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ABSTRACT

A PARALLEL PROCESSING AND DIVERSIFIED-HIDDEN-GENE-BASED
GENETIC ALGORITHM FRAMEWORK FOR FUEL-OPTIMAL TRAJECTORY

DESIGN FOR INTERPLANETARY SPACECRAFT MISSIONS

by Dhathri H. Somavarapu

This thesis proposes a new parallel computing Genetic Algorithm framework

for designing fuel-optimal trajectories for interplanetary spacecraft missions. The

framework can capture the deep search-space of the problem with the use of a fixed

chromosome structure and hidden-genes concept, can explore the diverse set of

candidate solutions with the use of the Adaptive and Twin-Space Crowding

techniques, can execute on any High-Performance Computing (HPC) platform with

the adoption of the portable Message Passing Interface (MPI) standard. The

algorithm is implemented in C++ with the use of the MPICH implementation of

the MPI standard. The algorithm uses a patched-conic approach with two-body

dynamics assumptions. New procedures are developed for determining trajectories

in the V∞-Leveraging legs of the flight from the launch and non-launch planets, and

deep-space maneuver legs of the flight from the launch and non-launch planets. The

chromosome structure maintains the time of flight as a free parameter within

certain boundaries. The fitness or the cost function of the algorithm uses only the

mission ∆V , and does not include time of flight. Optimization is conducted with

two variations for the mission gravity-assist sequence, the 4-gravity-assist and the

3-gravity-assist, with a maximum of 5 gravity-assists allowed in both the cases. In

both the variations, an optimal trajectory is found with a mission cost (total ∆V )

comparable to the cost of the bench mark Cassini 2 mission of Gad and

Abdelkhalik [1].
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CHAPTER 1

INTRODUCTION

Humans have long aspired to explore other worlds in search of resources and

extraterrestrial life. While all other major planets in the Solar system are currently

not hospitable to forms of life as we know it, the planetary moons such as Europa,

Titan, and Enceladus are believed to have underneath their outer crusts liquid

oceans that could potentially support microbial life forms such as those that exist

on Earth [4–6]. Despite widespread agreement based on existing data indicating the

existence of a salt-water ocean underneath Europa’s icy crust, this remains to be

confirmed by future missions [4]. The same can be said about the two moons of

Saturn. Given the significance of proving the existence of salt-water oceans and

possible microbial life on these moons, there is significant interest within the

scientific community in pursuing missions to these moons of the outer planets.

Missions to planetary moons are usually designed in two phases. The first

phase is the interplanetary voyage to the sphere-of-influence of the parent planet.

The second phase involves designing trajectories to do one or more of three things:

(1) multiple fly-bys of the moons, (2) launching a probe to the surface of a moon, or

(3) getting into and maintaining an orbit around one or more of the moons. In

either of those 3 phases or in the voyage to the parent planet, any number of

planetary or moon gravity-assists and deep-space maneuvers (DSMs) are used. This

thesis proposes a framework for determining a gravity-assist based fuel-optimal

trajectory to a parent planet, such as Saturn or Jupiter.

A space mission strives to maximize the payload mass, while minimizing the
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launch energy and total ∆V required to achieve the mission. Hollenbeck [7]

introduced the concept of an extra-deep space maneuver for decreasing launch

energy and total ∆V , calling it ∆V -Earth-Gravity-Assist. Sims and Longuski [8]

used the term V∞-leveraging in their expanded analysis of the

∆V -Earth-Gravity-Assist maneuver, to formalize the deep-space maneuver

recommended by Hollenbeck [7]. Sims, Longuski, and Staugler [9] extended this

analysis to a more generalized V∞-leveraging technique to apply to any Solar planet,

especially to missions to inner planets. Brinckerhoff and Russel [10] successfully

applied the V∞-leveraging technique to the problem of a phase-fixed Jovian moon

tour, albeit with more flight time than that of a regular Hohmann transfer. Strange,

Compagnola, and Russell [11] developed a novel non-tangential V∞-leveraging

technique to achieve effective gravity-assists around low-mass moons in terms of

time of flight. This would otherwise be impractical, given the insufficient bending

provided by the low mass moons using the traditional V∞-leveraging technique.

Compagnola, Russell, and Strange [12] utilized this non-tangential V∞-leveraging

technique to design an optimal mission to place an orbiter around the moon

Enceladus of the planet Saturn with a ∆V requirement of only 445 m/s over that of

4 km/s for the regular Hohmann transfer, at expense, however, of extending the

flight time to 2.7 years.

The V∞-leveraging technique, along with gravity-assists and other deep-space

maneuvers, has become a mainstay of interplanetary missions. The challenge of

finding the correct sequence of these operations for a given launch and target date,

however, is immense. This is because of the depth of the search space involved in

finding an optimal solution. To address this immense challenge, this thesis explores

a class of non-deterministic evolutionary algorithms, Genetic Algorithms, known to

provide near-global optimal solutions, from a large search space of the problem
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domain. Genetic Algorithms use selection, crossover, and mutation operators on the

candidate solutions to mimic the natural evolutionary processes found in nature.

This allows for a near-optimal solution in the best-case scenario. Genetic

Algorithms are ”non-deterministic” because they may in some cases lead to

local-optimal or practically infeasible solutions. Because of the search space depth,

it is standard practice to limit the design space of the problem to a prescribed

number of gravity-assists, V∞-leveraging maneuvers and general deep-space

maneuvers. Not all missions have the same number of design parameters (genes).

Gad and Abdelkhalik [1] presented a novel approach where the number of design

parameters (genes) are fixed for all conceivable problems with some of the

parameters (genes) designated as ”hidden” depending on the nature of the

particular problem being solved. These ”hidden” genes are not used in the fitness

evaluation of a candidate solution. This more generalized Genetic Algorithm, which

applies to any kind of interplanetary mission problem, can provide the optimal

sequence of maneuvers-as well as the magnitudes of velocities and locations of the

maneuvers-for the available launch and target dates. In their analyses of known

missions to Mars, Jupiter, and Mercury, their algorithm could generate the actual

known optimal solutions, in some cases, with improvements. Gad and

Abdelkhalik [13] presented another novel approach to this trajectory optimization

problem using the variable size design parameters (variable-size genes in a

chromosome). In this approach, Gad and Abdelkhalik [13] restricted the problem

design space to one that obeys the solutions to multiple-revolution Lambert’s

problem, within the realm of the two-body dynamics model.

Gad and Abdelkhalik’s [1] hidden-gene Genetic Algorithm works in two

phases because of the prohibitive computational cost (time) involved in

implementing that algorithm directly in a single phase. The first phase computes
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the optimal sequence of gravity-assist planets. The second phase refines the

first-phase solution by adding deep-space maneuvers (DSMs). The algorithm

proposed in this thesis employs the same concept of hidden genes. However, in this

thesis, the algorithm is improved in terms of its computational cost by employing an

industry standard parallel computation framework known as the Message Passing

Interface [14], thereby avoiding the need to separate the algorithm into two phases.

Achieving population diversity is a very common challenge in Genetic

Algorithms. Population diversity enables the Genetic Algorithm to explore vast

swathes of the problem search-domain, thus increasing the likelihood that the

solution will be globally optimum, thereby preventing the algorithm from getting

stuck at a local optimum. Two different techniques, Niching and Crowding, have

emerged during the past several years as solutions to this challenge. Beasly, Bull,

and Martin [15] originally proposed the Niching technique as a means of achieving

population diversity in retrieving solutions to a multi-modal optimization problem.

The use of Niching technique requires the knowledge of the Niche-radius apriori.

The Niche-radius is not known apriori for the problem of this thesis and is highly

likely that it is not constant. Due to this, the Niching technique is not considered.

