑉(𝑥) = 𝑥𝑇𝑃𝑥 

𝑃 = 𝑄−1 

�̇�(𝑥(𝑡)) < 0 

 

(6.13) 

 

establishes quadratic stability over the entire parameter range and for arbitrarily fast parameter 

variations [29]. This process is computed by the function quadstab with the result 

demonstrating quadratic stability for the closed system. 

 

An additional stability check assesses robust stability of the closed-loop system via 

Lyapunov matrices 𝑄𝑖 at the vertices of the parameter box such that the Lyapunov function is of 

the form, 

 𝑉(𝑥, 𝛼) = 𝑥𝑇(𝑄(𝛼))−1𝑥 
𝑄(𝛼) = 𝛼1𝑄1 +⋯+ 𝛼𝑞𝑄𝑞 

 

(6.14) 

 

This establishes stability for the entire polytope of systems [29]. The results from quadstab and 

pdlstab shown in Figure 6.6 demonstrates robust stability for the closed-loop system. 
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Figure 6.6 – Quadratic and robust stability results 
 

 

6.4.2 Time Domain Analysis 

 

To assess the controller, a random set of polytopic coordinates are generated to evaluate 

controller and closed-loop system. The function pdsimul is used to generate output and state 

trajectories for the specified parameter trajectory shown in Appendix A.1.  
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Figure 6.7 – State trajectories of closed-loop system for sample trajectory 
 

 
Figure 6.8 – Output trajectories of closed-loop system for sample trajectory  
 

6.4.3 Frequency Domain Analysis – Singular Values 

 

  The function sigma plots of the maximum and minimum singular values, 𝜎(𝑗𝜔) and 

𝜎(𝑗𝜔), at the specified frequency range. These plots show the MIMO frequency responses in 
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terms of singular values and the function returns these values as a vector. Singular values give a 

measure of how a system acts on an input at a particular frequency. Therefore, 𝜎 and 𝜎 can be 

analyzed to determine amplification and attenuation of input signals acting on the system [37].  

 
Figure 6.9 – Singular values of polytopic plant 𝐺(𝜌) 
 

 
Figure 6.10 – Singular values of augemented ℋ∞ plant P(ρ) 
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Figure 6.11 – Singular values of polytopic LPV controller 𝐾(𝜌) 
 

 
Figure 6.12 – Singular values of polytopic closed-loop system 𝐹(𝜌) 
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6.5 Linear Simulation  

6.5.1 LPV Controller Implementation in Simulink 

 

The Simulink implementation of the gain-scheduled controller is shown in Figure 6.13 and 

Figure 6.14. The convex decomposition and the computation of controller matrices {𝐴𝐾(𝜌), 

𝐵𝐾(𝜌), 𝐶𝐾(𝜌), 𝐷𝐾(𝜌)} are determined online by the functions polydec, psinfo, and ltiss through 

the Simulink MATLAB functions ConvexDecomp and VertexControl whose code is provided in 

Appendix A.6.  

 
Figure 6.13 – Convex decomposition determined online 
 

  
Figure 6.14 – Simulink implementation of LPV controller  
 

With the gain-scheduled Simulink implementation, the LPV controller is tested against the 

linear system and the complete nonlinear system with disturbance sources added. The latter is 

the subject of Chapter 8.  
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6.5.2 Reference Trajectory 

 

      For the purpose of testing the tracking quality of the LPV controller, a reference trajectory is 

designed. A sample mission scenario where the quadrotor takes off at initial point [0 0 0], 

picking up a payload of an unknown mass, and delivers to final position [1000 1000 40] is 

considered. This scenario is illustrated in Figure 6.15 where the final position can be visualized 

as the top of an office or residential building.  

 
Figure 6.15 – Reference trajectory schematic 
 

The parameters shown in the schematic are summarized in Table 6.1. The time to estimate the 

mass 𝑡�̂� is designed such that it is less than the time it takes the quadrotor to reach ℎ. The 

geometry between point 𝐴 and point 𝐵 is setup as shown Figure 6.16. This is used to determine 

the horizontal and vertical components of the velocity. 

Table 6.1 – Summary of trajectory parameters 

Parameter Description Value 

ℎ Height of building  40 𝑚 

𝛥 Height of quadrotor above ℎ 10 𝑚 

𝑣𝑝 Lifting velocity 10 𝑚/𝑠 

𝑣𝑚 Cruise velocity 40 𝑚/𝑠 
𝑣ℎ Landing velocity 5 𝑚/𝑠 
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Figure 6.16 – Geometry of reference path 
 

To ensure a safe transition from cruise into the landing at the final position, a linear decrease in 

the cruise velocity to w at the final position is setup according to Figure 6.17, where 𝑡𝑏 is the 

desired time from ℎ + 𝛥 to the final position from time 𝑡2. 

 
Figure 6.17 – Linear decrease of velocity to 0 at landing position 

 

The state trajectory 𝒛(𝒕) is split up into paths 𝒛𝒐(𝒕), 𝒛𝟏(𝒕), 𝒛𝟐(𝒕), 𝒛𝟑(𝒕), 𝒛𝟒(𝒕) as piecewise 

linear functions. The reference states for the Euler angles and attitude rates are taken to be 𝟎. 

For each path, the reference trajectory 𝑧𝑟(𝑡) is defined. The derivation for each path is detailed in 

Table 6.2.  

 𝑧𝑟(𝑡) = [𝑋𝑟 𝑌𝑟 𝑍𝑟 𝑢𝑟 𝑣𝑟 𝑤𝑟 𝜑𝑟 𝜃𝑟 𝜓𝑟 𝑝𝑟 𝑞𝑟 𝑟𝑟]
𝑇 

 

(6.15) 
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Table 6.2 – Summary of reference paths 

 𝒛𝒐(𝒕) path – initial position 
 
Parameters: ℎ = 40 𝑚, 𝛥 = 10 𝑚 
State Equations: 

𝑋 = 𝑌 = 𝑍 = 0 
𝑢 = 𝑣 = 𝑤 = 0 

 

 

 𝒛𝟏(𝒕) path 
 

Parameters: 𝑉𝑝 = 10 𝑚/𝑠, 𝑡1 =
ℎ+ 𝛥

𝑉𝑝
= 5 𝑠, 𝑡ℎ =

ℎ

𝑉𝑝
= 4 𝑠 

State Equations: 
𝑢 = 𝑣 = 0 
𝑤 = 𝑉𝑝 

𝑋 = 𝑌 = 0 
𝑍 = 𝑉𝑝𝑡 

 

 

 𝒛𝟐(𝒕) path 
 

Parameters: 𝑉𝑚 = 40 𝑚/𝑠, 𝜃 = 45°, 𝑡2 = 𝑡1 +
1000√2

𝑉𝑚
= 40.4 𝑠 

State Equations: 
𝑍 = ℎ + 𝛥 → 𝑤 = 0 

𝑢 = 𝑉𝑚𝑐𝑜𝑠𝜃 = 𝑉𝑚 √2⁄  

𝑣 = 𝑉𝑚𝑠𝑖𝑛𝜃 = 𝑉𝑚 √2⁄  

𝑋 = 𝑌 = ∫ 𝑉𝑚(𝑡)𝑑𝑡
𝑡

𝑡1

 

➔ 𝑋 = 𝑌 =
𝑉𝑚

√2
(𝑡 − 𝑡1) 

 

 

 𝒛𝟑(𝒕) path 
 
Parameters: 𝑡𝑏 = 4 𝑠 

−𝛥 = ∫ (−𝑣ℎ +
𝑣ℎ

𝑡𝑏
𝑡)

𝑡𝑏
𝑡𝑎=0

𝑑𝑡 → 𝑣ℎ =
2𝛥

𝑡𝑏
= 5 𝑚/𝑠 

State Equations: 
𝑋 = 𝑌 = 1000 → 𝑢 = 𝑣 = 0  

𝑤 = −𝑣ℎ +
𝑣ℎ
𝑡𝑏
(𝑡 − 𝑡2) 

➔ 𝑍 = ∫ [(−𝑣ℎ +
𝑣ℎ

𝑡𝑏
(𝑡 − 𝑡2)] 𝑑𝑡

𝑡

𝑡2
, 𝑍(𝑡2) = ℎ + 𝛥 

 

𝑍 = −𝑣ℎ(𝑡 − 𝑡2) +
𝑣ℎ
2𝑡𝑏

(𝑡 − 𝑡2)
2 + (ℎ + 𝛥) 
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 𝒛𝟒(𝒕) path – final position 
 
Parameters: 𝑡𝑓 = 𝑡2 + 𝑡𝑏 = 45.4 𝑠 

State Equations: 
𝑋 = 𝑌 = 1000 

𝑍 = 40 
𝑢 = 𝑣 = 𝑤 = 0 

 

 

The implementation of the reference trajectory is generated by the Simulink MATLAB function 

RefTraj provided in Appendix A.5 and shown in Figure 6.18. 

 
Figure 6.18 – 3D reference trajectory to assess controller  
 

6.5.3 Simulation 

 

For an initial test, the simplest setup is considered where the mass is known and fed 

directly into the LPV system and simulated against the linear system given by (2.15) evaluated 

at 𝑚𝑝 = 2. Details on how to integrate the hover state conditioning and mass estimator 

subsystems, with modifications from the Chapter 4 design, to control the complete nonlinear 

system is detailed in Chapter 8.  
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Figure 6.19 – Simulink setup for linear simulation 
 

 
Figure 6.20 – Reference tracking for linear simulation 
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Figure 6.21 – Velocity tracking for linear simulation 

 

 

6.5.4 Discussion 

 

The LPV controller was able to track the position and velocity including the reference states 

for the attitude. In simulation, it was found the output of the reference trajectory and LPV 

commands needed to be scaled by two gains for good tracking performance. After testing 

several LPV controllers with different control weights, there were no significant changes in the 

tracking quality of the LPV controller in the linear simulation. The controller was able to handle 

higher demanded accelerations when tested against the linear system. However, this was an 

issue for control of the nonlinear system, as seen in Chapter 8, limitations are imposed on the 

controller and proper selection of the weights is necessary to achieve good performance.   
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7. CHAPTER 7  

 

ACTUATOR COMPENSTATION 
 

7.1 Introduction 

 

As discussed in the literature review, battery drainage affects the control effectiveness of the 

propeller speeds which drive the quadrotor dynamics. It is possible to apply the LPV 

methodology and schedule gains based on the propeller speeds, but with added complexity and 

expansion of the parameter space. However, for the purpose of regulation, without considering 

fault tolerant control, it is found that a 2DOF PI controller will be able to regulate the propeller 

speeds subject to changes to the input voltage due to battery drainage. Many modeling, 

estimation, and control challenges are involved with battery power management, motor 

dynamics, and control beyond the scope of the project, therefore only the design aspect of 

regulation assuming a simple motor model is considered so that actuator compensation is 

integrated into the control system.  

7.2 Updated Actuator Dynamics Model 

 

Each motor is modeled as a system with an input voltage and propeller speed output, with a 

proportional gain and time constant representative of the gain and time delay effects of the 

actuator expressed as the transfer function (7.1). Physical modeling of motors is far more 

complex, but this study considers design of a linear controller for the simplest model to 

demonstrate the function of the compensator and to provide completeness of the control system.  

 𝛺(𝑠)

𝑉𝑖𝑛(𝑠)
= 𝐺(𝑠) =

𝑐𝑚
𝜏𝑠 + 1

 

 

(7.1) 

 

From previous designs, a mechanical time constant of 𝜏 = 1.28 𝑚𝑠 and motor constant 𝑐𝑚 =

20 𝑠−1 are chosen.  
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7.3 2-DOF PI Control Design 

 

The objective of the controller is to maintain 𝛺𝑐 = 𝛺 subject to changes in the input voltage 

𝑉𝑖𝑛 with the fastest response possible without overshoot, i.e. critically damped with damping 

ratio 𝜁 = 1. Recall Figure 2.3 where the commanded propeller speeds are produced by a motor 

mixing block whose inputs are the desired forces and torques from the main control law. The PI 

controller is taken from reference [40], a set of notes on adaptive control of a DC motor. 

 
Figure 7.1 – Simplified diagram for propeller speed regulation  
 

A simplified diagram is shown in Figure 7.1 where 𝑉𝑑 models an additive change in the input 

voltage due to battery drainage.  

 
Figure 7.2 – 2DOF PI controller 
 

The closed-loop transfer function of Figure 7.2 from the commanded propeller speed 𝛺𝑐 to the 

real propeller speed 𝛺 is given by (7.2). 
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𝑇(𝑠) =

𝑐𝑚(𝐾𝑃𝑁𝑠 + 𝐾𝐼)

𝜏𝑠2 + (1 + 𝑐𝑚𝐾𝑃)𝑠 + 𝑐𝑚𝐾𝐼
 

(7.2) 
 

 

Derivation of Closed-Loop Transfer Function 

 

Let 𝑟 = 𝛺𝑐 and 𝑦 = 𝛺 

 

From the block diagram relationships, 

 

𝑃1(𝑠) =
𝐾𝐼
𝑠
(𝛺𝑐(𝑠) − 𝛺(𝑠)) 

𝑃2(𝑠) = 𝐾𝑝(𝑁𝛺𝑐(𝑠) − 𝛺(𝑠)) 

 

Adding the two results, 

𝑉𝑖𝑛(𝑠) = 𝑃1(𝑠) + 𝑃2(𝑠) 
 

Let 𝑈(𝑠) = 𝑉𝑖𝑛(𝑠) and 𝑌(𝑠) = 𝛺(𝑠) 
𝑌(𝑠) = 𝐺(𝑠)𝑈(𝑠) 

𝛺(𝑠) = 𝐺(𝑠) (𝐾𝑃𝑁𝛺𝑐(𝑠) − 𝐾𝑃𝛺(𝑠) +
𝐾𝐼
𝑠
𝛺𝑐(𝑠) −

𝐾𝐼
𝑠
𝛺(𝑠)) 

 

Rearranging so that 𝛺(𝑠) and 𝛺𝑐(𝑠) are on the left- and right-hand sides of the equation, 

 

𝛺(𝑠)[𝑠 + 𝐺(𝑠)𝐾𝑃𝑠 + 𝐺(𝑠)𝐾𝐼] = 𝛺𝑐(𝑠)[𝐺(𝑠)𝐾𝑝𝑁𝑠 + 𝐺(𝑠)𝐾𝐼] 

 

The closed-loop transfer function from 𝛺𝑐 to 𝛺 is then, 

 

𝑇(𝑠) =
𝛺(𝑠)

𝛺𝑐(𝑠)
=

𝐺(𝑠)𝐾𝑝𝑁𝑠 + 𝐺(𝑠)𝐾𝐼

𝑠 + 𝐺(𝑠)𝐾𝑃𝑠 + 𝐺(𝑠)𝐾𝐼
 

 

Substituting 𝐺(𝑠) =
𝑐𝑚

𝜏𝑠+1
 and simplifying yields the transfer function (7.2) , 

 

𝑇(𝑠) =
𝑐𝑚(𝐾𝑃𝑁𝑠 + 𝐾𝐼)

𝜏𝑠2 + (1 + 𝑐𝑚𝐾𝑃)𝑠 + 𝑐𝑚𝐾𝐼
 

 

 

Comparing 𝑇(𝑠) to a general second-order system,  

 
𝑇(𝑠) =

𝜔𝑛
2

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛2
 

 

(7.3) 

 

and choosing poles at −20,−25 to determine the natural frequency 𝜔𝑛 results in the gains (7.4) 
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𝐾𝑃 =

2𝜁𝜔𝑛𝜏

𝑐𝑚
 

 

𝐾𝐼 =
𝜔𝑛

2𝜏

𝑐𝑚
 

 

(7.4) 

 

The gains 𝐾𝑃, 𝐾𝐼 are starting gains to be tuned in simulation along with the feedforward gain 𝑁. 

7.4 Simulation 

 

 The PI controller is implemented in Simulink, shown in Figure 7.3, to determine the 

tuned gains that achieve fast response while tracking the reference 𝛺𝑐 subject to changes in 𝑉𝑖𝑛. 

 
Figure 7.3 – Simulink setup for PI controller 
 

A reference 𝛺𝑐 = 200 𝑟𝑎𝑑/𝑠 and voltage parameters of 𝑉𝑑 = 0 𝑉 and 𝑉𝑑 = −5 𝑉 were set for 

the simulation to test the controller with and without a voltage change. The controller gains 

were adjusted until the propeller speed response shown in Figure 7.4 was achieved. This is 

reflected in the Appendix A.3 code. The controller was able to track the reference propeller 

speed. Note with no change in the voltage input, the rise time of the response is small with a 

slight overshoot and no steady state error. Adding the voltage change causes a longer rise time, 

but the controller still tracks the reference.      
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Figure 7.4 – Propeller speed response subject to voltage change 
 

The PI controller shown in Figure 7.3 is applied to each of the four commanded propeller speeds 

and augmented to the LPV control system. These are part of the nonlinear simulations described 

in Chapter 9. 
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8. CHAPTER 8 

 

LPV CONTROL OF NONLINEAR SYSTEM 
 

8.1 System Modifications 

 

LPV control against the nonlinear system expressed by Table 2.3 and the actuator dynamics 

system described in Chapter 7 was not a straightforward process. Although the LPV controller 

developed in Chapter 6 had no issues controlling the linear system, in nonlinear simulation, it 

was found the controller developed could not stabilize the nonlinear system without introducing 

modifications. Therefore, this chapter describes the modifications added to the control system 

and their efficacy in controlling the nonlinear system. These modifications are a modification of 

the LPV commands to account for the equilibrium point, a reference model signal to filter the 

reference trajectory, and a modification of the hover state conditioning system so that only the 

LPV commands are used for the control in contrast to the design in Chapter 4 where the 

commands were switched to a direct input to estimate the mass.  

With modifications applied, the LPV controller had issues controlling the system using the 

desired forces and torques as inputs into the motor mixing and actuator dynamics blocks shown 

in Figure 2.5. However, applying these inputs directly into the quadrotor dynamics block, 

neglecting the actuator dynamics, resulted in stabilization and control of the nonlinear system. 

A propeller speed based LPV controller is developed to control the complete system with 

actuator dynamics. Therefore, the nonlinear simulations were completed in three steps: 

• Nonlinear simulation with the control inputs as the desired forces and torques, not 

including actuator dynamics. 

• Nonlinear simulation with actuator dynamics using an updated LPV controller derived 

using an LPV model with the propeller speeds as the control inputs. 

• Nonlinear simulation with disturbances added to the actuator system and velocity states.  

The objective of the control system is to estimate the unknown mass online, determine the 

controller gains automatically, and track the reference trajectory developed from Chapter 6 

subject to disturbances.    
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8.1.1 Control Conditioning  

 

     Since the system was linearized with respect to 𝒖𝒆, the control commands 𝒖𝒅 from the LPV 

controller can be applied directly to control linear system. However, to control the linear 

system, these commands are conditioned to account for the offset caused by the equilibrium 

point. The new control input 𝒖 is found by scaling the LPV commands by k𝑢 and adding the 

equilibrium point used in the linearization.  

 𝒖 = 𝒖𝒆 + 𝒌𝒖𝒖𝒅 

𝑢𝑒 = [(�̂�𝑝 +  𝑚𝑏𝑎𝑠𝑒)𝑔 0 0 0]
𝑇

 

𝑢𝑑 = [𝐹𝑧 𝜏𝜑 𝜏𝜃 𝜏𝜓]𝑑𝑒𝑠
𝑇

 

(8.1) 

 

 

Note �̂�𝑝 is taken from the mass estimator and k𝑢 was determined in simulation. The hover 

enable signal is applied for the first second of flight. Within this time, the mass estimator is 

active producing an estimate at every sample, the LPV commands adjust accordingly until the 

estimate converges to the actual 𝑚𝑝.  

     The hover state conditioning system is also modified so that only the LPV commands are 

used for control. Note the hover enable signal can be modified to enable the estimation during 

multiple points in the flight path. But for the purposes of simulation, the hover enable signal is 

applied only at launch to demonstrate the efficacy of the control system.  These modifications 

are shown in Figure 8.1 and implemented in the Simulink structures in Appendix B.4 and B.5.    

 
Figure 8.1 – Modifications of LPV controller 
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8.1.2 Model Reference Signal 

 

 

     In addition to conditioning the control, the reference trajectory is scaled and filtered before 

being fed into the LPV controller. The filter gradually ramps up the velocity demands from the 

reference trajectory to prevent instabilities from occurring in the system response due to inputs 

exceeding a stable limit. This modification was not necessary to control the linear system. The 

model reference signal (8.2) is proposed for the filter, applied after the scaling gain 𝑘𝑟. 

 �̇�𝒓𝒆𝒇 = 𝐴𝑟𝑒𝑓𝒙𝒓𝒆𝒇 + 𝐵𝑟𝑒𝑓𝒖𝒓𝒆𝒇 

𝒚𝒓𝒆𝒇 = 𝐶𝑟𝑒𝑓𝒙𝒓𝒆𝒇 + 𝐷𝑟𝑒𝑓𝒖𝒓𝒆𝒇 
 

𝐴𝑟𝑒𝑓 = −𝜏𝑟𝑒𝑓 ∗ 𝐼12𝑥12 

𝐵𝑟𝑒𝑓 = 𝐼12𝑥12 

𝐶𝑟𝑒𝑓 = 𝜏𝑟𝑒𝑓 ∗ 𝐼12𝑥12 

𝐷𝑟𝑒𝑓 = 012𝑥12 

(8.2) 

 

 

 

 

A time constant 𝜏𝑟𝑒𝑓 is used to control the speed of response to each reference input. For the 

simulation in 8.1.3, 𝜏𝑟𝑒𝑓 = 0.06 is chosen after several simulations. The model can be 

expressed as a diagonal matrix of transfer function with 𝐺𝑟(𝑠) =
3

50𝑠+3
 applied to each reference 

input. Its frequency response is shown in the Bode plot in Figure 8.2. The model reference limits 

the inputs from the LPV controller, so they do not exceed force demands that cause instability.  



82 
 

 

 

Figure 8.2 – Bode plot of model reference signal 𝐺𝑟(𝑠) with 𝜏𝑟𝑒𝑓 = 0.06 

 

The modifications for the control and reference can be summarized by the simplified block 

diagram shown in Figure 8.3 with the mass estimator, LPV controller, scaling gain 𝐾𝑢, control 

conditioning subsystem, and hover state conditioning subsystem contained within the LPV 

control system block. 

 
Figure 8.3 – System modifications and overall representation 
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8.1.3 Nonlinear Simulation 

 

 
Figure 8.4 – Nonlinear simulation setup with desired forces and torques as inputs 
 

Table 8.1 – Simulation Parameters 

Parameters Description Value 

𝑘𝑢 Control scaling gain 0.1 
𝑘𝑟 Reference scaling gain 1.325 

𝛾 Rate of convergence gain 15 

𝜏𝑟𝑒𝑓 Model reference time constant 0.06 𝑠 

𝑡 Simulation time 300 𝑠 
 
 

 
Figure 8.5 – 𝐶𝐾 controller matrix at �̂�𝑝 = 2  
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Figure 8.6 – Nonlinear simulation of mass estimation  
 
 

 
Figure 8.7 – Nonlinear simulation of position tracking control 
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Figure 8.8 – Nonlinear simulation of velocity responses 
 

 
Figure 8.9 – Nonlinear simulation of Euler angle responses 
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Figure 8.10 – Nonlinear simulation of attitude rate responses 
 

 
Figure 8.11 – Control inputs 
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8.2 Updated LPV Controller 

8.2.1 Propeller Speed Based LPV Model and Controller 

     To derive the propeller speed based LPV controller, the linear, parameter dependent model 

from Chapter 2 is rewritten with the control inputs as functions of the propeller speeds. The 

model is summarized by (8.3). 

 

 �̇� = 𝐴(𝜌)𝒙 + 𝐵(𝜌)𝒖 

𝑥 = [𝑋 𝑌 𝑍 𝑢 𝑣 𝑤 𝜑 𝜃 𝜓 𝑝 𝑞 𝑟]𝑇 

𝑢 = [𝛺𝑓 𝛺𝑟 𝛺𝑏 𝛺𝑙]𝑇 

 

(8.3) 

 

where the matrices 𝐴(𝜌) and 𝐵(𝜌) are given by (8.4) 

 

𝐴(𝜌)  =  

[
 
 
 
 
03𝑥3 𝑆3𝑥3

1 03𝑥3 03𝑥3
03𝑥3 03𝑥3 𝑆3𝑥3

2 03𝑥3
03𝑥3 03𝑥3 03𝑥3 𝑆3𝑥3

3

03𝑥3 03𝑥3 03𝑥3 03𝑥3]
 
 
 
 

 and 𝐵(𝜌) =

[
 
 
 
 
 
 
05𝑥1 05𝑥1 05𝑥1 05𝑥1
𝜌
1

𝜌
1

𝜌
1

𝜌
1

03𝑥1 03𝑥1 03𝑥1 03𝑥1
0 −𝜌

2
0 𝜌

2

𝜌
2

0 −𝜌
2

0
−𝜌

3
𝜌
3

−𝜌
3

𝜌
3 ]
 
 
 
 
 
 

 

(8.4) 

 

 

 

and the matrices 𝑆3𝑥3
1 , 𝑆3𝑥3

2 , 𝑆3𝑥3
3  and the parameter functions 𝜌1, 𝜌2, 𝜌3 are defined by ( 2.16) and 

(8.5), respectively. The equilibrium operating point at hover is 𝑢𝑒 = √
𝑚𝑔

4𝐾𝐹
[1 1 1 1].  

 

 

 

𝜌1 =

−1.222 ∗ 10−7√4.014𝑒7 ∗ 𝑚𝑝  +  3.521 ∗ 10
8

𝑚𝑝 +𝑚𝑏𝑎𝑠𝑒
 

 

𝜌2 =

7.332 ∗ 10−8√4.014𝑒7 ∗ 𝑚𝑝  +  3.521 ∗ 10
8

0.009 ∗ 𝑚𝑝 + 0.3013
 

 

𝜌3 =

3.0 ∗ 10−9√4.014𝑒7 ∗ 𝑚𝑝  +  3.521 ∗ 10
8

0.009 ∗ 𝑚𝑝 + 0.5353
 

 

(8.5) 
 

The same LPV modeling and controls process described in Chapters 5 and 6 is applied to derive 

the controller, but with a different affine parameter dependent system. The MATLAB code for 

the propeller based LPV controller is provided in Appendix A.2 with the singular values plots 

for the controller and closed-loop system shown in Figure 8.12 and Figure 8.13. 
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Figure 8.12 – Singular values plot of propeller speed based LPV controller 

 

 
Figure 8.13 – Singular values of propeller speed based closed loop system 
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8.2.2 Nonlinear Simulation with Actuator Dynamics 

 

 
Figure 8.14 – Nonlinear simulation with actuator dynamics 
 
 
Table 8.2 – Simulation Parameters 

Parameters Description Value 

𝐾𝑢 Control scaling gain 0.1 
𝐾𝑟 Reference scaling gain [1.685 1.685 1.99 𝐼1𝑥9]

𝑇 

𝛾 Rate of convergence gain 15 

𝜏𝑟𝑒𝑓 Model reference time constant 0.1 𝑠 

𝑡 Simulation time 300 𝑠 
 
 

 
Figure 8.15 – 𝐶𝐾 controller matrix at �̂�𝑝 = 2 
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Figure 8.16 – Bode plot for reference signal with 𝜏𝑟𝑒𝑓 = 0.1 

 
 

 
Figure 8.17 – Mass estimation against nonlinear system with actuator dynamics  
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Figure 8.18 – Trajectory tracking against nonlinear system with actuator dynamics 
 

 
Figure 8.19 – Position state responses of nonlinear system with actuator dynamics 
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Figure 8.20 – Velocity state responses of nonlinear system with actuator dynamics  
 
 

 
Figure 8.21 – Euler angle state responses of nonlinear system with actuator dynamics 
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Figure 8.22 – Attitude rate state responses of nonlinear system with actuator dynamics 
 
 

8.3 Nonlinear Simulation with Disturbances 

8.3.1 Setup 

 

     To stress the controller, the disturbances sources shown in Figure 8.14 are switched at the 

times given by Table 8.3. The same simulation parameters of Table 8.2 are used.    