Crowding is a technique that determines the selection of individuals from a current

generation to carry over to the subsequent generation, in such a way that the

population diversifies with each generation. Some crowding techniques require the

knowledge of search space. However, the Twin-Space crowding technique proposed

by Chen, Chou, and Liu [3] does not require prior knowledge of the search space to

produce offspring. The Twin-Space Crowding technique has shown to diversify the

population significantly with little to no knowledge of the search space. The

problem of this thesis requires that the Genetic Algorithm explore as much of the

search space as possible with as little knowledge of the search space as possible. Due
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to this, this thesis utilizes the Twin-Space crowding technique proposed by Chen,

Chou, and Liu [3]. Population diversity is also highly dependent on the crossover

and mutation probabilities in the Genetic Algorithm. Srinivas and Patnaik [16]

proposed the concept of adaptive crossover and mutation probabilities for each

chromosome based on the knowledge of the cumulative and individual fitness/cost

characteristics of the population. In this approach, the most fit chromosomes are

protected from being disrupted, increasing the possibility of carrying them over to

next generation. At the same time, chromosomes with less than average fitness of

the population are disrupted with higher crossover and mutation probabilities to

help infuse the population with potentially new and unexplored solution candidates,

in a maximization problem. In this thesis, the adaptive crossover and mutation

probabilities technique of Srinivas and Patnaik [16] is employed. The technique is

adapted to the minimization problem of this thesis as described in section 4.2.5.

The orbital mechanics procedures developed in this thesis make use of

two-body orbital dynamics. In the actual missions, when a spacecraft flies by a

planet for a gravity-assist, the effects of the moons of the planet on the resultant

trajectory of the spacecraft must be considered. Developing an algorithm to

consider n-body effects during a gravity-assist is very complex and may not be

necessary during the preliminary analysis of the optimal trajectory candidates. In

practice, the preliminary analysis only considers two-body dynamics. The candidate

trajectories determined from the preliminary analysis are further refined for

determination of feasibility by taking the n-body effects into consideration. For

example, the Cassini mission to Saturn was designed in two phases as described by

Peralta and Flanagan [17]. The VVEJGA trajectory of the Cassini mission was

developed using two optimization programs developed at the Jet Propulsion

Laboratory. The first program, MIDAS, uses the two-body orbital dynamics and
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the patched conic method to determine the preliminary feasible trajectories. The

second program, PLATO, uses multi-conic (n-body) propagation methods to refine

the feasible trajectories for safety of the spacecraft and success of the mission. The

refinement of preliminary feasible trajectories is not considered in this thesis. The

goal of this thesis is to facilitate the preliminary analysis. Hence the use of the

two-body dynamics is justified.

This study was prompted by the need for an improved means of

interplanetary trajectory design accessible in the academia. Given the interest in

future missions to Jupiter’s Europa [18], Saturn’s Enceladus and Titan moons [19],

the need for charting fuel-optimal trajectories to the parent planets Jupiter and

Saturn is immense. The trajectories determined using the algorithm developed here

can be used for initial trade studies on candidate trajectories.
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CHAPTER 2

PROBLEM STATEMENT AND THESIS OUTLINE

2.1 Problem Statement

This thesis focuses on the problem of developing a computationally efficient

general algorithm framework for fuel-optimal interplanetary trajectory and mission

design within the Solar System. The requirements for this algorithm are as follows:

(1) Because of the vastness of the search space involved in this problem, the

algorithm must be capable of generating and evaluating diversified

candidates from the problem search space.

(2) The algorithm should be reasonably fast, i.e., finishing in days, as opposed

to several weeks, and in hours rather than several days, depending on the

size of the search space.

(3) The algorithm should be generic enough to accommodate variable number

of problem parameters among competing candidates for an optimal solution.

2.2 Thesis Outline

The algorithm developed in this thesis is presented in the following manner:

(1) The various appropriate orbital mechanics problems utilized are discussed in

Chapter 3.

(2) The Genetic Algorithm, along with the chromosome structure and the

Twin-space Crowding technique, is presented in Chapter 4.
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(3) Implementation and the parallelization mechanism are explained in Chapter

5.

(4) The results obtained by applying the algorithm to the problem of finding a

fuel-optimal trajectory to Saturn are presented in Chapter 6.

(5) Conclusions and recommendations are given in Chapter 7.
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CHAPTER 3

ORBITAL MECHANICS FUNDAMENTALS

This thesis employs various solutions to two-body problems in astrodynamics.

The basic approach used is patched-conic [20]. In the actual missions, the n-body

effects on the spacecraft must be considered for a gravity-assist maneuver, due to

the presence of moons of the gravity-assist planet within the sphere-of-influence of

the gravity-assist planet. In practice, for an interplanetary mission design,

preliminary analysis on the possible candidate trajectories is conducted using

two-body dynamics and patched-conic method. The candidate solutions obtained

from the preliminary analysis are refined for feasibility in the presence of n-body

effects in the gravity-assist maneuvers involved in a trajectory. Since the objective

of this thesis is the development of an efficient algorithm for the preliminary

analysis, the refinement process considering the n-body effects is not considered.

Thus, the gravity-assist feasibility procedure developed by Fritz and Turkoglu [21],

which does not take n-body effects into account is employed in this thesis. This

chapter outlines and describes the various maneuvers used in the solution to the

fuel-optimal trajectory design problem. This work is restricted to trajectories with

either multiple gravity-assists (MGA) only, or gravity-assists with one single

deep-space maneuver (DSM) in between each of the possible gravity-assist

maneuvers (MGA-1DSM). When the trajectory calls for consecutive gravity-assists

from the same planet, the V∞-leveraging maneuver (VILM) is used.
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3.1 Kepler’s Problem

In the realm of classical orbital mechanics, the problem of tracking a celestial

object’s position and velocity as a function of time is known as Kepler’s problem.

The problem addressed by this thesis requires that the position and velocity vectors

of all planets and the spacecraft be known at all times under consideration. In this

thesis, ephemerides of the planets are known apriori using the Horizons tool,

provided by the Jet Propulsion Laboratory [22]. For tracking the position and

velocity of the spacecraft, a universal variable-based solution provided by Curtis [20]

in Matlab has been converted into C++.

3.2 Lambert’s Problem

The problem of finding required velocities, when two positions and

time-of-flight in between are given, is known as Lambert’s problem [20]. In this

problem, a single revolution of the celestial body around the central body of

gravitational influence is assumed. In this thesis, the universal variable-based

solution to this problem provided by Curtis [20] in Matlab has been converted into

C++.

3.3 Multiple-Revolution Lambert’s Problem

This problem is a variation of the regular Lambert’s problem, involving

multiple revolutions of the celestial body around the central body. In this thesis, a

novel method developed by Izzo [23] is employed for solving multiple-revolution

Lambert’s problem.
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3.4 Gravity-Assist Dynamics

The gravity-assist maneuver helps to gain or shed the mechanical energy of

the spacecraft, depending on the mission requirement. There are two kinds of

gravity-assist maneuvers: non-powered and powered. This thesis employs both the

types of the gravity-assist maneuver. When the leg of the flight is a Lambert’s leg,

the powered gravity-assist maneuver is employed. When the leg of the flight

includes a deep-space maneuver, the non-powered gravity-assist maneuver is used.

In non-powered gravity-assist maneuvers, the incoming and outgoing V∞ of the

spacecraft with respect to the planet is the same in magnitude. In powered

gravity-assist maneuvers, they are not equal, because a ∆v maneuver is conducted

at the periapse of the hyperbolic trajectory with respect to the planet. The

mechanical energy gained or shed is significant, helping to reduce the cost of the

mission in terms of fuel required.