Table 8.3 – Disturbance sources in simulation 

Disturbance Time Applied 

Pulse on Control Inputs 𝑡 = 30 𝑠 
Pulse on Velocity States 𝑡 = 50 𝑠 

Step on Actuator Input Voltage 𝑡 = 100 𝑠 
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8.3.2 Results 

 

 
Figure 8.23 – Mass estimation against nonlinear system with disturbances 

 

 
Figure 8.24 – Trajectory tracking against nonlinear system with disturbances 
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Figure 8.25 – Position state responses of nonlinear system with disturbances 

 

 

 
Figure 8.26 – Velocity state responses of nonlinear system with disturbances 
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Figure 8.27 – Euler angle state responses of nonlinear system with disturbances  

 

 

 
Figure 8.28 – Attitude rate responses of nonlinear system with disturbances  
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8.4 Discussion 

 

Without the modifications, the LPV controller could not directly stabilize the nonlinear 

system. Modifying the reference and control was not necessary for the linear simulation in 

Chapter 6, where with scaling the control commands could control the system directly. The 

model reference signal filters the reference trajectory to gradually ramp up the velocities to 

prevent the demanded accelerations from causing instability, however the cruise velocity 𝑣𝑚 

had to be decreased to 10 𝑚/𝑠 with a limit of 20 𝑚/𝑠. The simulations show the modifications 

resolved stability issues and the controller was able to track the reference.   

     The switching design from Chapter 4 where the direct input 𝑈𝑝 is used to lift the mass 

resulted in stability issues when switching to the LPV commands after the hover signal was 

disabled. There was significant “wiggle” in the quadrotor motion that produced unstable 

behavior. Therefore, all control was switched over to be automatically handled by the LPV 

controller from 𝑡 = 0. The rate of convergence gain for the mass estimator was increased to 𝛾 =

15 to accommodate the system modifications. During the estimation time from 𝑡 = 0 to 𝑡 =

𝑡�̂�𝑝 < 1𝑠, the LPV controller is continually adjusting its gains to the mass estimate until the 

hover enable signal is disabled at 𝑡 = 1 𝑠. It was found the LPV control commands could 

handle fast variations in the mass estimate and the max payload weight, without having to apply 

the direct input 𝑈𝑝. The filter time constant had to be increased to 0.1 to control the nonlinear 

system with actuator dynamics. The time 𝑡𝑏 had to be increased to 20 𝑠 from 4 𝑠 in the linear 

simulation to decrease the velocity demands.  

     The main takeaway from the simulations is the nonlinear system imposes physical 

limitations on the control the linear system did not need to consider. This is also due to the 

hover assumptions of the LPV model. The quadratic and robust stability results discussed in 

Chapter 6 only guarantee stability for the LPV system, not the nonlinear system. Small steady 

state errors are still present in the state responses, but these can be resolve by further tuning the 

feedforward gains. Finally, multiple payload masses within the design range were tested to 

validate the control systems meets the requirements.  



98 
 

9 CHAPTER 9 

 

CONCLUSION 
 

9.1 Advantages of LPV Control System 

 

     The LPV controller based on the self-scheduling ℋ∞ technique was able to track a desired 

trajectory subject to an unknown mass and disturbance sources, with some performance issues. 

The modifications enabled LPV control system compatibility for the nonlinear system. Since 

the parameter box and vertex controllers are determined offline, only the convex coordinates are 

necessary to determine the online LPV controller matrices. Additionally, the mass estimator 

proved to be robust when tested against the nonlinear system including actuator dynamics by 

still converging to the true mass in different scenarios. However, a rigorous proof is necessary 

to prove parameter convergence for all trajectories as 𝑡 → ∞. The design of the range of the 

payload mass can easily be increased to produce a new controller without increasing controller 

dimensions or changing its structure, adding flexibility to the design requirements for the 

control system. For instance, the parameter space for the LPV controller could be adjusted to 

control a larger aerospace delivery vehicle making multiple payload pickups or drop-offs along 

a flight path. Additionally, the hover state conditioning system switches off the mass estimation 

when the hover signal is disabled. This saves computational resources online as the LPV 

controller will use the converged mass estimate until it is necessary to estimate the payload 

again. By feeding in the payload mass directly, the controller gains adjust automatically to the 

mass estimates without requiring a switching to a worst-case lifting force input.  

9.2 Limitations and Possible Solutions 

 

As demonstrated in Chapter 8, controlling the nonlinear system is not a trivial task. The 

nonlinear system imposes physical limitations on what can be achieved by the control. For 

example, the controller could not stabilize the plant when the demanded velocities exceeded 

more than 20 𝑚/𝑠. Relaxing the hover state conditions by expanding the parameter space to 

include the velocity states and then developing the LPV controller to gain schedule based on 

both payload mass and velocity could result in a more reactive controller so that the quadrotor 
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that can translate faster while maintaining stability. Furthermore, incorporating actuator 

constraints for the propeller speed limits into the LMI formulation would allow for a control 

solution that is physically realizable within the hardware capability of a delivery quadrotor.     

9.3 Multivariable vs. SISO Approaches 

 

     The main advantage of multivariable control is much of the controls design can be handled 

in “one shot”. By feeding the reference and error from the state measurements into the 

controller, the LPV controller generates the four control inputs necessary to affect the motion of 

the quadrotor. In multivariable control, each controlled output can be dependent on several 

variables and/or inputs. In contrast to SISO control, as outlined in Appendix C using PID 

control of a quadrotor as an example, each controlled output is controlled by one input in a 

successive loop closure structure.  

9.4 Controller Function in an Overall GNC System 

 

     The function of any feedback controller is to first stabilize the plant and then improve system 

performance for some tracking quality criteria and to provide robustness in meeting control 

objectives even in the presence of system variations, unmodeled dynamics, disturbances, or 

noise. A complete guidance, navigation, and control system could also include state estimation 

and an optimizer which minimizes or maximizes an objective to produce a reference for the 

controller to track according to Figure 9.1 

 
Figure 9.1 – Optimizer and controller 

 

A further breakdown of the optimizer and controller, but still at a high-level representation, is 

shown in Figure 9.2, based on reference notes [41]. The trajectory can be altered as necessary 
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online based on the control law and state estimation blocks. This project did not consider 

trajectory generation based on generating an optimal 𝑢𝑟𝑒𝑓 and 𝑥𝑟𝑒𝑓, as shown in Figure 9.2, for 

the feedback controller to then track. For example, a model predictive controller (MPC) could 

generate the optimal trajectory in the outer loop, the LPV controller tracks and rejects any 

disturbances that occur along the path in the inner loop.  

 
Figure 9.2 – General guidance, navigation, and control system 
 

To narrow down the scope of the study, the project assumed all states were available for 

measurement, therefore the state estimation block is not considered. In practice, all states are not 

available for direct feedback due to design limitations and sensor dynamics. The project 

considered estimation for an unknown system parameter, but not an inaccessible or undesired 

state measurement. Generally, a controller and state observer can be designed separately and 

integrated together for an observer-controller system. This separation principle applies to LPV 

systems.  

9.5 Future Research 

 

Future research involves investigating the performance advantages gained by the LPV 

controller by refining the weights selection used in the ℋ∞ mixed sensitivity design and 

relaxing the hover state assumptions by expanding the parameter space to include velocity 

states. To add guidance capability, research on integrating a guidance law to produce optimal 

reference trajectories automatically is considered to complete a guidance and control system for 

the delivery quadrotor.   
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APPENDECIES 
 

A. MATLAB Codes 

A.1 LPV System Representation and LPV Control of Quadrotor  

 

% MS Project (AE 295B) 
% Design of a Linear Parameter Varying Controller for a Delivery Quadrotor 
% Description: Script develops the LPV model and LPV controller for the 
% delivery quadrotor 
% Author: Hussam Okasha 

  
%% Parameters 
g = 9.81; 
l = 0.6; %m 
R = 0.15; %m 
m_quadrotor = 3.800; %kg %all mass not including the motors, battery, and 

payload 
m_motor = 0.325;  
m_battery = 3.673; 
m_motors = 4*m_motor; 
mp = 2; 
m_base = m_quadrotor + m_motors + m_battery; 

  
KF = 6.11e-8; 
KM = 1.5e-9; 

  
k = sqrt(g*(m_base+mp)/(4*KF)); 
hov_in = (m_base+mp)*g*[1 0 0 0]; 
omega_direct = k*[1 1 1 1]; 

  
psi0 = 0;  

  
%% Linear, Parameter Dependent Model 
syms mp psi0 
%State Variable Selection 
%[x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13]' = [X Y Z u v w phi theta psi p 

q r]' 
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 u1 u2 u3 u4 
x = [x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12]; 
%Control Input Selection 
%[u1 u2 u3 u4]' = [U_z U_roll U_pitch U_yaw]' 
u = [u1 u2 u3 u4]; 

  
M = m_quadrotor + m_battery + mp; 
Jx = ((2*M*R^2)/5) + 2*(l^2)*m_motor; 
Jy = ((2*M*R^2)/5) + 2*(l^2)*m_motor; 
Jz = ((2*M*R^2)/5) + 4*(l^2)*m_motor; 
[Al, Bl] = Qrotor_Linearization(x,u,m_base,mp,psi0,Jx,Jy,Jz); 
C = eye(12); 
D = zeros(12,4); 
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%Controllability and Observability 
A = subs(Al,psi0,0); 
A = double(A); 
Bcc = subs(Bl,mp,0); 
Co = ctrb(A,Bcc); 
rankCo = rank(Co) 
Ob = obsv(A,C); 
rankOb = rank(Ob) 

  
%% LPV Model 
%Control Input Filter 
Au = -100*eye(4); 
Bu = eye(4); 
Cu = eye(4); 
Ap = [A, Bl*Cu; 
      zeros(4,12), Au]; 
Ap = vpa(Ap,4); 
Bp = [zeros(12,4);Bu]; 

  
%disturbance matrix 
B1 = [zeros(5,4); 
      1 0 0 0; 
      zeros(3,4); 
      zeros(3,1), eye(3)]; 

   

B1p = [B1; zeros(4,4)]; 

  
%define H 
%input defn: w' = [u' w]' 
Bpp = [Bp, B1p]; %dim 16x8 

  
%Parameter functions 
p1 = -1/(mp+8.773); 
p2 = 1/(0.009*mp+0.3013); 
p3 = 1/(0.009*mp+0.5353); 

  
%Upper and lower bounds 
p1_l = double(subs(p1,mp,0)); 
p1_u = double(subs(p1,mp,2.3)); 
p2_l = double(subs(p2,mp,0)); 
p2_u = double(subs(p2,mp,2.3));   
p3_l = double(subs(p3,mp,0)); 
p3_u = double(subs(p3,mp,2.3)); 

  
P = [p1_l p1_u; 
     p2_u p2_l; 
     p3_u p3_l]; 

  
%Parameter Box 
pv = pvec('box',P); 
VERTX = polydec(pv); %vertex coordinates 
pvinfo(pv) 
%Vector of 3 parameters ranging in a box 

  
%example of polydec function 
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[V_C,VERTX_C] = polydec(pv,[p1_u, p2_u, p3_u]); 

  
%Augmented Model Intermediate Matrices 
M1 = [1 0 0; 
      0 1 0; 
      0 0 -1]; 

  
M2 = [0 -g 0; 
      g 0 0; 
      0 0 0]; 

  
M3 = eye(3); 

  
M4 = [1 0 0; 
      0 1 0; 
      0 0 0]; 

   
A0 = [zeros(16,3),[M1;zeros(13,3)],[zeros(3);M2;zeros(10,3)],[zeros(6,3); 

M3;zeros(7,3)],[zeros(12,4);Au]];  
A1 = [zeros(16,12),[zeros(5,1);1;zeros(10,1)],zeros(16,3)]; %1 corresponds to 

rho1 
A2 = [zeros(16,13),[zeros(9,3);M4;zeros(4,3)]]; %move over one column in B, 

M4 corresponds to rho2  
A3 = [zeros(16,15),[zeros(11,1);1;zeros(4,1)]]; %1 corresponds to rho3 

       
B0 = Bpp; 
B1 = zeros(16,8); 
B2 = zeros(16,8); 
B3 = zeros(16,8); 

  
Cp = [eye(12),zeros(12,4)]; 
C0 = Cp; 
C1 = zeros(12,16); 
C2 = zeros(12,16); 
C3 = zeros(12,16); 

  
Dp = [zeros(12,4),zeros(12,4)]; 
D0 = Dp; 
D1 = zeros(12,8); 
D2 = zeros(12,8); 
D3 = zeros(12,8); 

  
S0 = ltisys(A0,B0,C0,D0); 
S1 = ltisys(A1,B1,C1,D1,0); 
S2 = ltisys(A2,B2,C2,D2,0); 
S3 = ltisys(A3,B3,C3,D3,0); 

  
pdsys = psys(pv,[S0,S1,S2,S3]); %affine parameter dependent system 
psinfo(pdsys) 
%Affine parameter-dependent model with 3 parameters (4 systems)  
%Each system has 16 state(s), 8 input(s), and 12 output(s) 

  
polysys = aff2pol(pdsys); %polytopic model - instances of pdsys (affine) at 

the vertices of the box 
psinfo(polysys) 
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%Polytopic model with 8 vertex systems  
%Each system has 16 state(s), 8 input(s), and 12 output(s) 
% [tau,P] = quadstab(polysys) 
% open-loop unstable 