For non-powered gravity-assist maneuvers,

∣∣v−∞∣∣ =
∣∣v+
∞
∣∣ = v∞ (3.1)

sin(
δ

2
) =

µp
µp + rperv2

∞
(3.2)

and,

∣∣∆vnps∣∣ =
∣∣v+
∞ − v−∞

∣∣ = 2v∞sin(
δ

2
) (3.3)

For powered gravity-assist maneuvers,

∆vps = (v+
s/c)req − (v+

s/c)nps (3.4)
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where, (v+
s/c)req is the spacecraft’s required outgoing heliocentric velocity and,

(v+
s/c)nps = vp − v+

∞ (3.5)

Here vp represents the heliocentric velocity of the gravity-assist planet.

Knowing the radius of the periapse, rp, of the hyperbolic trajectory of the

spacecraft and the incoming v∞ of the spacecraft, enables us to solve the

gravity-assist maneuver.

3.4.1 Gravity-Assist Feasibility

A special case in this study requires determination of feasibility of

gravity-assist from a planet, given the required parameters for the gravity-assist.

The required parameters are: the inbound and outbound heliocentric velocity

vectors of the spacecraft, the heliocentric velocity vector of the gravity-assist planet,

the radius of the gravity-assist planet, the gravitational parameter of the

gravity-assist planet, and the tolerance for the bending angle of the hyperbolic

trajectory of the spacecraft from the gravity-assist. A method developed by Fritz

and Turkoglu [21] is used to determine the feasibility of the gravity-assist from the

given planet. This method applies the Newton-Raphson iteration scheme, for

determining feasibility.

3.5 Deep-Space Maneuver Modeling

A deep-space maneuver aids with conducting a non-powered gravity-assist

maneuver. When employing a deep-space maneuver, the standard practice is to

conduct a ∆V maneuver at a location in the transfer orbit, in such a way that the

spacecraft can get a free (non-powered) gravity-assist from another planet. During a
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leg of the flight, the position of velocity of the spacecraft at the starting planet are

known. The time of flight from the starting planet to the position in transfer orbit

where the deep-space maneuver is to be conducted is also known. Using the solution

to Kepler’s problem, the exact position and velocity vectors of the spacecraft (in the

transfer orbit) are calculated for the deep-space maneuver. An instantaneous

tangential ∆V burn is assumed at this location. The position vector obtained from

the solution to Kepler’s problem is used in the subsequent procedure, to determine

the required velocity vector at this location.

To determine the velocity vector of the deep-space maneuver, we first consider

the following known parameters: (1) the position and velocity vectors of the ending

planet in the current leg of flight and (2) the time of flight from the deep-space

maneuver location to the ending planet. Using these data, Lambert’s problem is

solved, to determine the required velocity vectors at the deep-space maneuver

location and that of the ending planet.

3.6 V∞-Leveraging Maneuver

The V∞-leveraging maneuver is defined as a relatively small deep-space

maneuver to modify V∞ at a body such as Earth [9]. The maneuver, when timed

properly, in conjunction with a gravity-assist from the same body, can significantly

reduce the launch energy requirement [7]. It should be noted here that this

technique can be applied to any planetary body or moon from which multiple

gravity-assists are sought. It should also be noted that the method for determining

the maneuver details (such as location, magnitude, and direction) is numeric in

nature. Because of this, the problem domain and the design or solution space can

be extended to include trajectories that involve multiple revolutions of a planet and
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the spacecraft. In this thesis, the time-of-flight parameter for a leg of the flight is

chosen arbitrarily, within certain boundaries. It is therefore beneficial to consider

trajectories that involve multiple revolutions of the planet or the spacecraft.

3.6.1 A Procedure for V∞-Leveraging Maneuver

The following procedure is employed in solving for the parameters of the

V∞-Leveraging Maneuver.

(1) First, the position and velocity vectors of the spacecraft are determined at

the location of the DSM using the solution to Kepler’s problem.

(2) Second, Kepler’s problem is used again to verify that the maneuver is

possible without a DSM. If such a trajectory is feasible, the procedure

concludes there.

(3) Third, if such a trajectory is not feasible, the solution to Lambert’s

problem(s) is employed to verify if the trajectory is feasible with a DSM.

There are two different conditions under which V∞-leveraging maneuver is employed

in the current study.

3.6.2 The V∞-Leveraging Maneuver from the Launch Planet

In this special case, a gravity-assist is sought from Earth after launching from

Earth. In this case, the required hyperbolic excess velocity V∞ at launch is not

known, since the goal is to determine a DSM that would minimize this quantity. For

this reason, a procedure is employed that iterates over a range of values for V∞ to

determine the value that results in minimum total ∆V with a DSM. The procedure
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from section 3.6.1 is used repeatedly with different inputs bases on the V∞ value of

the current iteration.

3.6.3 The V∞-Leveraging Maneuver from a Non-Launch Planet

In this special case, gravity-assists are sought from a non-launch planet

sequentially, e.g., seeking gravity-assist from Mars after already flying by Mars

immediately prior to the desired gravity-assist. In this scenario, the outbound

heliocentric velocity vector of the spacecraft after the first gravity-assist from the

planet is not known, because of the presence of the VILM DSM between the two

gravity-assists. This velocity vector is required to know the position vector of the

spacecraft at the VILM DSM location (given as a fraction of the time-of-flight of the

entire leg of the flight between two planetary gravity-assists) and its corresponding

velocity vector. To address this problem, the gravity-assist periapse radius and

orientation (angle ζ) of the plane of gravity-assist are used as the problem

parameters. In other words, the non-launch VILM procedure requires these two

parameters for inputs. Using these two parameters, the heliocentric outbound

velocity vector of the spacecraft from the first gravity-assist from the planet is

determined using the equations listed as follows:

Figure 3.1 depicts the orientation of the outbound V∞ of the spacecraft with

respect to the planet. Here the vectors b1, b2, and b3 are defined as follows by

Molenaar [2]:

b1 =
~V∞in∥∥∥~V∞in

∥∥∥
2

b2 =
b1 × ~rpl∥∥∥b1 × ~rpl

∥∥∥
2
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Figure 3.1: Gravity-Assist Orientation [2].

b3 = b1 × b2

The angle δ represents the gravity-assist rotation/bending angle, while ζ

represents the gravity-assist plane orientation angle, with δ is obtained as follows:

δ = 2 arcsin(
1

e
) (3.6)

where the eccentricity e is calculated as

e = 1 +
rp

∥∥∥~V∞in

∥∥∥2

2

µpl
(3.7)

The vector rotation with angles δ and ζ yields the following expression for

~V∞out :

~V∞out = ~V∞in
[cos(δ)b1 + sin(δ)sin(ζ)b2 + sin(δ)cos(ζ)b3] (3.8)

The outbound heliocentric velocity vector is obtained as follows:
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~Vout = ~Vpl + ~V∞out (3.9)

Once ~Vout is computed, using the position vector ~r of the planet, the method

described in sub-section 3.6.1 is used to compute the optimal DSM, to re-encounter

the planet for a second gravity-assist.
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CHAPTER 4

THE PROPOSED GENETIC ALGORITHM

4.1 The Basic Genetic Algorithms

Genetic Algorithms are a class of Evolutionary Algorithms that take an initial

population or pool of candidate solutions from the problem search space, usually

generated randomly within the bounds of the problem parameters, using an

iterative process and evolutionary biological operators such as selection, crossover

and mutation to repeatedly and progressively improve the initial population or pool

toward the optimal solution(s) based on the fitness criteria for candidate solutions.

The general structure of a Genetic Algorithm is shown in Figure 4.1.