  
%% LPV Controls Design 
%% Weights Selection 
%static gains and filters in TF form 
sys_Wr1 = ltisys('tf',[1],[1]); 
sys_Wr2 = ltisys('tf',[1],[1]); 
sys_Wr3 = ltisys('tf',[1],[1]); 
sys_Wr4 = ltisys('tf',[1],[1]); 
sys_Wr5 = ltisys('tf',[1],[1]); 
sys_Wr6 = ltisys('tf',[1],[1]); 
sys_Wr7 = ltisys('tf',[1],[1]); 
sys_Wr8 = ltisys('tf',[1],[1]); 
sys_Wr9 = ltisys('tf',[1],[1]); 
sys_Wr10 = ltisys('tf',[1],[1]); 
sys_Wr11 = ltisys('tf',[1],[1]); 
sys_Wr12 = ltisys('tf',[1],[1]); 

  
sys_Wd1 = ltisys('tf',[1],[1]); 
sys_Wd2 = ltisys('tf',[1],[1]); 
sys_Wd3 = ltisys('tf',[1],[1]); 
sys_Wd4 = ltisys('tf',[1],[1]); 

  
cWp1 = 2.01; 
cWp2 = 0.201; 
% cWp1 = 20.1; 
% cWp2 = 2.01; 
% cWp1 = 0.201; 
% cWp2 = 0.0201; 
sys_Wp1 = ltisys('tf',[cWp1],[1, cWp2]); 
sys_Wp2 = ltisys('tf',[cWp1],[1, cWp2]); 
sys_Wp3 = ltisys('tf',[cWp1],[1, cWp2]); 
sys_Wp4 = ltisys('tf',[cWp1],[1, cWp2]); 
sys_Wp5 = ltisys('tf',[cWp1],[1, cWp2]); 
sys_Wp6 = ltisys('tf',[cWp1],[1, cWp2]); 
sys_Wp7 = ltisys('tf',[cWp1],[1, cWp2]); 
sys_Wp8 = ltisys('tf',[cWp1],[1, cWp2]); 
sys_Wp9 = ltisys('tf',[cWp1],[1, cWp2]); 
% sys_Wp10 = ltisys('tf',[cWp1],[1, cWp2]); 
% sys_Wp11 = ltisys('tf',[cWp1],[1, cWp2]); 
% sys_Wp12 = ltisys('tf',[cWp1],[1, cWp2]); 

  
sys_Wp10 = ltisys('tf',[2 0],[1, 8.5, 18]); 
sys_Wp11 = ltisys('tf',[2 0],[1, 8.5, 18]); 
sys_Wp12 = ltisys('tf',[2 0],[1, 8.5, 18]); 

  
% numWu = [10 0]; 
% denWu = [1 100]; 
numWu =[9.678, 0.029, 0, 0]; 
denWu = [1, 1.206e4, 1.136e7, 1.066e10]; 
sys_Wu1 = ltisys('tf',numWu,denWu); 
sys_Wu2 = ltisys('tf',numWu,denWu); 
sys_Wu3 = ltisys('tf',numWu,denWu); 
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sys_Wu4 = ltisys('tf',numWu,denWu); 

  
%MIMO TF matrices 
sysWrg1 = sdiag(sys_Wr1,sys_Wr2,sys_Wr3,sys_Wr4,sys_Wr5,sys_Wr6); 
sysWrg2 = sdiag(sys_Wr7,sys_Wr8,sys_Wr9,sys_Wr10,sys_Wr11,sys_Wr12); 
Wr = sdiag(sysWrg1,sysWrg2);  
Wd = sdiag(sys_Wd1,sys_Wd2,sys_Wd3,sys_Wd4);  
sysWpg1 = sdiag(sys_Wp1,sys_Wp2,sys_Wp3,sys_Wp4,sys_Wp5,sys_Wp6); 
sysWpg2 = sdiag(sys_Wp7,sys_Wp8,sys_Wp9,sys_Wp10,sys_Wp11,sys_Wp12); 
Wp = sdiag(sysWpg1,sysWpg2); 
Wu = sdiag(sys_Wu1,sys_Wu2,sys_Wu3,sys_Wu4);  

  

figure, 
splot(Wu,'sv') 
grid on; 
title('Singular Values - Control (Robustness) Weight W_u') 
xlabel('Frequency') 
ylabel('Magnitude') 
set(findall(gcf,'type','line'),'linewidth',1); 
set(gca,'fontsize',24); 

  
figure, 
splot(Wp,'sv') 
grid on; 
title('Singular Values - Performance (Sensitivity) Weight W_p') 
xlabel('Frequency') 
ylabel('Magnitude') 
set(findall(gcf,'type','line'),'linewidth',1); 
set(gca,'fontsize',24); 
%% Generalized LPV Plant 
% inputs = 'r(12);w(4)'; 
% outputs = 'Wr;Wd;Wp;Wu'; 
% K_in = 'K:[e=Wr:r-G;Wr:r]'; %controller K with its inputs 
% %G:K means the input of G is the output of K 
% G1_in = 'G:[K;Wd:w]'; %g1 = pdsys 
% G2_in = 'Wr:r'; %g2 = Wr 
% G3_in = 'Wd:w'; %g3 = Wd 
% G4_in = 'Wp:e'; %g4 = Wp 
% G5_in = 'Wu:K'; %g5 = Wu 
%  
% [P_aug,N_MC] = 

sconnect(inputs,outputs,K_in,G1_in,pdsys,G2_in,Wr,G3_in,Wd,G4_in,Wp,G5_in,Wu)

;  

  
inputs = 'r(12);w(4)'; 
outputs = 'Wr;Wd;Wp;Wu;'; 
K_in = 'K:e=Wr-G;Wr'; %controller K with its inputs 
%G:K means the input of G is the output of K 
G1_in = 'G:K;Wd'; %g1 = pdsys 
G2_in = 'Wr:r'; %g2 = Wr 
G3_in = 'Wd:w'; %g3 = Wd 
G4_in = 'Wp:e'; %g4 = Wp 
G5_in = 'Wu:K'; %g5 = Wu 
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[P_aug,N_MC] = 

sconnect(inputs,outputs,K_in,G1_in,pdsys,G2_in,Wr,G3_in,Wd,G4_in,Wp,G5_in,Wu)

;  

  
psinfo(P_aug) 
%N_MC = [nbr of measurements (C(s) inputs), nbr of controls (C(s) outputs)) 
%expectation: [24 4] --> gain K [4 24] 
%pdP = Hinf plant P(s) associated with the control structure  
%Polytopic model with 8 vertex systems  
%Each system has 43 state(s), 20 input(s), and 56 output(s) 

  
%% Gain-Scheduled Hinf Controller 
[gopt,pdK,R,S] = hinfgs(P_aug,N_MC,0,1e-2); 
psinfo(pdK) 
%Polytopic model with 8 vertex systems  
%Each system has 43 state(s), 24 input(s), and 4 output(s) 

  
pCL = slft(P_aug,pdK); %closed-loop system 
psinfo(pCL) 
%Polytopic model with 8 vertex systems  
%Each system has 86 state(s), 16 input(s), and 32 output(s) 

  
%Performance Analysis 
% [PERF, LP] = quadperf(pCL) 

  
%Stability Analysis  
% [TAU, LyP] = quadstab(pCL) 
% pdlstab(pCL) 
%NOTE: very long computation time for pdlstab, comment out when not needed 

  
%Vertex Controllers 
VK1 = psinfo(pdK,'sys',1); VK2 = psinfo(pdK,'sys',2); 
VK3 = psinfo(pdK,'sys',3); VK4 = psinfo(pdK,'sys',4); 
VK5 = psinfo(pdK,'sys',5); VK6 = psinfo(pdK,'sys',6); 
VK7 = psinfo(pdK,'sys',7); VK8 = psinfo(pdK,'sys',8); 

 

%Evaluate the eigenvalues of the Ak matrices of the vertex controllers 
VK = {VK1,VK2,VK3,VK4,VK5,VK6,VK7,VK8}; 
Vertex_Eig = cell(8,1); 
for i = 1:8 
    VKe = VK{i}; 
    [Ak, Bk, Ck, Dk] = ltiss(VKe); 
    Vertex_Eig{i} = eig(Ak); 
end 

  
%check eigenvalues are less than 0 
Vertex_Stable = cell(8,1); 
for i = 1:8 
    Vertex_Eig1 = Vertex_Eig{i}; 
    Vertex_Stable{i} = Vertex_Eig1 < 0; 
end 
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[Ak, Bk, Ck, Dk] = ltiss(VK1); 
size(Ak); %43x43 
size(Bk); %43x24 
size(Ck); %4x43 
size(Dk); %4x24 

  
%example of psinfo function - to be implemented in Simulink 
SKsys = psinfo(pdK,'eval',V_C); %instantiates the polytopic system for the 

vertex controllers 
[Ak, Bk, Ck, Dk] = ltiss(SKsys); 

  
%% Frequency Domain Analysis - Singular Values Plots 
%random polytopic coordinates for control analysis 
pNum = 100; polyc = []; 
for j = 1:pNum 
   poly = rand(1,8); 
   poly = poly/sum(poly); 
   polyc = [polyc; poly]; 
end 
%singular values plot for polytopic plant 
figure, 
omega = logspace(-2,2,200); 
for j = 1:pNum 
    PolySys = psinfo(polysys,'eval',polyc(j,:)); %evaluate at convex 

coordinates  
    [adp,bdp,cdp,ddp] = ltiss(PolySys); 
    sysp = ss(adp,bdp,cdp,ddp); 
    [sv] = sigma(sysp, omega); 
    semilogx(omega, mag2db(sv)); 
    hold on; grid on; 
    title('Singular Values - Plant G(\rho)') 
    xlabel('Frequency [rad/s]') 
    ylabel('Magnitude [dB]') 
    set(findall(gcf,'type','line'),'linewidth',1); 
    set(gca,'fontsize',24); 
end 

  
%singular values plot for Hinf plant 
figure, 
omega = logspace(-2,2,200); 
for j = 1:pNum 
    Pdg = psinfo(P_aug,'eval',polyc(j,:)); %evaluate at convex coordinates  
    [adg,bdg,cdg,ddg] = ltiss(Pdg); 
    sysg = ss(adg,bdg,cdg,ddg); 
    [sv] = sigma(sysg, omega); 
    semilogx(omega, mag2db(sv)); 
    hold on; grid on; 
    title('Singular Values - Augmented Plant P(\rho)') 
    xlabel('Frequency [rad/s]') 
    ylabel('Magnitude [dB]') 
    set(findall(gcf,'type','line'),'linewidth',1); 
    set(gca,'fontsize',24); 
end 

  
%singular values plot for polytopic controller 
figure, 
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omega = logspace(-4,4,300); 
for j = 1:pNum 
    Pdk = psinfo(pdK,'eval',polyc(j,:)); %evaluate at convex coordinates  
    [adk,bdk,cdk,ddk] = ltiss(Pdk); 
    sysk = ss(adk,bdk,cdk,ddk); 
    [sv] = sigma(sysk, omega); 
    semilogx(omega, mag2db(sv)); 
    hold on; grid on; 
    title('Singular Values - Controller K(\rho)') 
    xlabel('Frequency [rad/s]') 
    ylabel('Magnitude [dB]') 
    set(findall(gcf,'type','line'),'linewidth',1); 
    set(gca,'fontsize',24); 
end 

  
%singular values plot for closed loop transfer system 
figure, 
omega = logspace(-4,4,300); 
for j = 1:pNum 
    Pcl = psinfo(pCL,'eval',polyc(j,:)); %evaluate at convex coordinates  
    [adcl,bdcl,cdcl,ddcl] = ltiss(Pcl); 
    syscl = ss(adcl,bdcl,cdcl,ddcl); 
    [sv] = sigma(syscl, omega); 
    semilogx(omega, mag2db(sv)); 
    hold on; grid on; 
    title('Singular Values - Closed Loop System F(\rho)') 
    xlabel('Frequency [rad/s]') 
    ylabel('Magnitude [dB]') 
    set(findall(gcf,'type','line'),'linewidth',1); 
    set(gca,'fontsize',24); 
end 

  
%% Time Domain Analysis 
%Plots output trajectory of closed-loop system along parameter trajectories 
[T,X,Y] = pdsimul(pCL,'Mass_Traj',2,'Input_Traj'); 
figure, 
plot(T,X) 
title('State Trajectories') 
grid on; 
xlabel('Time [s]') 
ylabel('Magnitude') 
set(findall(gcf,'type','line'),'linewidth',1); 
set(gca,'fontsize',14); 
figure, 
plot(T,Y) 
title('Output Trajectories') 
grid on; 
xlabel('Time [s]') 
ylabel('Magnitude') 
set(findall(gcf,'type','line'),'linewidth',1); 
set(gca,'fontsize',24); 

  
Mass = cell(length(T),1); 
Pa1 = zeros(length(T),1); Pa2 = zeros(length(T),1); Pa3 = zeros(length(T),1);  
for i = 1:length(T) 
Mass{i} = Mass_Traj(T(i)); 
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Mass1 = Mass{i}; 
Pa1(i) = Mass1(1); 
Pa2(i) = Mass1(2); 
Pa3(i) = Mass1(3); 
end 

  
figure, 
plot(T,Pa1) 
hold on 
plot(T,Pa2) 
hold on 
plot(T,Pa3) 
title('Parameter Function Trajectories') 
grid on; 
xlabel('Time [s]') 
ylabel('Magnitude') 
set(findall(gcf,'type','line'),'linewidth',1); 
set(gca,'fontsize',14); 
size(X); %131x86 
size(Y); %131x32 
%Comment: further iterations might be necessary when testing against 
%nonlinear system 

  
%% Functions 
%% Jacobian Linearization 
function [Al, Bl] = Qrotor_Linearization(x,u,m_base,mp,psi0,Jx,Jy,Jz) 
g = 9.81; 
syms x0 y0 z0 

  
xdot = sym(zeros(12,1)); 
xdot(1) = (cos(x(9))*cos(x(8)))*x(4) + (-

sin(x(9))*cos(x(7))+cos(x(9))*sin(x(8))*sin(x(7)))*x(5) + 

(sin(x(9))*sin(x(7))+cos(x(9))*sin(x(8))*cos(x(7)))*x(6); 
xdot(2) = (sin(x(9))*cos(x(8)))*x(4) + 

(cos(x(9))*cos(x(7))+sin(x(9))*sin(x(8))*sin(x(7)))*x(5) + (-

cos(x(9))*sin(x(7))+sin(x(9))*sin(x(8))*cos(x(7)))*x(6); 
xdot(3) = (sin(x(8)))*x(4) + (-cos(x(8))*sin(x(7)))*x(5) + (-

cos(x(8))*cos(x(7)))*x(6); 
xdot(4) = (x(5)*x(12)-x(6)*x(11)) - g*sin(x(8)); 
xdot(5) = (x(6)*x(10)-x(4)*x(12)) + g*cos(x(8))*sin(x(7));  
xdot(6) = (x(4)*x(11)-x(5)*x(10)) + g*cos(x(8))*cos(x(7)) - 

(1/(m_base+mp))*u(1); 
xdot(7) = x(10) + (sin(x(7))*tan(x(8)))*x(11) + (cos(x(7))*tan(x(8)))*x(12); 
xdot(8) = cos(x(7))*x(11) + -sin(x(7))*x(12); 
xdot(9) = (sin(x(7))/cos(x(8)))*x(11) + (cos(x(7))/cos(x(8)))*x(12); 
xdot(10) = ((Jy-Jz)/Jx)*x(11)*x(12) + (1/Jx)*u(2); 
xdot(11) = ((Jz-Jx)/Jy)*x(10)*x(12) + (1/Jy)*u(3); 
xdot(12) = ((Jx-Jy)/Jz)*x(10)*x(11) + (1/Jz)*u(4); 

  
Ax = jacobian(xdot,x); 
Bu = jacobian(xdot,u); 
xe =[x0,y0,z0,0,0,0,0,0,psi0,0,0,0]; %operating point at hover condition 
ue = (m_base+mp)*g*[1 0 0 0]; 
Al = subs(Ax,x,xe); 
Al = subs(Al,u,ue); %propeller speeds at hover conditions 
Al = vpa(Al,4); %linearized A 
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Bl = subs(Bu,x,xe); 
Bl = subs(Bl,u,ue); 
Bl = vpa(Bl,4); %linearized B 
end 

  
%% Parameter trajectory for pdsimul function 
%sample parameter trajectory 
function mass = Mass_Traj(t) 
mass = zeros(3,1); 
mass(1) = -1/(t+8.773); 
mass(2) = 1/(0.009*t+0.3013); 
mass(3) = 1/(0.009*t+0.5353); 
end 

  
%% Input trajectory for pdsimul function 
%Step inputs applied to each input  
function UT = Input_Traj(t)    
UT = ones(16,1);  
end 
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A.2 Propeller Speed Based LPV Model and Controller 
 
% MS Project (AE 295B) 
% Design of a Linear Parameter Varying Controller for a Delivery Quadrotor 
% Description: Script develops the LPV model and LPV controller for the 
% delivery quadrotor with the propeller speeds as control inputs  
% Author: Hussam Okasha 

  
%% Parameters 
g = 9.81; 
l = 0.6; %m 
R = 0.15; %m 
m_quadrotor = 3.800; %kg %all mass not including the motors, battery, and 

payload 
m_motor = 0.325;  
m_battery = 3.673; 
m_motors = 4*m_motor; 
mp = 2; 
m_base = m_quadrotor + m_motors + m_battery; 
psi0 = 0;  
hov_in = (m_base+mp)*g*[1 0 0 0]; %test input 
KF = 6.11e-8; 
KM = 1.5e-9; 
k = sqrt(g*(m_base+mp)/(4*KF)); 
omega_direct = k*[1 1 1 1]; 

  
%% Linear, Parameter Dependent Model 
syms mp psi0 
%State Variable Selection 
%[x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13]' = [X Y Z u v w phi theta psi p 

q r]' 
syms x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 u1 u2 u3 u4 
x = [x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12]; 
%Control Input Selection 
%[u1 u2 u3 u4]' = [Omega_f Omega_r Omega_b Omega_l]' 
u = [u1 u2 u3 u4]; 

  
M = m_quadrotor + m_battery + mp; 
Jx = ((2*M*R^2)/5) + 2*(l^2)*m_motor; 
Jy = ((2*M*R^2)/5) + 2*(l^2)*m_motor; 
Jz = ((2*M*R^2)/5) + 4*(l^2)*m_motor; 
[Al, Bl] = Qrotor_Linearization(x,u,l,m_base,mp,psi0,Jx,Jy,Jz); 
C = eye(12); 
D = zeros(12,4); 

  
%Controllability and Observability 
A = subs(Al,psi0,0); 
A = double(A); 
Bcc = subs(Bl,mp,0); 
Co = ctrb(A,Bcc); 
rankCo = rank(Co) 
Ob = obsv(A,C); 
rankOb = rank(Ob) 
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%% LPV Model 
%Control Input Filter 
Au = -100*eye(4); 
Bu = eye(4); 
Cu = eye(4); 
Ap = [A, Bl*Cu; 
      zeros(4,12), Au]; 
Ap = vpa(Ap,4); 
Bp = [zeros(12,4);Bu]; 

  
%disturbance matrix 
B1 = [zeros(5,4); 
      1 0 0 0; 
      zeros(3,4); 
      zeros(3,1), eye(3)]; 

   
B1p = [B1; zeros(4,4)]; 

  
%define H 
%input defn: w' = [u' w]' 
Bpp = [Bp, B1p]; %dim 16x8 

  
%Parameter functions 
p1 = -(1.222e-7*(4.014e+7*mp + 3.521e+8)^(1/2))/(mp + 8.773); 
p2 = (7.332e-8*(4.014e+7*mp + 3.521e+8)^(1/2))/(0.009*mp + 0.3013); 
p3 = (3.0e-9*(4.014e+7*mp + 3.521e+8)^(1/2))/(0.009*mp + 0.5353); 

  
%Upper and lower bounds 
p1_l = double(subs(p1,mp,0)); 
p1_u = double(subs(p1,mp,2.3)); 
p2_l = double(subs(p2,mp,0)); 
p2_u = double(subs(p2,mp,2.3));   
p3_l = double(subs(p3,mp,0)); 
p3_u = double(subs(p3,mp,2.3)); 

  
P = [p1_l p1_u; 
     p2_l p2_u; 
     p3_l p3_u]; 

  
%Parameter Box 
pv = pvec('box',P); 
VERTX = polydec(pv); %vertex coordinates 
pvinfo(pv) 
%Vector of 3 parameters ranging in a box 

  
%example of polydec function 
[V_C,VERTX_C] = polydec(pv,[p1_u, p2_u, p3_u]); 

  
%Augmented Model Intermediate Matrices 
M1 = [1 0 0; 
      0 1 0; 
      0 0 -1]; 

  
M2 = [0 -g 0; 
      g 0 0; 
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      0 0 0]; 

  
M3 = eye(3); 

  
M4 = [0 -1 0 1; 
      1 0 -1 0]; 

   
A0 = [zeros(16,3),[M1;zeros(13,3)],[zeros(3);M2;zeros(10,3)],[zeros(6,3); 

M3;zeros(7,3)],[zeros(12,4);Au]];  
A1 = [zeros(16,12),[zeros(5,4); [1 1 1 1]; zeros(10,4)]]; %corresponds to 

rho1 
A2 = [zeros(16,12),[zeros(9,4);M4;zeros(5,4)]]; %M4 corresponds to rho2  
A3 = [zeros(16,12),[zeros(11,4);[-1 1 -1 1];zeros(4,4)]]; %corresponds to 

rho3 

       
B0 = Bpp; 
B1 = zeros(16,8); 
B2 = zeros(16,8); 
B3 = zeros(16,8); 

  
Cp = [eye(12),zeros(12,4)]; 
C0 = Cp; 
C1 = zeros(12,16); 
C2 = zeros(12,16); 
C3 = zeros(12,16); 

  
Dp = [zeros(12,4),zeros(12,4)]; 
D0 = Dp; 
D1 = zeros(12,8); 
D2 = zeros(12,8); 
D3 = zeros(12,8); 

  
S0 = ltisys(A0,B0,C0,D0); 
S1 = ltisys(A1,B1,C1,D1,0); 
S2 = ltisys(A2,B2,C2,D2,0); 
S3 = ltisys(A3,B3,C3,D3,0); 

  
pdsys = psys(pv,[S0,S1,S2,S3]); %affine parameter dependent system 
psinfo(pdsys) 
%Affine parameter-dependent model with 3 parameters (4 systems)  
%Each system has 16 state(s), 8 input(s), and 12 output(s) 

  
polysys = aff2pol(pdsys); %polytopic model - instances of pdsys (affine) at 

the vertices of the box 
psinfo(polysys) 
%Polytopic model with 8 vertex systems  
%Each system has 16 state(s), 8 input(s), and 12 output(s) 
% [tau,P] = quadstab(polysys) 
% open-loop unstable 

  
%% LPV Controls Design 
%% Weights Selection 
%static gains and filters in TF form 
sys_Wr1 = ltisys('tf',[1],[1]); 
sys_Wr2 = ltisys('tf',[1],[1]); 
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sys_Wr3 = ltisys('tf',[1],[1]); 
sys_Wr4 = ltisys('tf',[1],[1]); 
sys_Wr5 = ltisys('tf',[1],[1]); 
sys_Wr6 = ltisys('tf',[1],[1]); 
sys_Wr7 = ltisys('tf',[1],[1]); 
sys_Wr8 = ltisys('tf',[1],[1]); 
sys_Wr9 = ltisys('tf',[1],[1]); 
sys_Wr10 = ltisys('tf',[1],[1]); 
sys_Wr11 = ltisys('tf',[1],[1]); 
sys_Wr12 = ltisys('tf',[1],[1]); 

  
sys_Wd1 = ltisys('tf',[1],[1]); 
sys_Wd2 = ltisys('tf',[1],[1]); 
sys_Wd3 = ltisys('tf',[1],[1]); 
sys_Wd4 = ltisys('tf',[1],[1]); 

  
cWp1 = 2.01; 
cWp2 = 0.201; 
% cWp1 = 20.1; 
% cWp2 = 2.01; 
% cWp1 = 0.201; 
% cWp2 = 0.0201; 
sys_Wp1 = ltisys('tf',[cWp1],[1, cWp2]); 
sys_Wp2 = ltisys('tf',[cWp1],[1, cWp2]); 
sys_Wp3 = ltisys('tf',[cWp1],[1, cWp2]); 
sys_Wp4 = ltisys('tf',[cWp1],[1, cWp2]); 
sys_Wp5 = ltisys('tf',[cWp1],[1, cWp2]); 
sys_Wp6 = ltisys('tf',[cWp1],[1, cWp2]); 
sys_Wp7 = ltisys('tf',[cWp1],[1, cWp2]); 
sys_Wp8 = ltisys('tf',[cWp1],[1, cWp2]); 
sys_Wp9 = ltisys('tf',[cWp1],[1, cWp2]); 
% sys_Wp10 = ltisys('tf',[cWp1],[1, cWp2]); 
% sys_Wp11 = ltisys('tf',[cWp1],[1, cWp2]); 
% sys_Wp12 = ltisys('tf',[cWp1],[1, cWp2]); 

  
sys_Wp10 = ltisys('tf',[2 0],[1, 8.5, 18]); 
sys_Wp11 = ltisys('tf',[2 0],[1, 8.5, 18]); 
sys_Wp12 = ltisys('tf',[2 0],[1, 8.5, 18]); 

  
% numWu = [10 0]; 
% denWu = [1 100]; 
numWu =[9.678, 0.029, 0, 0]; 
denWu = [1, 1.206e4, 1.136e7, 1.066e10]; 
% numWu = [0.5, 0.5*0.0001]; 
% denWu = [1 10]; 
sys_Wu1 = ltisys('tf',numWu,denWu); 
sys_Wu2 = ltisys('tf',numWu,denWu); 
sys_Wu3 = ltisys('tf',numWu,denWu); 
sys_Wu4 = ltisys('tf',numWu,denWu); 

  
%MIMO TF matrices 
sysWrg1 = sdiag(sys_Wr1,sys_Wr2,sys_Wr3,sys_Wr4,sys_Wr5,sys_Wr6); 
sysWrg2 = sdiag(sys_Wr7,sys_Wr8,sys_Wr9,sys_Wr10,sys_Wr11,sys_Wr12); 
Wr = sdiag(sysWrg1,sysWrg2);  
Wd = sdiag(sys_Wd1,sys_Wd2,sys_Wd3,sys_Wd4);  
sysWpg1 = sdiag(sys_Wp1,sys_Wp2,sys_Wp3,sys_Wp4,sys_Wp5,sys_Wp6); 
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sysWpg2 = sdiag(sys_Wp7,sys_Wp8,sys_Wp9,sys_Wp10,sys_Wp11,sys_Wp12); 
Wp = sdiag(sysWpg1,sysWpg2); 
Wu = sdiag(sys_Wu1,sys_Wu2,sys_Wu3,sys_Wu4);  

  
figure, 
splot(Wu,'sv') 
grid on; 
title('Singular Values - Control (Robustness) Weight W_u') 
xlabel('Frequency') 
ylabel('Magnitude') 
set(findall(gcf,'type','line'),'linewidth',1); 
set(gca,'fontsize',24); 

  
figure, 
splot(Wp,'sv') 
grid on; 
title('Singular Values - Performance (Sensitivity) Weight W_p') 
xlabel('Frequency') 
ylabel('Magnitude') 
set(findall(gcf,'type','line'),'linewidth',1); 
set(gca,'fontsize',24); 
%% Generalized LPV Plant 
% inputs = 'r(12);w(4)'; 
% outputs = 'Wr;Wd;Wp;Wu'; 
% K_in = 'K:[e=Wr:r-G;Wr:r]'; %controller K with its inputs 
% %G:K means the input of G is the output of K 
% G1_in = 'G:[K;Wd:w]'; %g1 = pdsys 
% G2_in = 'Wr:r'; %g2 = Wr 
% G3_in = 'Wd:w'; %g3 = Wd 
% G4_in = 'Wp:e'; %g4 = Wp 
% G5_in = 'Wu:K'; %g5 = Wu 
%  
% [P_aug,N_MC] = 

sconnect(inputs,outputs,K_in,G1_in,pdsys,G2_in,Wr,G3_in,Wd,G4_in,Wp,G5_in,Wu)

;  

  
inputs = 'r(12);w(4)'; 
outputs = 'Wr;Wd;Wp;Wu;'; 
K_in = 'K:e=Wr-G;Wr'; %controller K with its inputs 
%G:K means the input of G is the output of K 
G1_in = 'G:K;Wd'; %g1 = pdsys 
G2_in = 'Wr:r'; %g2 = Wr 
G3_in = 'Wd:w'; %g3 = Wd 
G4_in = 'Wp:e'; %g4 = Wp 
G5_in = 'Wu:K'; %g5 = Wu 

  
[P_aug,N_MC] = 

sconnect(inputs,outputs,K_in,G1_in,pdsys,G2_in,Wr,G3_in,Wd,G4_in,Wp,G5_in,Wu)