Two important tasks required in the Genetic Algorithm are problem-specific.

The first is the definition of the structure of the candidate solution, known as the

chromosome in the parlance of Genetic Algorithms. The second task is the

definition of the ”fitness or cost” of the candidate solution, usually defined by the

objective function for the optimization problem. It is possible for a candidate

solution or chromosome to be either fixed in length or variable, depending on the

problem at hand. Most or all of the individual parameters of the chromosome, also

known as genes, are used in the computation of fitness.

4.1.1 Selection

The Genetic Algorithms employ various schemes to select the candidate

solutions for the next generation from the current generation of candidate solutions.

All the selection schemes use the fitness or the cost of the candidate solutions in the
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Figure 4.1: Genetic Algorithm Flow Chart
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population as the criteria for selection. The purpose of selection is to carry forth the

most fit candidate solutions to the next generation so that algorithm gets closer to

the optimal solution. In all selection schemes, two candidate solutions often called

parents, are selected to be passed along to the subsequent operators Crossover and

Mutation. The most predominant selection schemes are the Roulette Wheel or the

Fitness Proportionate selection and the Tournament selection.

The Roulette Wheel or The Fitness Proportionate Selection Scheme

The Roulette Wheel or the Fitness Proportionate selection works as follows:

(1) Compute the sum of the fitness of all candidate solutions in the population.

(2) Normalize the fitness of each of the candidate solution with the sum of

fitness so that the fitness values fall between 0 and 1 for each candidate

solution.

(3) Sort the candidate solutions based on the fitness value in descending order.

(4) Draw a random number between 0 and 1.

(5) The first candidate solution with the fitness value above the random

number drawn is selected for next generation.

(6) Repeat random number draw and candidate solution selection N number of

times, where N is the population size.

Tournament Selection Scheme The tournament selection, where

tournament size is k, works as follows:

(1) Select k number of candidate solutions from the current population at

random.
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(2) Sort the k candidate solutions based on their fitness value in descending

order.

(3) Pick the first candidate solution in the list, i.e. the candidate with the best

fitness is selected.

4.1.2 Crossover

The crossover operator is equivalent to mating and reproduction of children in

nature. The purpose of crossover is to diversify the next generation of population to

get closer to the optimal solution for the problem. There are two most

predominantly used crossover techniques, known as the Single-point crossover and

the Two-point crossover. In both the techniques a threshold called crossover

threshold is used to swap the genes of the parents to produce the children. In

Single-point crossover, a single cutoff point is chosen randomly. Genes from parent 1

before the cutoff point and from parent 2 after cutoff point are used to generate

child 1. Genes from parent 1 after the cutoff point and from parent 2 before the

cutoff point are used to generate child 2. In Two-point crossover, two cutoff points

are selected randomly. The two parts of the chromosome from parent 1 before the

first cutoff point and after the second cutoff point and one part from parent 2

between the two cutoff points is merged to produce child 1. Similarly, the two parts

of the chromosome from parent 2 before the first cutoff point and after the second

cutoff point and one part from parent 1 between the two cutoff points are chosen to

produce child 2.
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4.1.3 Mutation

The mutation operator mimics the biological mutation process and works on

individual genes of the chromosome. In practice, most predominantly used mutation

scheme is the Gaussian mutation scheme. In this scheme, each gene has a predefined

mutation threshold. During mutation, a random number is generated for each gene

in the chromosome. If the random number is below the mutation threshold for the

gene under consideration, another random number is generated from the Gaussian

distribution. This Gaussian random number is multiplied with the standard

deviation for the gene and the result is added to the current value for the gene. If

the final value of the gene falls outside the boundaries for the gene, the value of the

gene is adjusted to fit either minimum or maximum boundary for the gene as

appropriate. The purpose of mutation is to diversify the next generation of the

population to increase the possibility of finding the optimal solution.

4.2 Elements of the Proposed Genetic Algorithm

4.2.1 The Chromosome Structure

In the problem solved for this thesis, not all candidate solutions are the same

in number of parameters or genes. It is possible for various candidate solutions to

have different number of gravity-assists on the way to the target planet. It is also

possible for various candidate solutions to have or not have a deep-space maneuver

between two gravity-assist planets. In other words, the chromosome can have

variable number of parameters or genes. In literature, so far there have been two

main approaches to the problem of capturing variable number of genes in a

chromosome. One is the hidden-gene concept proposed by Gad and Abdelkhalik [1].

Gad and Abdelkhalik [13] also propose the variable-size chromosome. In the
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variable-size chromosome approach, the population of candidate solutions varies in

size and in each iteration of the Genetic Algorithm the size of each candidate

solution in the population keeps varying based on the fitness. In the hidden genes

approach, a fixed size chromosome is proposed that can capture all possible

candidate solutions. However, not all genes may be active or effective for the

candidate solution. Some candidate solutions can have less than the maximum

number of allowed gravity-assists, in which case the planets for gravity-assists is

limited to only those up to the active number of planets for gravity-assists. This

concept is illustrated with the proposed hidden-gene chromosomes in Figure 4.2.

Figure 4.2: Hidden Gene Chromosomes by Gad and Abdelkhalik [1].

Figure 4.2 is showing the fixed size of the chromosome limited by a maximum

of possible gravity-assists en-route to the target planet. The variable m denotes the

actual number gravity-assists applicable in each candidate solution and is always

less than or equal to the maximum number of gravity-assists allowed in the

problem. td and ta denote time of departure from Earth and time of arrival at the

target planet respectively. i can vary from 1 to m. Ti denotes the time of flight in

each leg flight to each of the gravity-assist planets. Pi denotes the identifier for the

planet of the gravity-assist. f denotes either prograde or retrograde motion. hi and

ηi denote height of gravity-assist maneuver and a rotation angle in gravity-assist

mechanism used by Gad and Abdelkhalik [1] respectively. εi, representing a fraction
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of the Ti (a value between 0.1 and 0.9), is an epoch at which a deep-space maneuver

is conducted in ith leg of the flight. ni indicates the number of deep-space

maneuvers in a given leg of flight. Finally, ∆Vi represents the magnitude of a

deep-space maneuver.

Gad and Abdelkhalik [1] use a two-phase approach. The first phase

determines a solution containing an optimum number of gravity-assists. The second

phase refines the optimal solution from first phase by introducing deep-space

maneuvers in various legs of the optimal solution. According to them, this reduces

the total time complexity of their algorithm significantly, despite not specifying the

performance metrics of their algorithm in their published work on hidden-gene

Genetic Algorithm. One possible drawback of their algorithm, that contributes to

the increased time complexity if it were to be executed in one single phase, is the

inclusion of the magnitudes ∆Vi of deep-space maneuvers in the chromosome. Given

the vast range of values for this parameter, it is not possible to capture feasible

values of this parameter with a population of 100 of less for example. This increases

the problem search space immensely and thus increases the time complexity of the

algorithm.

Figure 4.3: Proposed Hidden Gene Chromosomes

In this thesis, the general concept of hidden-gene chromosome is adapted, but

with different number of parameters for the fixed chromosome, yet capturing the
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Table 4.1: Genes of the Proposed Hidden Gene-based Chromosomes

Gene Name Description
Td Time of departure captured as a Julian date value
m Number of gravity-assists en-route to target planet
Pi Integer identifier for the gravity-assist planet for

leg i
Ti Time of flight in seconds in a given leg of flight i
hi Height of periapse of gravity-assist trajectory

around a given planet in leg i
gi Gravity-assist plane orientation angle in the

gravity-assist planet centered frame of reference in
leg i

ni 0 or 1, indicating whether there is a deep-space
maneuver in leg i, this must be set to 1 if a VILM
is involved

ei A fraction between 0.1 and 0.9 of the time of flight
for leg i, indicating the epoch at which the deep-
space maneuver is conducted

f Direction of flight, 0 for prograde, 1 for retrograde
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problem search space at hand completely. The new chromosome structure proposed

is shown in figure 4.3. Table 4.1 describes the genes of the proposed chromosome

from this figure. As can be seen by comparing the figures 4.2 and 4.3, there are a

number differences in the approach taken in the proposed chromosome structure.