;  

  
psinfo(P_aug) 
%N_MC = [nbr of measurements (C(s) inputs), nbr of controls (C(s) outputs)) 
%expectation: [24 4] --> gain K [4 24] 
%pdP = Hinf plant P(s) associated with the control structure  
%Polytopic model with 8 vertex systems  
%Each system has 40 state(s), 20 input(s), and 56 output(s) 
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%% Gain-Scheduled Hinf Controller 
[gopt,pdK,R,S] = hinfgs(P_aug,N_MC,0,1e-2); 
psinfo(pdK) 
%Polytopic model with 8 vertex systems  
%Each system has 43 state(s), 24 input(s), and 4 output(s) 

  
pCL = slft(P_aug,pdK); %closed-loop system 
psinfo(pCL) 
%Polytopic model with 8 vertex systems  
%Each system has 86 state(s), 16 input(s), and 32 output(s) 

  
%Performance Analysis 
% [PERF, LP] = quadperf(pCL) 

  
%Stability Analysis  
% [TAU, LyP] = quadstab(pCL) 
% pdlstab(pCL) 
%NOTE: very long computation time for pdlstab, comment out when not needed 

  
%Vertex Controllers 
VK1 = psinfo(pdK,'sys',1); VK2 = psinfo(pdK,'sys',2); 
VK3 = psinfo(pdK,'sys',3); VK4 = psinfo(pdK,'sys',4); 
VK5 = psinfo(pdK,'sys',5); VK6 = psinfo(pdK,'sys',6); 
VK7 = psinfo(pdK,'sys',7); VK8 = psinfo(pdK,'sys',8); 

 

%Evaluate the eigenvalues of the Ak matrices of the vertex controllers 
VK = {VK1,VK2,VK3,VK4,VK5,VK6,VK7,VK8}; 
Vertex_Eig = cell(8,1); 
for i = 1:8 
    VKe = VK{i}; 
    [Ak, Bk, Ck, Dk] = ltiss(VKe); 
    Vertex_Eig{i} = eig(Ak); 
end 

  
%check eigenvalues are less than 0 
Vertex_Stable = cell(8,1); 
for i = 1:8 
    Vertex_Eig1 = Vertex_Eig{i}; 
    Vertex_Stable{i} = Vertex_Eig1 < 0; 
end 

 

  
[Ak, Bk, Ck, Dk] = ltiss(VK1); 
size(Ak); %43x43 
size(Bk); %43x24 
size(Ck); %4x43 
size(Dk); %4x24 

  

%example of psinfo function - to be implemented in Simulink 
SKsys = psinfo(pdK,'eval',V_C); %instantiates the polytopic system for the 

vertex controllers 
[Ak, Bk, Ck, Dk] = ltiss(SKsys); 

  
%% Frequency Domain Analysis - Singular Values Plots 
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%random polytopic coordinates for control analysis 
pNum = 100; polyc = []; 
for j = 1:pNum 
   poly = rand(1,8); 
   poly = poly/sum(poly); 
   polyc = [polyc; poly]; 
end 

  
%singular values plot for polytopic plant 
figure, 
omega = logspace(-2,2,200); 
for j = 1:pNum 
    PolySys = psinfo(polysys,'eval',polyc(j,:)); %evaluate at convex 

coordinates  
    [adp,bdp,cdp,ddp] = ltiss(PolySys); 
    sysp = ss(adp,bdp,cdp,ddp); 
    [sv] = sigma(sysp, omega); 
    semilogx(omega, mag2db(sv)); 
    hold on; grid on; 
    title('Singular Values - Plant G(\rho)') 
    xlabel('Frequency [rad/s]') 
    ylabel('Magnitude [dB]') 
    set(findall(gcf,'type','line'),'linewidth',1); 
    set(gca,'fontsize',24); 
end 

  
%singular values plot for Hinf plant 
figure, 
omega = logspace(-2,2,200); 
for j = 1:pNum 
    Pdg = psinfo(P_aug,'eval',polyc(j,:)); %evaluate at convex coordinates  
    [adg,bdg,cdg,ddg] = ltiss(Pdg); 
    sysg = ss(adg,bdg,cdg,ddg); 
    [sv] = sigma(sysg, omega); 
    semilogx(omega, mag2db(sv)); 
    hold on; grid on; 
    title('Singular Values - Augmented Plant P(\rho)') 
    xlabel('Frequency [rad/s]') 
    ylabel('Magnitude [dB]') 
    set(findall(gcf,'type','line'),'linewidth',1); 
    set(gca,'fontsize',24); 
end 

  
%singular values plot for polytopic controller 
figure, 
omega = logspace(-4,4,300); 
for j = 1:pNum 
    Pdk = psinfo(pdK,'eval',polyc(j,:)); %evaluate at convex coordinates  
    [adk,bdk,cdk,ddk] = ltiss(Pdk); 
    sysk = ss(adk,bdk,cdk,ddk); 
    [sv] = sigma(sysk, omega); 
    semilogx(omega, mag2db(sv)); 
    hold on; grid on; 
    title('Singular Values - Controller K(\rho)') 
    xlabel('Frequency [rad/s]') 
    ylabel('Magnitude [dB]') 
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    set(findall(gcf,'type','line'),'linewidth',1); 
    set(gca,'fontsize',24); 
end 

  
%singular values plot for closed loop transfer system 
figure, 
omega = logspace(-4,4,300); 
for j = 1:pNum 
    Pcl = psinfo(pCL,'eval',polyc(j,:)); %evaluate at convex coordinates  
    [adcl,bdcl,cdcl,ddcl] = ltiss(Pcl); 
    syscl = ss(adcl,bdcl,cdcl,ddcl); 
    [sv] = sigma(syscl, omega); 
    semilogx(omega, mag2db(sv)); 
    hold on; grid on; 
    title('Singular Values - Closed Loop System F(\rho)') 
    xlabel('Frequency [rad/s]') 
    ylabel('Magnitude [dB]') 
    set(findall(gcf,'type','line'),'linewidth',1); 
    set(gca,'fontsize',24); 
end 

  
%% Functions 
%% Jacobian Linearization 
function [Al, Bl] = Qrotor_Linearization(x,u,l,m_base,mp,psi0,Jx,Jy,Jz) 
g = 9.81; 
KF = 6.11e-8; 
KM = 1.5e-9; 
k = sqrt(g*(m_base+mp)/(4*KF)); 

  
syms x0 y0 z0 

  
U_z = KF*(u(1)^2 +u(2)^2 + u(3)^2 + u(4)^2); 
U_roll = l*KF*(-u(2)^2 + u(4)^2);  
U_pitch = l*KF*(-u(3)^2 + u(1)^2);  
U_yaw = KM*(-u(1)^2 + u(2)^2 - u(3)^2 + u(4)^2); 

  
xdot = sym(zeros(12,1)); 
xdot(1) = (cos(x(9))*cos(x(8)))*x(4) + (-

sin(x(9))*cos(x(7))+cos(x(9))*sin(x(8))*sin(x(7)))*x(5) + 

(sin(x(9))*sin(x(7))+cos(x(9))*sin(x(8))*cos(x(7)))*x(6); 
xdot(2) = (sin(x(9))*cos(x(8)))*x(4) + 

(cos(x(9))*cos(x(7))+sin(x(9))*sin(x(8))*sin(x(7)))*x(5) + (-

cos(x(9))*sin(x(7))+sin(x(9))*sin(x(8))*cos(x(7)))*x(6); 
xdot(3) = (sin(x(8)))*x(4) + (-cos(x(8))*sin(x(7)))*x(5) + (-

cos(x(8))*cos(x(7)))*x(6); 
xdot(4) = (x(5)*x(12)-x(6)*x(11)) - g*sin(x(8)); 
xdot(5) = (x(6)*x(10)-x(4)*x(12)) + g*cos(x(8))*sin(x(7));  
xdot(6) = (x(4)*x(11)-x(5)*x(10)) + g*cos(x(8))*cos(x(7)) - 

(1/(m_base+mp))*U_z; 
xdot(7) = x(10) + (sin(x(7))*tan(x(8)))*x(11) + (cos(x(7))*tan(x(8)))*x(12); 
xdot(8) = cos(x(7))*x(11) + -sin(x(7))*x(12); 
xdot(9) = (sin(x(7))/cos(x(8)))*x(11) + (cos(x(7))/cos(x(8)))*x(12); 
xdot(10) = ((Jy-Jz)/Jx)*x(11)*x(12) + (1/Jx)*U_roll; 
xdot(11) = ((Jz-Jx)/Jy)*x(10)*x(12) + (1/Jy)*U_pitch; 
xdot(12) = ((Jx-Jy)/Jz)*x(10)*x(11) + (1/Jz)*U_yaw; 
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Ax = jacobian(xdot,x); 
Bu = jacobian(xdot,u); 
xe =[x0,y0,z0,0,0,0,0,0,psi0,0,0,0]; %operating point at hover condition 
ue = k*[1 1 1 1]; 
Al = subs(Ax,x,xe); 
Al = subs(Al,u,ue); %propeller speeds at hover conditions 
Al = vpa(Al,4); %linearized A 
Bl = subs(Bu,x,xe); 
Bl = subs(Bl,u,ue); 
Bl = vpa(Bl,4); %linearized B 
end 
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A.3 2DOF PI Actuator Control 
% MS Project (AE 295B) 
% Design of a Linear Parameter Varying Controller for a Delivery Quadrotor 
% Description: MATLAB script for 2DOF PI Actuator Controller 

% Author: Hussam Okasha 

  
wref = 200; 
tau = 0.00128; 
cm = 20; 

  
numa = cm; 
dena = [tau 1]; 

  
zeta = 1; 
wn = 100; 

  
N = 4.58; 
Kpi = (wn^2)*tau/cm; 
Kpa = 2*wn*zeta*tau/cm;  
Kpa = 1.15*Kpa; 

  
Vd = [0, -5]; 
t = zeros(1519,2); u = zeros(1519,2); Vin = zeros(1519,2); wp = 

zeros(1519,2); 
outwr = zeros(1519,2); 

  
open_system('PI_Control_Act.slx') 

  
for i = 1:2 
    Vdist = Vd(i); 
    sim('PI_Control_Act.slx') 
    t(:,i) = out.t; 
    u(:,i) = out.uVin; 
    Vin(:,i) = out.tVin; 
    r(:,i) = out.wref; 
    wp(:,i) = out.wp; 
end 

  
purple = [0.4940 0.1840 0.5560]; 
gold = [0.9290 0.6940 0.1250]; 

  
figure, 
subplot(2,1,1) 
    plot(t1{1},outu{1}) 
    hold on 
    plot(t1{2},outv{2}) 
    title('Input Voltage') 
    legend('Control Input',... 
           'Control Input with V_d = -5V','location','best') 
    xlabel('Time [s]');  
    ylabel('Voltage [V]'); 
    set(findall(gcf,'type','line'),'linewidth',3); 
    set(gca,'fontsize',24); 
subplot(2,1,2) 
    plot(t(:,1),r(:,1),'k') 
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    hold on 
    plot(t(:,1),wp(:,1),'color',purple) 
    hold on 
    plot(t(:,2),wp(:,2),'color',gold,'LineStyle','--') 
    title('Propeller Speed') 
    legend('Reference \Omega_r',... 
           '\Omega with V_d = 0V',... 
           '\Omega with V_d = -5V','location','best')   
    xlabel('Time [s]');  
    ylabel('Propeller Speed [rad/s]'); 
    set(findall(gcf,'type','line'),'linewidth',3); 
    set(gca,'fontsize',24); 
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A.4 Nonlinear Simulation of LPV Control System 

 

% MS Project (AE 295B) 
% Design of a Linear Parameter Varying Controller for a Delivery Quadrotor 
% Description: Nonlinear simulations of LPV control systems 
% Author: Hussam Okasha 

  
%% Parameters 

  
% Quadrotor Parameters 
g = 9.81; 
l = 0.6; %m 
R = 0.15; %m 
m_quadrotor = 3.800; %kg %all mass not including the motors, battery, and 

payload 
m_motor = 0.325;  
m_battery = 3.673; 
m_motors = 4*m_motor; 
mp = 2; %actual payload mass for simulation purposes 
m_base = m_quadrotor + m_motors + m_battery; 
psi0 = 0; 

  
% Actuator Parameters 
KF = 6.11e-8; 
KM = 1.5e-9; 
cm = 20; %s^-1 
tau = 0.00128; 
% Vdist = 0; 
% Vdist = -5; 
[numa, dena, N, Kpi, Kpa] = ActuatorPI(cm,tau); 

  
% Mass Estimator Parameters 
Lambda_0 = 10; 
Gamma = 15; 
Est_IC = 1/m_base; 

  
%System Parameters for propeller based model 
% LinModel = load('sysmodels.mat');  
% Alin = LinModel.Al; 
% Blin = LinModel.Bl; 

  
% LPV Controller Parameters 
%lpvDFT.mat - Forces and Torques 
%lpvPropeller.mat - Propeller Speeds 
LPVcontrol = load('lpvPropeller.mat');  
pv = LPVcontrol.pv; %parameter box 
pdK = LPVcontrol.pdK; %polytopic vertex controllers 

  
% Test Inputs 
k = sqrt(g*(m_base+mp)/(4*KF)); 
hov_in = (m_base+mp)*g*[1 0 0 0]; 
omega_direct = k*[1 1 1 1];  
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% Linearized A and B for linear simulation 
% run LPV_Control_Quadrotor.m or LPV_Control_Quadrotor_2.m first 
syms psi0 mp 
Alin = subs(Al,psi0,0); 
Blin = subs(Bl,mp,2); 
Alin = double(Alin); 
Blin = double(Blin); 
psi = 0; 
mp = 2; 

  
% Trajectory gain for linear simulation 
Cr = [1.321, zeros(1,11); 
      0, 1.321 zeros(1,10); 
      0, 0, 1.361, zeros(1,9); 
      zeros(9,3), eye(9)]; 

   
% Reference Model (Trajectory Filter) 
tau_f = 0.1; 
% tau_f = 0.06; 
Aref = -tau_f*eye(12); 
Bref = eye(12); 
Cref = tau_f*eye(12); 
Dref = zeros(12); 
x0ref = zeros(1,12); 

  

syms s 
Gr = Cref*inv(s*eye(12)-Aref)*Bref+Dref; 
Gr_sys = ltisys('tf',[3],[50 3]); 
Gr_sysA = ltisys('tf',[1],[10 1]); 
figure, 
splot(Gr_sys,'bode') 
grid on; 
title('Bode Plot for Model Reference Signal') 
set(findall(gcf,'type','line'),'linewidth',2); 

  
figure, 
splot(Gr_sysA,'bode') 
grid on; 
title('Bode Plot for Model Reference Signal') 
set(findall(gcf,'type','line'),'linewidth',2); 

   
%% Plots 
% open_system('PayloadQuadrotor_Nonlinear2019b2.slx') 
% sim('PayloadQuadrotor_Nonlinear2019b2.slx') 

  
% open_system('PayloadQuadrotor_Nonlinear.slx') 
% sim('PayloadQuadrotor_Nonlinear.slx') 

  
%Mass Estimator Plot 
massp = [(m_base+mp)*ones(length(out.t),1), mp*ones(length(out.t),1), 

out.m_est, out.mp_est]; 
QrotorMassEstPlot(out.t,massp); 
% print(gcf,'dist_massest.png','-dpng','-r600') 
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%Position Plot 
QrotorPosPlot(out.t,out.r_out,out.qstates); 
% print(gcf,'dist_3Dtraj.png','-dpng','-r600') 
% print(gcf,'dist_poststates.png','-dpng','-r600') 

  
%State Plots 
QrotorPlotStates(out.t,out.r_out,out.qstates); 
% print(gcf,'dist_vel.png','-dpng','-r600') 
% print(gcf,'dist_Eul.png','-dpng','-r600') 
% print(gcf,'dist_attr.png','-dpng','-r600') 

  
%Control Plots 
QrotorPlotControl(out.t,out.ctrl,out.lpvcmd,out.lpvcmds); 
% print(gcf,'dist_LPV.png','-dpng','-r600') 
% print(gcf,'dist_scaledLPV.png','-dpng','-r600') 
% print(gcf,'dist_actinputs.png','-dpng','-r600') 

  
%to save high res images, with the figure of interest open, type in command 
%prompt: print(gcf,'filename.png','-dpng','-r600') %600 = dots per inch 

  
%% Functions 

  
function [] = QrotorPosPlot(t,r,states) 
r1 = r(:,1); 
r2 = r(:,2); 
r3 = r(:,3); 
X = states(:,1); 
Y = states(:,2); 
Z = states(:,3); 

  
figure('Position', get(0, 'Screensize')); 
plot3(r1,r2,r3,'k'); 
hold on 
plot3(X,Y,Z,'r--') 
grid on 
xlabel('North Position [m]'); 
ylabel('East Position [m]'); 
zlabel('Altitude [m]'); 
title('Reference Tracking'); 
legend('desired trajectory',... 
       'position response','location','best') 
set(findall(gcf,'type','line'),'linewidth',3); 
set(gca,'fontsize',24); 

  
figure('Position', get(0, 'Screensize')); 
plot(t,X,t,Y,':',t,Z); 
hold on 
plot(t,r1,'--',t,r2,':',t,r3,'--') 
grid on 
xlabel('Time [s]'); 
ylabel('Position [m]'); 
title('Reference Tracking'); 
legend('X',... 
       'Y',... 
       'Z',... 
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       'desired X',... 
       'desired Y',... 
       'desired Z','location','best') 
set(findall(gcf,'type','line'),'linewidth',3); 
set(gca,'fontsize',24); 
end 

  
function [] = QrotorPlotStates(t,r,states) 
udes = r(:,4); 
vdes = r(:,5); 
wdes = r(:,6); 
Edes = r(:,7); %common to phi, theta, psi 
pdes = r(:,10); %common to p q r 

  
u = states(:,4); 
v = states(:,5); 
w = states(:,6); 
phi = states(:,7)*180/pi; 
theta = states(:,8)*180/pi; 
psi = states(:,9)*180/pi; 
p = states(:,10)*180/pi; 
q = states(:,11)*180/pi; 
r = states(:,12)*180/pi; 

  
figure('Position', get(0, 'Screensize')); 
plot(t,u,t,v,':',t,w) 
hold on 
plot(t,udes,'--',t,vdes,':',t,wdes,'--') 
title('Velocity Responses') 
legend('u',... 
       'v',... 
       'w',... 
       'desired u',... 
       'desired v',... 
       'desired w','location','best') 
xlabel('Time [s]') 
ylabel('Velocity [m/s]') 
set(findall(gcf,'type','line'),'linewidth',2); 
set(gca,'fontsize',24); 

  
figure('Position', get(0, 'Screensize')); 
plot(t,phi,t,theta,t,psi) 
hold on 
plot(t,Edes,'k--') 
title('Euler Angle Responses') 
legend('\psi',... 
       '\phi',... 
       '\theta',... 
       'desired Euler angle','location','best') 
xlabel('Time [s]') 
ylabel('Euler Angle [deg]') 
set(findall(gcf,'type','line'),'linewidth',2); 
set(gca,'fontsize',24); 

  
figure('Position', get(0, 'Screensize')); 
plot(t,p,t,q,t,r) 
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hold on 
plot(t,pdes,'k--') 
title('Attitude Rate Responses') 
legend('p',... 
       'q',... 
       'r',... 
       'desired attitude rate','location','best') 
xlabel('Time [s]') 
ylabel('Attitude Rate [deg/s]') 
set(findall(gcf,'type','line'),'linewidth',2); 
set(gca,'fontsize',24); 
end 

  
function [] = QrotorMassEstPlot(t,y) 
y1 = y(:,1); 
y2 = y(:,2); 
y3 = y(:,3); 
y4 = y(:,4); 

  
figure('Position', get(0, 'Screensize')); 
plot(t,y1,'k') 
hold on 
plot(t,y3,'r--') 
hold on 
plot(t,y2,'b') 
hold on 
plot(t,y4,'g--') 
title('Gradient Descent Based Mass Estimator') 
legend('actual m',... 
       'estimated m',.... 
       'actual m_p',... 
       'estimated m_p','location','best') 
xlabel('Time [s]') 
ylabel('Mass [kg]') 
set(findall(gcf,'type','line'),'linewidth',3); 
set(gca,'fontsize',24); 
xlim([0, 1]) 
end 

  
function [] = QrotorPlotControl(t,control,lpv,cmd) 
u1 = control(:,1); 
u2 = control(:,2); 
u3 = control(:,3); 
u4 = control(:,4); 

  
lpv1 = lpv(:,1); 
lpv2 = lpv(:,2); 
lpv3 = lpv(:,3); 
lpv4 = lpv(:,4); 

  
cmd1 = cmd(:,1); 
cmd2 = cmd(:,2); 
cmd3 = cmd(:,3); 
cmd4 = cmd(:,4); 

  
figure('Position', get(0, 'Screensize')); 
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plot(t,u1,t,u2,t,u3,t,u4) 
title('Control Inputs') 
% legend('F_z [N]',... 
%        '\tau_\phi [Nm]',... 
%        '\tau_\theta [Nm]',... 
%        '\tau_\psi [Nm]','location','best') 
legend('\Omega_f',... 
       '\Omega_r',... 
       '\Omega_b',... 
       '\Omega_l','location','best') 
xlabel('Time [s]') 
% ylabel('Magnitude') 
ylabel('Angular Speed [rad/s]') 
set(findall(gcf,'type','line'),'linewidth',2); 
set(gca,'fontsize',24); 

  
figure('Position', get(0, 'Screensize')); 
plot(t,lpv1,t,lpv2,t,lpv3,t,lpv4) 
title('LPV Commands') 
% legend('F_z [N]',... 
%        '\tau_\phi [Nm]',... 
%        '\tau_\theta [Nm]',... 
%        '\tau_\psi [Nm]','location','best') 
legend('\Omega_f',... 
       '\Omega_r',... 
       '\Omega_b',... 
       '\Omega_l','location','best') 
xlabel('Time [s]') 
% ylabel('Magnitude') 
ylabel('Angular Speed [rad/s]') 
set(findall(gcf,'type','line'),'linewidth',2); 
set(gca,'fontsize',24); 

  
figure('Position', get(0, 'Screensize')); 
plot(t,cmd1,t,cmd2,t,cmd3,t,cmd4) 
title('Scaled LPV Commands') 
% legend('F_z [N]',... 
%        '\tau_\phi [Nm]',... 
%        '\tau_\theta [Nm]',... 
%        '\tau_\psi [Nm]','location','best') 
legend('\Omega_f',... 
       '\Omega_r',... 
       '\Omega_b',... 
       '\Omega_l','location','best') 
xlabel('Time [s]') 
% ylabel('Magnitude') 
ylabel('Angular Speed [rad/s]') 
set(findall(gcf,'type','line'),'linewidth',2); 
set(gca,'fontsize',24); 
end 

  
% Actuator PI Controller Parameters 
function [numa, dena, N, Kpi, Kpa] = ActuatorPI(cm,tau) 
numa = cm; 
dena = [tau 1]; 
zeta = 1; 
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wn = 100; 
N = 4.58; 
Kpi = (wn^2)*tau/cm; 
Kpa = 2*wn*zeta*tau/cm;  
Kpa = 1.15*Kpa; 
end 
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A.5 Reference Trajectory Build 

 
%MATLAB Simulink function builds the reference trajectory 
function traj = RefTraj(t) 
%Parameters 
h = 40; %heigh of the building [m] 
delta = 10; %height of quadrotor above h [m] 
Vp = 10; %lifting velocity [m/s] 
Vm = 10; %cruise velocity [m/s] 
t1 = (h+delta)/Vp; %time at waypoint 1 [s] 
t2 = t1 + (1000*sqrt(2)/Vm); %time at waypoint 2 [s] 
theta = 45; %angle between point AB and ground [deg] 
tb = 20; %desired time to deliver payload from z=h+delta to z=40 
Vh = 2*delta/tb; %see derivation 

  
%r0 path 
if t <= 0 
   X = 0; Y = 0; Z = 0; 
   r0 = [X, Y, Z]; 
   u = 0; v = 0; w =0; 
   v0 = [u, v, w];  
   Eul0 = [0, 0, 0]; 
   rates0 = [0, 0, 0]; 
   traj = [r0, v0, Eul0, rates0]'; 

  
%r1 path    
elseif t > 0 && t <= t1 
   X = 0; Y = 0;  
   Z = Vp*t+0; 
   r1 = [X, Y, Z]; 
   u = 0; v = 0; 
   w = Vp; 
   v1 = [u, v, w]; 
   Eul1 = [0, 0, 0]; 
   rates1 = [0, 0, 0]; 
   traj = [r1, v1, Eul1, rates1]'; 

    
%r2 path 
elseif t > t1 && t <= t2 
   X = (Vm/sqrt(2))*(t - t1); 
   Y = (Vm/sqrt(2))*(t - t1); 
   Z = h + delta; 
   r2 = [X, Y, Z]; 
   u = Vm*cosd(theta); 
   v = Vm*sind(theta); 
   w = 0; 
   v2 = [u, v, w]; 
   Eul2 = [0, 0, 0]; 
   rates2 = [0, 0, 0]; 
   traj = [r2, v2, Eul2, rates2]'; 

    
%r3 path 
elseif t > t2 && t <= (t2 + tb) 
   X = 1000; Y = 1000; 
   Z = -Vh*(t - t2) + (Vh/(2*tb))*(t - t2)^2 + (h + delta); 
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   r3 = [X, Y, Z]; 
   u = 0; v = 0;  
   w = -Vh + (Vh/tb)*(t - t2); 
   v3 = [u, v, w]; 
   Eul3 = [0, 0, 0]; 
   rates3 = [0, 0, 0]; 
   traj = [r3, v3, Eul3, rates3]'; 

  
%r4 path 
else % t == (t2 + tb) 
   X = 1000; Y = 1000; 
   Z = h; 
   r4 = [X, Y, Z]; 
   u = 0 ; v = 0; w = 0; 
   v4 = [u, v, w]; 
   Eul4 = [0, 0, 0]; 
   rates4 = [0, 0, 0]; 
   traj = [r4, v4, Eul4, rates4]'; 
end 
traj(6) = -traj(6); 
end 
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A.6 LPV Control Simulink MATLAB Functions 

 

 
%Function for ConvexDecomp  
%Workaround to avoid the code generation feature of the Simulink MATLAB 

function 
function alphas = myWrapper(pv,rho_m) 
alphas = polydec(pv,[rho_m(1), rho_m(2), rho_m(3)]); %vertex coordinates 
end 

 

function alphas = ConvexDecomp(pv,rho_m) 
alphas = zeros(1,8); 
coder.extrinsic('myWrapper') 
alphas = myWrapper(pv,rho_m); 
end 

 

%Function for VertexControl 
%Workaround to avoid the code generation feature of the Simulink MATLAB 

function 
function [Ak,Bk,Ck,Dk] = myWrapper2(pdK,alphas) 
SKsys = psinfo(pdK,'eval',alphas); %instantiates the polytopic system for 

the vertex controllers 
[Ak, Bk, Ck, Dk] = ltiss(SKsys); 
end 

 

function [Ak,Bk,Ck,Dk] = VertexControl(pdK,alphas)  
Ak = zeros(43,43); 
Bk = zeros(43,24); 
Ck = zeros(4,43); 
Dk = zeros(4,24);  
coder.extrinsic('myWrapper2') 
[Ak,Bk,Ck,Dk] = myWrapper2(pdK,alphas); 
end 
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B. Simulink Structures for Quadrotor Simulation 

B.1 State Variable Representation for Nonlinear System  

 

 STATE VARIABLE DEFINITIONS 

 

𝑥 = [𝑋 𝑌 𝑍 𝑢 𝑣 𝑤 𝜙 𝜃 𝜓 𝑝 𝑞 𝑟]𝑇 = [𝑥1 𝑥2 ∙∙∙ 𝑥12]
𝑇 

𝑢 = [𝐹𝑧 𝜏𝜙 𝜏𝜃 𝜏𝜓]
𝑇
= [𝑢1 𝑢2 𝑢3 𝑢4]

𝑇 

 

 KINEMATIC EQUATIONS – TRANSLATION  

 