First is that time of arrival is not fixed, and is left out to be determined as the sum

of the randomly chosen times-of-flight in each chromosome. This is done so to find

the most optimal solution in terms of fuel consumption, albeit at the expense of

mission time. Second, the gravity-assist mechanism used in this thesis is different

from that used by Gad and Abdelkhalik [1]. Because of this difference the

gravity-assist plane altitude and orientation angle are considered as genes in the

proposed chromosome structure. Third, ∆V for the deep-space maneuver is not

considered to be a part of the chromosome structure. The magnitude and direction

of the deep-space maneuver is computed from other genes of the chromosome. This

is done so to reduce the computation time of the algorithm. When deep-space

maneuver ∆V is included in the chromosome structure, the number of chromosomes

in the population to be evaluated to determine an optimal solution increases by

multiple fold and results in increased time complexity for the algorithm. Because of

the proposed new structure, the algorithm can be executed in one single phase as

opposed to the two phases in which Gad and Abdelkhalik [1] execute their

algorithm. Fourth, although a chromosome can have a deep-space maneuver in any

leg of flight, the proposed algorithm does not always include the deep-space

maneuvers in a leg of flight, it does so only when a better solution cannot be found

using the regular Lambert’s trajectory.
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4.2.2 The Fitness of the Chromosome

The fitness function of the proposed chromosome structure from figure 4.3

needs to account for only the effective genes of the given chromosome. Procedure

4.1 captures the computation of fitness for the proposed chromosome structure.
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Procedure 4.1 Procedure for Computation of the Fitness of a Chromosome

1: procedure fitness(chromosome,flyby-limit,source,target,mu,rp,ephemerides,config)

Input:

chromosome → Chromosome for which the fitness is to be computed

flyby-limit → Maximum number of gravity-assists allowed in the GA

source → Identifier for the source planet for the trajectory

target → Identifier for the target planet for the trajectory

mu → A list of gravitational parameters of the Solar planets

rp → A list of radii of the Solar Planets

ephemerides → Ephemerides of the Solar Planets in the time span chosen for

the GA

config → A list of configuration parameters for the GA

Output:

Fitness (Total ∆V of the trajectory) of the chromosome

2: soilimits ← a composite list of minimum and maximum distances for the

Sphere-of-Influence of Solar planets

3: dVtotal ←∞

4: leo-height← config.leo-height

5: Td ← chromosome.Td

6: m← chromosome.m

7: Pi ← chromosome.Pi
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Procedure 4.1 Procedure for Computation of the Fitness of a Chromosome (con-
tinued)

8: Ti ← chromosome.Ti
9: hi ← chromosome.hi
10: gi ← chromosome.gi
11: ni ← chromosome.ni
12: ei ← chromosome.ei
13: directionn← chromosome.f
14: dir ← (direction == 0)?true : false
15: for i← source to target do . Initialize the position and velocity vectors of

the planets in Pi at Ti
16: rv ← vec-interp(Td + ΣTi(1 : i)

24∗60∗60
), ephemerides.slice(Pi(i)))

17: r(i)← rv.~r
18: v(i)← rv.~v
19: end for
20: if source == Pi(0) then . Compute the feasibility and ∆V for the first leg

flight
21: result← VILT-LAUNCH( ~r(source), ~v(source), vecr(Pi(0)), Ti(0),

ei(0), mu(Sun), soilimits(source))
22: V∞ ← result.V∞
23: else if ni(0) == 1 then
24: result← launch-dsm(r(source), v(source), Ti(0), ei(0), r(Pi(0)), direction,mu(Sun))
25: V∞ ← result.V∞
26: else
27: lOutput← lambert(r(source), r(Pi(0)), Ti(0),mu(Sun), dir)
28: if The Single-revolution Lambert is Not Feasible then
29: lOutput← multi-rev-lambert(r(source), r(Pi(0)), Ti(0),mu(Sun), dir)
30: end if
31: if Either of Lambert solutions converged then

32: vscleo ←
√

mu(source)
rp(source)+leo-height

33: vsc ←
√∥∥∥lOutput. ~V 1− ~v(source)

∥∥∥2

+ 2mu(source)
rp(source)+leo-height

34: dV (1)←
∣∣vsc − vscleo∣∣

35: result← Result(0, dV (1), lOutput. ~V 2, 0)
36: else
37: result← Result(∞,∞, ~empty,∞)
38: end if
39: end if
40: if result.V∞ ==∞ or result.∆V ==∞ then
41: return ∞
42: end if
43: safety ← true
44: angle-tol← 1e− 3
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Procedure 4.1 Procedure for Computation of the Fitness of a Chromosome (con-
tinued)

45: for i← 2 to m-1 do . Determine the feasibility and compute the ∆V for
each of the intermediate legs of flight

46: p1 ← Pi(i)
47: p2 ← Pi(i+ 1)
48: if p1 == p2 then . This is a V∞-Leveraging leg
49: result← flyby-vilt-non-launch(~r(i), ~v(i), result.~V, hi(i) ? rp(p1) +
rp(p1), gi(i), ~r(i+ 1), Ti(i+ 1), ei(i+ 1),mu(p1), safety, soilimits(p1))

50: else if ni(i+ 1) > 0 then

51: result ← flyby-with-dsm(~r(i), ~v(i), result.~V, hi(i) ? rp(p1) +
rp(p1), gi(i), ~r(i+ 1), Ti(i+ 1), ei(i+ 1), direction,mu(p1),mu(Sun), safety)

52: else
53: lOutput← lambert(~r(i), ~r(i+ 1), Ti(i+ 1),mu(Sun), dir)
54: if The Single-revolution Lambert is Not Feasible then
55: lOutput ← multi-rev-lambert(~r(i), ~r(i + 1), Ti(i +

1),mu(Sun), dir)
56: end if
57: if Neither of Lambert solutions converged then
58: return ∞
59: end if
60: dV t← flyby(result.~V, lOutput. ~V 1, ~v(i), rp(p1),mu(p1), angle-tol)
61: if dV t ==∞ then
62: return ∞
63: end if
64: result← Result(0, dV t, lOutput. ~V 2, 0)
65: end if
66: if result.∆V ==∞ then
67: return ∞
68: end if
69: dV (i+ 1)← result.dV
70: end for
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Procedure 4.1 Procedure for Computation of the Fitness of a Chromosome (con-
tinued)

71: if target == Pi(m) then

72: result ← flyby-vilt-non-launch(~r(m), ~v(m), result.~V, hi(m) ?
rp(Pi(m))+rp(Pi(m)), gi(m), ~r(target), Ti(m), ei(m),mu(Pi(m)), safety, soilimits(Pi(m)))

73: else if
74: thenresult← flyby-with-dsm(~r(m), ~v(m), result.~V, hi(m)?rp(Pi(m))+
rp(Pi(m)), gi(m), ~r(target), Ti(m), ei(m), direction,mu(Pi(m)),mu(Sun), safety)

75: else
76: lOutput← lambert(~r(m), ~r(target), Ti(m),mu(Sun), dir)
77: if The Single-revolution Lambert is Not Feasible then
78: lOutput← multi-rev-lambert(~r(m), ~r(target), Ti(m),mu(Sun), dir)
79: end if
80: if Neither of Lambert solutions converged then
81: return ∞
82: end if
83: dV t← flyby(result.~V, lOutput. ~V 1, ~v(m), rp(Pi(m)),mu(Pi(m)), angle-tol)
84: if dV t ==∞ then
85: return ∞
86: end if
87: result← Result(0, dV t, lOutput. ~V 2, 0)
88: end if
89: if result.dV ==∞ then
90: return ∞
91: end if
92: dV (last)← result.dV
93: dVtotal ← V∞ + Σ|dV |
94: return dVtotal
95: end procedure
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4.2.3 The Genetic Operators

Selection In the proposed algorithm, a variation of the Roulette Wheel or

Fitness Proportionate selection scheme is used. In a deviation from the standard

form of this selection scheme, the cost or fitness of the chromosome is not

normalized. In the current algorithm, there is a possibility of the cost or fitness

being ∞, and this does not lend itself well to normalization.

Crossover The proposed algorithm uses the Single-point crossover scheme.

In a deviation from the standard Genetic Algorithms, the crossover threshold or

probability changes for each pair of parent chromosomes, based on the fitness value

of the best parent, and the average and minimum fitness values of the population.

Mutation The proposed algorithm uses the Gaussian mutation scheme. In

a deviation from the standard practice of each of the individual genes of the

chromosome having a specific mutation threshold or probability, the proposed

algorithm uses a single mutation threshold for all genes. However, the algorithm

uses adaptive mutation probabilities that are defined in each generation based on

the fitness value of the chromosome, the average and minimum fitness values of the

population. Due to this approach, the mutation probability is fixed for all the genes

for the chromosome.

4.2.4 The Diversification of Population using a Crowding Technique

Basic Genetic Algorithms have a tendency of exploring a small search space of

the problem domain and repeated consideration of the same sub-optimal

chromosomes generation after generation. Generally, the more diverse the
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population becomes in each generation of computation, the more of the problem

search space explored. Diverse population is key to finding global optimum.

Otherwise the GA might get stuck at the local minima. In the current study, a

special crowding technique called ”Twin-Space Crowding” [3] is used to maintain

population diversity, which aids on the optimal convergence characteristics. Figure

4.4, reproduced from Chen, Chou, and Liu [3] shows the application of this special

technique to the basic GA. Here two additional steps are added to basic GA to

introduce the capability to diversify the population generation over generation.

After creating the offspring from parent population, the offspring fitness is

computed and is used in application of Twin-Space crowding technique to determine

a diverse population for next generation of computation.

4.2.5 The Diversification of Population using an Adaptive GA

Technique

The crowding technique does a great job of carrying over most fit solutions to

the next generation, while also diversifying the population with solutions from

currently unexplored search space. However, the speed at which the population

diversifies is a function of the crossover and mutation probabilities (pc and pm). If

these probabilities are constant for the entire execution of the algorithm, the

solution convergence is not fast and may get stuck at local optima. If the offspring

population constructed is homogeneous, the diversification process and hence the

algorithm slows down. It is more efficient to use variable crossover and mutation

probabilities determined from the fitness characteristics of the population, to

prevent premature convergence and explore more of the search space. Srinivas and

Patnaik [16] introduced the relationship between the average and best fitness values

(f and fmax) of the population as the decisive factors in tuning the crossover and
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mutation probabilities over the execution span of the algorithm for a maximization

problem. If the difference between average and best fitness values of the population

is small, the population is deemed homogeneous, and hence higher values of

crossover and mutation probabilities must be used to diversify the offspring

constructed from the population. Similarly, if the difference is higher, the

population is diverse and lower values of crossover and mutation probabilities must

be used to preserve diversity. In other words, pc and pm must vary inversely with

fmax − f . Srinivas and Patnaik [16] also reasoned that pc and pm must vary per

chromosome depending on the difference between the best fitness value of the

population and fitness of chromosome, fmax − f ′. If pc and pm solely depended on

fmax − f , both the near-optimal and sub-optimal chromosomes will be equally

disrupted, potentially causing divergence in the algorithm. Hence, pc and pm must

also vary per chromosome directly with fmax − f ′. Srinivas and Patnaik [16] use

tuning constants k1, k2, k3, and k4 to maintain the probabilities to a range of [0,1].

Srinivas and Patnaik [16] use the following equations to formalize the inverse and

direct relationships with various fitness values for determining pc and pm for each

chromosome:

pc = k1
fmax − f ′
fmax − f

, f ′ ≥ f (4.1)

pc = k3, f ′ < f (4.2)

and

pm = k2
fmax − f ′
fmax − f

, f ′ ≥ f (4.3)

pm = k4, f ′ < f (4.4)
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The problem of this thesis is a minimization problem. So, the equations 4.1 -

4.4 are adjusted for a minimization problem as follows:

pc = k1
f ′ − fmin
f − fmin

, f ′ ≤ f (4.5)

pc = k3, f ′ > f (4.6)

and

pm = k2
f ′ − fmin
f − fmin

, f ′ ≤ f (4.7)

pm = k4, f ′ > f (4.8)

4.2.6 The Termination Criteria

In the proposed algorithm, a minimum number of generations are evaluated.

After that, algorithm is terminated if it cannot improve the fitness of the winning

chromosome for more than another minimum number of generations.
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CHAPTER 5

THE IMPLEMENTATION AND PARALLELIZATION WITH MPI

The proposed algorithm is implemented in C++ using a parallel computing

framework, the Message Passing Interface (MPI). Thus, the algorithm can be

executed on any High-Performance Computing (HPC) environment.

5.1 The Implementation

The chromosome pool is represented in C++ using matrices. The Armadillo

C++ linear algebra library developed by Sanderson and Curtin [24] is used to do so.

The min, max and sort functions from this library are used extensively. This library

also has a reliable uniform and Gaussian random number generation functionality

necessary in the Genetic Algorithms.

5.1.1 Interpolation of Ephemerides

The ephemerides collected from the Horizons tool [22] are in a day granularity.

However, the time-of-flight gene of the chromosome is expressed in seconds. Due to

this discrepancy, an interpolation scheme developed by Fritz and Turkoglu [21] is

used to derive the ephemerides of the planets for the exact times-of-flight specified

in the gene.

5.1.2 Orbital Mechanics Procedures

A leg of the flight is a flight sequence between any two planets in a trajectory.

There are several flavors of a leg of the flight depending on the combination of
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various genes for that leg of the flight in the chromosome, listed as follows:

(1) Single-revolution Lambert’s leg

(2) Multiple-revolution Lambert’s leg

(3) V∞-Leveraging launch leg

(4) Launch leg including a deep-space maneuver

(5) V∞-Leveraging leg from a non-launch planet

(6) Non-launch leg including a deep-space maneuver

The single-revolution Lambert’s leg is solved using the universal variable

based solution from Curtis [20]. The multiple-revolution Lambert’s leg is solved

using the fast solution developed by Izzo [23]. Rest of the 4 types of leg of flight are

solved as follows.

A Procedure for V∞-Leveraging Launch Leg This procedure is

required when a leg of the flight has the launch planet as the source and target

planets. The purpose of this procedure is to leverage a deep-space maneuver to

reduce the launch energy of the spacecraft. The procedure limits the launch v∞ to a

range of [0.1, 5.0] km/s. The procedure attempts to solve the V∞-leveraging

maneuver repeatedly using the launch v∞ values in the given range with increments

of 0.1 km/s. The solution parameters that solve the V∞-leveraging maneuver with

minimum v∞ are picked as the solution for the leg of flight. If the range of v∞

values does not yield a solution to the V∞-leveraging maneuver, ∞ is returned as

the solution to that leg of flight, resulting in the termination of fitness computation
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for the chromosome in the current leg of flight. Procedure 5.2 documents the

pseudo-code for this procedure.