𝑥1̇ = (𝑐𝑜𝑠𝑥9𝑐𝑜𝑠𝑥8)𝑥4 + (−𝑠𝑖𝑛𝑥9𝑐𝑜𝑠𝑥7 + 𝑐𝑜𝑠𝑥9𝑠𝑖𝑛𝑥8𝑠𝑖𝑛𝑥7)𝑥5 + (𝑠𝑖𝑛𝑥9𝑠𝑖𝑛𝑥7 + 𝑐𝑜𝑠𝑥9𝑠𝑖𝑛𝑥8𝑐𝑜𝑠𝑥7)𝑥6 

𝑥2̇ = (𝑠𝑖𝑛𝑥9𝑐𝑜𝑠𝑥8)𝑥4 + (𝑐𝑜𝑠𝑥9𝑐𝑜𝑠𝑥7 + 𝑠𝑖𝑛𝑥9𝑠𝑖𝑛𝑥8𝑠𝑖𝑛𝑥7)𝑥5 + (−𝑐𝑜𝑠𝑥9𝑠𝑖𝑛𝑥7 + 𝑠𝑖𝑛𝑥9𝑠𝑖𝑛𝑥8𝑐𝑜𝑠𝑥7)𝑥6 

𝑥3̇ = (−𝑠𝑖𝑛𝑥8)𝑥4 + (𝑐𝑜𝑠𝑥8𝑠𝑖𝑛𝑥7)𝑥5 + (𝑐𝑜𝑠𝑥8𝑐𝑜𝑠𝑥7)𝑥6 

 

 FORCE EQUATIONS 

 

𝑥4̇ = (𝑥5𝑥12 − 𝑥6𝑥11) − 𝑔𝑠𝑖𝑛𝑥8 

𝑥5̇ = (𝑥6𝑥10 − 𝑥4𝑥12) + 𝑔𝑐𝑜𝑠𝑥8𝑠𝑖𝑛𝑥7 

𝑥6̇ = (𝑥4𝑥11 − 𝑥5𝑥10) + 𝑔𝑐𝑜𝑠𝑥8𝑐𝑜𝑠𝑥7 −
𝑢1
𝑚

 

 

 
 

 KINEMATIC EQUATIONS – ROTATION 

 

𝑥7̇ = 𝑥10 + (𝑠𝑖𝑛𝑥7𝑡𝑎𝑛𝑥8)𝑥11 + (𝑐𝑜𝑠𝑥7𝑡𝑎𝑛𝑥8)𝑥12 

𝑥8̇ = (𝑐𝑜𝑠𝑥7)𝑥10 + (−𝑠𝑖𝑛𝑥7)𝑥12 

𝑥9̇ = (𝑠𝑖𝑛𝑥7/𝑐𝑜𝑠𝑥8)𝑥11 + (𝑐𝑜𝑠𝑥7/𝑐𝑜𝑠𝑥8)𝑥12 

 

 
 

 MOMENT EQUATIONS 

 

𝑥10̇ =
𝐽𝑦  − 𝐽𝑧

𝐽𝑥
𝑥11𝑥12 +

𝑢2
𝐽𝑥

 

𝑥11̇ =
𝐽𝑧  −  𝐽𝑥
𝐽𝑦

𝑥10𝑥12 +
𝑢3
𝐽𝑦

 

𝑥12̇ =
𝐽𝑥  − 𝐽𝑦

𝐽𝑧
𝑥10𝑥11 +

𝑢4
𝐽𝑧

 

 

 

 CONTROL INPUT EQUATIONS 

 

𝑢1 = 𝐾𝐹(𝛺𝑓
2 + 𝛺𝑟

2 + 𝛺𝑏
2 + 𝛺𝑙

2) 

𝑢2 = 𝑙𝐾𝐹(−𝛺𝑟
2 + 𝛺𝑙

2) 

𝑢3 = 𝑙𝐾𝐹(𝛺𝑓
2 − 𝛺𝑏

2) 

𝑢4 = 𝐾𝑀(−𝛺𝑓
2 + 𝛺𝑟

2 − 𝛺𝑏
2 + 𝛺𝑙

2) 
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B.2 Nonlinear Simulink Subsystems  

 

 
Figure B.1 – Motor mixing and actuator dynamics 
 

 
Figure B.2 – Mass characteristics and control inputs 
 

 
Figure B.3 – Position and Euler angles EOM 
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Figure B.4 – Velocity and attitude rates EOM 
 

  
Figure B.5 – Model outputs and data logging 
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B.3 Actuator Controller 

 

 
Figure B.6 – 2DOF PI Actuator Controller 
 

B.4 Mass Estimator and Hover State Conditioning 

 

 
Figure B.7 – Adaptive mass estimator based on gradient descent law 



140 
 

 
Figure B.8 – Hover state conditioning subsystem  

B.5 LPV Control Structures 

 

 
Figure B.9 – Control conditioning for LPV controller 
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Figure B.10 – Control conditioning for propeller based LPV controller 

 
Figure B.11 – Convex decomposition function 

 
Figure B.12 – LPV controller 
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C. PID Control of Quadrotor 

C.1 Introduction 

 

 PID control of quadrotors is a common method and its design methodology is outlined 

by references [10] and [26]. The methodologies described for attitude and position control in a 

successive loop closure structure can be used to develop the controller. In principle, the online 

adaptive mass estimator from Chapter 4 can be integrated into the PID control system. Here the 

total mass estimate �̂� is fed directly into the PID position control equations where applicable. 

Since PID control relies on SISO relationships and a control strategy utilizing successive loop 

closure, it will be informative to compare the implementation process to the multivariable 

approach of LPV control.   

C.2 Attitude Control 

 

The linearized model (2.15) is used to design the attitude and position controllers. 

Considering only small deviations from the nominal hover state, the attitude controller tracks 

trajectories in 3DOF. The linear accelerations given by (C.1) are derived from the state equations 

of the linearized model.  

 �̈� = −𝑔(𝜃 cos(𝜓0) + 𝜑𝑠𝑖𝑛(𝜓0)) 

�̈� = −𝑔(𝜃 sin(𝜓0) − 𝜑𝑐𝑜𝑠(𝜓0)) 

�̈�  =
𝑈𝑧
𝑚
=
𝑈𝐿
𝑚
+ 𝑔 

(C.1) 

 

 

Derivation of (C.1) 

From the linear model (2.15), 

 
�̇� = cos (𝜓0)𝑢 − 𝑠𝑖𝑛(𝜓0)𝑣 

�̇� = 𝑠𝑖 𝑛(𝜓0) 𝑢 + 𝑐𝑜𝑠(𝜓0)𝑣 

�̇� = −w 

 

and 

�̇� = −𝑔𝜃 

�̇� = 𝑔𝜑 

�̇� =
−𝑈𝑧
𝑚

 

 

Differentiating �̇� yields, 
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�̈� = cos (𝜓0)�̇� − 𝑠𝑖𝑛(𝜓0)�̇� 

Substituting �̇� and �̇�, 

�̈� = −𝑔𝜃cos (𝜓0) − 𝑔𝜑𝑠𝑖𝑛(𝜓0) → �̈� = −𝑔(𝜃 cos(𝜓0) + 𝜑𝑠𝑖𝑛(𝜓0)) 

 

The same process is applied to the �̇� and �̇� equations. For the �̈� equation, recall the 

equilibrium control input used for linearization is 𝑢𝑒 = [𝑚𝑔 0 0 0]. For the vertical 

direction near hover, 𝑈𝐿 = 𝑈𝑧 −𝑚𝑔 →  𝑈𝑧 = 𝑈𝐿 +𝑚𝑔. Therefore, the linear acceleration �̈�  

can also be written as �̈�  =
𝑈𝐿

𝑚
+ 𝑔 with respect to 𝑈𝑧. 

 

The angular accelerations given by are derived from the state equations for �̇�, �̇�, �̇� and the 

force and torque equations (2.2). Based on the assumptions in Section 2.4 for the derivation of 

the equations of motion, the products of inertia are zero, and 𝐽𝑥 = 𝐽𝑦 due to symmetry.  

   �̇� =
𝑈𝜑

𝐽𝑥
=

𝑙

𝐽𝑥
(𝐹𝑙 − 𝐹𝑟) 

 

  �̇� =
𝑈𝜃

𝐽𝑦
=

𝑙

𝐽𝑦
(𝐹𝑓 − 𝐹𝑏) 

 

�̇� =
𝑈𝜓

𝐽𝑧
=

1

𝐽𝑧
(𝜏𝑟 + 𝜏𝑙 − 𝜏𝑓 − 𝜏𝑏) 

(C.2) 

 

 

The errors are defined by (C.3). 

 𝑒𝜑 = 𝜑𝑑𝑒𝑠 − 𝜑 

𝑒𝜃 = 𝜃𝑑𝑒𝑠 − 𝜃 

𝑒𝜓 = 𝜓𝑑𝑒𝑠 − 𝜓 

 

𝑒𝑝 = 𝑝𝑑𝑒𝑠 − 𝑝 

𝑒𝑞 = 𝑞𝑑𝑒𝑠 − 𝑞 

𝑒𝑟 = 𝑟𝑑𝑒𝑠 − 𝑟 

 

(C.3) 
 

The desired torques are expressed of the form shown in (C.4), with proportional and derivative 

gains. 

 𝑈𝜑𝑑𝑒𝑠 = 𝐾𝑃
𝜑
𝑒𝜑 + 𝐾𝐷

𝜑
𝑒𝑝 

𝑈𝜃𝑑𝑒𝑠 = 𝐾𝑃
𝜃𝑒𝜃 + 𝐾𝐷

𝜃𝑒𝑞 

𝑈𝜓𝑑𝑒𝑠 = 𝐾𝑃
𝜓
𝑒𝜓 +𝐾𝐷

𝜓
𝑒𝑟 

(C.4) 
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Since PID control is a SISO method, the attitude controller is developed according to the 

structure shown in Figure C.1, with outer-loop proportional gains and inner-loop rate gains for 

each controlled variable.  

 

 
Figure C.1 – PD control structure for attitude control  
 

Note [𝑝𝑑𝑒𝑠 𝑞𝑑𝑒𝑠 𝑟𝑑𝑒𝑠]𝑇 is taken to be 𝟎 and each gain block consists of three gains 

corresponding to the errors (C.3).  

C.3 Position Control 

 

The goal of the position controller is to determine the desired roll and pitch angles, 𝜑𝑑𝑒𝑠 and 

𝜃𝑑𝑒𝑠, which are fed into the attitude controller, and to maintain a desired position at r. The idea 

is to drive the position of the quadrotor using the roll and pitch angles as inputs [10]. By 

adjusting these angles, the position can be controlled in three dimensions. The design objective 

is to track a desired trajectory 𝑧𝑑𝑒𝑠(𝑡). The time varying desired position 𝑟𝑇(𝑡) and heading 

𝜓𝑇(𝑡) are specified independently. In the hover state, the position and heading trajectories are 

fixed, 𝑟𝑇(𝑡) = 𝑟0 and 𝜓𝑇(𝑡) = 𝜓0, respectively. 

 
𝑧𝑑𝑒𝑠(𝑡) = [

𝑟𝑇(𝑡)
𝜓𝑇(𝑡)

] 

 

(C.5) 
 

The desired accelerations �̈�𝒊
𝒅𝒆𝒔 are computed from a PID controller. Let 𝑒𝑝 be the position error  

 𝑒𝑝 = 𝑟𝑇 − 𝑟 

 

(C.6) 

 

The desired attitude for the attitude controller is then computed according to (C.7). 
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 �̈�𝑖
𝑑𝑒𝑠(𝑡) = �̈�𝑖,𝑇(𝑡) + 𝐾𝑃,𝑖(𝑟𝑖,𝑇(𝑡) − 𝑟𝑖(𝑡)) + 𝐾𝐷,𝑖(�̇�𝑖,𝑇(𝑡) − �̇�𝑖(𝑡))  

+ 𝐾𝐼,𝑖∫(𝑟𝑖,𝑇(𝑡) − 𝑟𝑖(𝑡)) 𝑑𝑡 

 

(C.7) 

 

Note at hover, �̇�𝑇(𝑡) = �̈�𝑇(𝑡) = 0. 

From the linear accelerations (C.1), 

 �̈�𝑋
𝑑𝑒𝑠 = −𝑔(𝜃𝑑𝑒𝑠 cos(𝜓𝑇) + 𝜑𝑑𝑒𝑠 sin(𝜓𝑇)) 

�̈�𝑌
𝑑𝑒𝑠 = −𝑔(𝜃𝑑𝑒𝑠 sin(𝜓𝑇) − 𝜑𝑑𝑒𝑠 cos(𝜓𝑇)) 

�̈�𝑍
𝑑𝑒𝑠 = (

𝑈𝐿
𝑚
+ 𝑔) 

(C.8) 

 

Therefore, the desired force is given by (C.9). 

 𝑈𝐿 ≜ 𝑈𝑧𝑑𝑒𝑠 = 𝑚�̈�𝑍
𝑑𝑒𝑠 −𝑚𝑔 

 

(C.9) 

 

Inverting the (C.8) result and replacing 𝑚 with the mass estimate �̂� produced by the estimator 

developed in Chapter 4 yields the desired roll and pitch angles and desired force.  

 
𝜑𝑑𝑒𝑠 =

−1

𝑔
(�̈�𝑋
𝑑𝑒𝑠 sin(𝜓𝑇) − �̈�𝑌

𝑑𝑒𝑠 cos(𝜓𝑇)) 

𝜃𝑑𝑒𝑠 =
−1

𝑔
(�̈�𝑋
𝑑𝑒𝑠 cos(𝜓𝑇) + �̈�𝑌

𝑑𝑒𝑠 sin(𝜓𝑇)) 

𝜓𝑑𝑒𝑠 = 𝜓𝑇 
 

𝑈𝑧𝑑𝑒𝑠 = �̂�(�̈�𝑍
𝑑𝑒𝑠 − 𝑔) 

(C.10) 
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The function of the position controller within the overall control system is shown in Figure C.2. 

 
Figure C.2 – Position control integrated into the control system  
 

C.4 Successive Loop Closure 

 

The overall PID control system is shown in Figure C.3, including the actuator PI controller 

developed in Chapter 8. The same hover state conditioning system from Chapter 4 or 8 can be 

applied to the PID control system. The control system utilizes single loop designs for each 

controlled variable in a successive closure structure, a contrast to the multivariable approach of 

LPV control.  

 
Figure C.3 – Successive loop closure with mass estimator for quadrotor control 
 