Procedure 5.2 Procedure for V∞-Leveraging Launch Leg

1: procedure vilt-launch(~rpl,~vpl,~rplt ,t,ε,µ,soilimits)

Input:

~rpl → Position vector of the launch planet at launch

~vpl → Velocity vector of the launch planet at launch

~rplt → Position vector of the launch planet at the end of the current leg

t → Time of flight for the current leg

ε → Fraction of time of flight where deep-space maneuver is to be conducted

µ → The gravitational parameter of the Sun

soilimits → The limits of the Sphere-of-Influence (SOI) for the launch planet

Output:

Result → A composite object containing solution parameters

2: min-dVp←∞

3: min-dVap←∞

4: min-err←∞

5: Td ← t ? ε

6: vnorm←
∥∥~vpl∥∥2

7: ~dir ← ~vpl
vnorm

8: lambert-dir← 0

9: for dV p← 0.1 to 5.0 do

10: ~V ← ~dir ? (vnorm+ dV p)

11: result← vilt-kepler-lambert(~rpl, ~V, ~rplt , t, ε, soilimits, µ, lambert-dir)
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Procedure 5.2 Procedure for V∞-Leveraging Launch Leg (continued)

12: if result.error < min-err and dV p + result.dV < min-dVp+min-dVap
then

13: min-err← result.error
14: min-dVap←|result.dv|
15: min-dVp← dV p
16: ~Vr ← result.~V
17: ~Rd ← result. ~Rd

18: ~Vd ← result.~Vd
19: end if
20: end for
21: return Result(min-dVp,min-dVap, ~Rd, ~Vd, Td, ~Vr,min-err)
22: end procedure

A Procedure for Launch Leg with Deep-Space Maneuver This

procedure is required when the chromosome has a deep-space maneuver specified

between the launch planet and the target planet in the current leg of flight, and the

target planet is different from the launch planet. The purpose of this procedure is

to minimize the launch energy of the spacecraft. Although the chromosome has a

gene value indicating the use of a deep-space maneuver in this type of leg of flight,

the use of a deep-space maneuver is optional. The deep-space maneuver is only used

if a direct Lambert’s transfer between the planets is not more economical in terms

of launch energy. The procedure first attempts to compute the ∆V for a Lambert’s

transfer, if such a trajectory is feasible at all. The procedure then attempts to

determine the trajectory with deep-space maneuver to target planet by repeatedly

using the launch v∞ values in the range of [0.1, 5.0] km/s with increments of 0.1

km/s. The solution parameters that determine the trajectory with minimum v∞ are

picked. This minimum v∞ is compared to the ∆V that would be required for a

Lambert’s transfer, if Lambert’s transfer were feasible. The solution parameters

corresponding to the minimum of these two values are returned. Procedure 5.3
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documents the pseudo-code for this procedure.
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Procedure 5.3 Procedure for Launch Leg including a Deep-Space Maneuver

1: procedure launch-dsm(~rpl,~vpl,t,ε,~rplt ,dir,µ)

Input:

~rpl → Position vector of the launch planet and spacecraft at launch

~vpl → Velocity vector of the launch planet and spacecraft at launch

t → Time of flight for the current leg

ε → Fraction of time of flight where deep-space maneuver is to be conducted

~rplt → Position vector of the launch planet at the end of the current leg

dir → 0 or 1 indicating prograde or retrograde motion respectively

µ → The gravitational parameter of the Sun

Output:

Result → A composite object containing solution parameters

2: min-vinf←∞

3: min-dV←∞

4: min-dV-tot←∞

5: Td ← t ? ε

6: vnorm←
∥∥~vpl∥∥2

7: ~vdir ← ~vpl
vnorm

8: lOutput1← lambert(~rpl, ~rplt , t, µ, dir)

9: if Single-revolution Lambert’s solution does not exist then

10: lOutput1← multi-rev-lambert(~rpl, ~rplt , t, µ, dir)

11: end if

12: for vinf ← 0.1 to 5.0 do

13: ~vm ← ~vdir ? (vnorm+ dV p)

14: rv ← kepler(~rpl, ~vm, t ? ε, µ)
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A Procedure for V∞-Leveraging Leg from a Non-Launch Planet

This procedure is required for determining the trajectory in a leg of flight when the

source and target planets of the leg are the same non-launch planet. A deep-space

maneuver may be required in this case. A non-powered gravity-assist maneuver is

conducted at the beginning of this leg. The outbound heliocentric velocity vector

from the gravity-assist maneuver is used in to determine the resultant trajectory to

the target planet in the current leg. A deep-space maneuver is only used if

necessary. Procedure 5.4 lists the pseudo-code in detail.
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Procedure 5.3 Procedure for Launch Leg including a Deep-Space Maneuver (con-
tinued)

15: if A solution to Kepler’s problem is found then
16: lOutput← lambert(rv.~r, ~rplt , t ? (1− ε), µ, dir)
17: if Single-revolution Lambert’s solution did not coverge then
18: lOutput← multi-rev-lambert(rv.~r, ~rplt , t ? (1− ε), µ, dir)
19: end if
20: if Either of Lambert’s solutions coverged then

21: dV ←
∥∥∥lOutput. ~V 1− rv.~v

∥∥∥
2

22: if min-dV-tot > vinf + dV then
23: min-dV-tot← vinf + dV
24: min-vinf← vinf
25: min-dV← dV
26: ~V ← lOutput. ~V 2
27: ~Rd ← rv.~r
28: ~Vd ← lOutput. ~V 1
29: end if
30: end if
31: end if
32: end for
33: if Either of direct Lambert’s solutions converged then

34: dV l←
∥∥∥lOutput1. ~V 1− ~vpl

∥∥∥
2

35: if dV l < min-dV-tot then
36: return Result(dV l, 0, ~Rd, ~Vd, t, lOutput1. ~V 2, 0)
37: end if
38: end if
39: return Result(min-vinf,min-dV, ~Rd, ~Vd, Td, ~V, 0)
40: end procedure
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Procedure 5.4 Procedure for V∞-Leveraging Leg from a Non-Launch Planet

1: procedure flyby-vilt-non-launch(~rpl,~vpl,~vscin ,rp,ζ,~rplt ,t,ε,µpl,µS,safety,soilimits)

Input:

~rpl → Position vector of the planet at the start of the leg

~vpl → Velocity vector of the planet at the start of the leg

~vscin → Inbound heliocentric velocity vector of the spacecraft at the start of the

leg

rp → Periapse radius of the hyperbolic trajectory of the spacecraft around the

planet at the start of the leg

ζ → Orientation of the hyperbolic trajectory of the spacecraft around the planet

at the start of the leg

~rplt → Position vector of the planet at the end of the current leg

t → Time of flight for the current leg

ε → Fraction of time of flight where deep-space maneuver is to be conducted

µpl → The gravitational parameter of the planet

µS → The gravitational parameter of the Sun

safety → 1 or 0 indicating whether or not to consider safety of the spacecraft, to

make sure it does not crash into or get dangerously close to the Sun respectively

soilimits → The Sphere-of-Influence (SOI) limits for the planet

Output:

Result → A composite object containing solution parameters

2: ~V∞in
← ~vscin − ~vpl

3: vinf-in←
∥∥∥~V∞in

∥∥∥
2

4: ~i←
~V∞in

vinf-in



47

A Procedure for Non-Launch Leg including a Deep-Space Maneuver

This procedure is necessary to determine trajectory for a leg of flight containing

different source and target planets. The deep-space maneuver is used only when a

Lambert’s transfer trajectory is not feasible or is not more economical than the

trajectory with the deep-space maneuver in terms of fuel. First a gravity-assist

maneuver is conducted about the source planet. The resultant outbound heliocentric

velocity vector of the spacecraft is used in subsequent steps to determine the

trajectory for the current leg of flight. Procedure 5.5 lists the pseudo-code in detail.
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Procedure 5.4 Procedure for V∞-Leveraging Leg from a Non-Launch Planet (con-
tinued)

5: ~j ←~i× ~vpl
6: ~j ← ~j

‖j‖2
7: ~k ←~i×~j
8: e← 1 + rp?vinf−in2

µpl

9: δ ← 2 sin 1
e

10: ~V∞out ← ~V∞in
[cos(δ)~i+ sin(δ)sin(ζ)~j + sin(δ)cos(ζ)~k]

11: dir ← 0
12: result← vilt-kepler-lambert(~rpl, ~V∞out , ~rplt , t, ε, soilimits, µS, dir)
13: if safety is set to 1 and result.dV <∞ then
14: [a, e]← ae-from-rv(result. ~Rd, result.~Vd, µS)
15: rpsc ← a(1− e2)
16: if rpsc < 10% of an AU then
17: return Result(0,∞, ~empty, ~empty, t ? ε, ~empty,∞)
18: end if
19: end if
20: return result
21: end procedure
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Procedure 5.5 Procedure for Non-Launch Leg including a Deep-Space Maneuver

1: procedure flyby-with-dsm(~rpl,~vpl,~vscin ,rp,ζ,~rplt ,t,ε,dir,µpl,µS,safety)

Input:

~rpl → Position vector of the planet at the start of the leg

~vpl → Velocity vector of the planet at the start of the leg

~vscin → Inbound heliocentric velocity vector of the spacecraft at the start of the

leg

rp → Periapse radius of the hyperbolic trajectory of the spacecraft around the

planet at the start of the leg

ζ → Orientation of the hyperbolic trajectory of the spacecraft around the planet

at the start of the leg

~rplt → Position vector of the planet at the end of the current leg

t → Time of flight for the current leg

ε → Fraction of time of flight where deep-space maneuver is to be conducted

dir → 0 or 1 indicating prograde or retrograde motion respectively

µpl → The gravitational parameter of the planet

µS → The gravitational parameter of the Sun

safety → 1 or 0 indicating whether or not to consider safety of the spacecraft, to

make sure it does not crash into or get dangerously close to the Sun respectively

Output:

Result → A composite object containing solution parameters

2: ~V∞in
← ~vscin − ~vpl

3: vinf-in←
∥∥∥~V∞in

∥∥∥
2

4: ~i←
~V∞in

vinf−in
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A Procedure for determining V∞-Leveraging Trajectory This

procedure is required to determine a V∞-Leveraging trajectory in a leg of flight. In

this case both the source and target planets of the leg are the same. Because of this

a deep-space maneuver may be required in the current leg of flight. The procedure

computes the position and velocity vectors of the spacecraft at the expected

deep-space maneuver location. At the deep-space maneuver location, an

instantaneous tangential ∆V maneuver is assumed. It is the goal of this procedure

to determine the minimum such ∆V burn to determine a fuel-optimal trajectory to

target location of the planet. Procedure 5.6 lists the pseudo-code in detail for this

procedure.
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Procedure 5.5 Procedure for Non-Launch Leg including a Deep-Space Maneuver
(continued)

5: ~j ←~i× ~vpl
6: ~j ← ~j

‖j‖2
7: ~k ←~i×~j
8: e← 1 + rp?vinf−in2

µpl

9: δ ← 2 sin 1
e

10: ~V∞out ← ~V∞in
[cos(δ)~i+ sin(δ)sin(ζ)~j + sin(δ)cos(ζ)~k]

11: isLambertSafe← true
12: lOutput1← lambert(~rpl, ~rplt , t, µS, dir)
13: if Single-revolution Lambert trajectory does not exist then
14: lOutput1← multi-rev-lambert(~rpl, ~rplt , t, µS, dir)
15: end if
16: if Either of Lambert’s trajectories exists then

17: dV l←
∥∥∥lOutput1. ~V 1− ~V∞out

∥∥∥
2

18: ~V l← lOutupt1. ~V 2
19: [a, e]← ae-from-rv(~rpl, lOutput1. ~V 1)
20: rpsc ← a(1− e2)
21: if rpsc <10% of an AU then
22: isLambertSafe← false
23: end if
24: end if
25: rv ← kepler(~rpl, ~V∞out , t ? ε, µS)
26: lOutput← lambert(rv.~r, ~rplt , t ? (1− ε), µS, dir)
27: if Single-revolution Lambert trajectory does not exist then
28: lOutput← multi-rev-lambert(rv.~r, ~rplt , t ? (1− ε), µS, dir)
29: end if
30: if Either of Lambert’s trajectories exists then

31: dV ←
∥∥∥lOutput. ~V 1− rv.~v

∥∥∥
2

32: lOutput. ~V 2
33: end if
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Procedure 5.5 Procedure for Non-Launch Leg including a Deep-Space Maneuver
(continued)

34: if safety is set to 1 then
35: [a, e]← ae-from-rv(rv.~r, lOutput. ~V 1)
36: rpsc ← a(1− e2)
37: if rpsc <10% of an AU then
38: if dV l ==∞ then
39: return Result(0,∞, ~empty, ~empty, t ? ε, ~empty,∞)
40: else if isLambertSafe is true then
41: return Result(0.0, dV l, ~rpl, lOutput1. ~V 1, t, ~V l, 0)
42: end if
43: end if
44: end if
45: if dV < dV l then
46: return Result(0, dV, rv.~r, lOutput. ~V 1, tof ? ε, ~V, 0)
47: end if
48: if isLambertSafe is true then
49: return Result(0.0, dV l, ~rpl, lOutput1. ~V 1, t, ~V l, 0)
50: end if
51: return Result(0.0,∞, ~empty, ~empty, t, ~empty, 0)
52: end procedure
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Procedure 5.6 Procedure for V∞-Leveraging Maneuver

1: procedure vilt-kepler-lambert(~r,~v,~rt,t,ε,soilimits,µ,dir)

Input:

~r → Position vector of the launch planet at launch

~v → Velocity vector of the launch planet at launch

~rt → Position vector of the launch planet at the end of the current leg

t → Time of flight for the current leg

ε → Fraction of time of flight where deep-space maneuver is to be conducted

soilimits → The limits of the Sphere-of-Influence (SOI) for the launch planet

µ → The gravitational parameter of the Sun

dir → 0 or 1 indicating the prograde or retrograde motion respectively

Output:

Result → A composite object containing solution parameters

2: rv ← kepler(~r,~v, t ? ε, µ)

3: if The Kepler’s solution did not converge then

4: return Result(0,∞, ~empty, ~empty, t, ~empty,∞)

5: end if

5.2 The MPI Standard

The Message Passing Interface (MPI) is a platform-independent standard for

message communication and coordination of program execution in parallel

computing environments. The first version (1.0) of MPI was released in June of

1994. The latest version of MPI (3.1) was published in June of 2015. The main

advantage of the MPI standard is its portability. There are several open-source
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Procedure 5.6 Procedure for V∞-Leveraging Maneuver (continued)

6: rvt← kepler(rv.~r, rv.~v, t ? (1− ε), µ)
7: if The Kepler’s solution converged then
8: err ←‖rvt.~r − ~rt‖2

9: if err > soilimits.min and err < soilimits.max then
10: return Result(0, 0, rv.~r, rv.~v, t ? ε, rvt.~v, 0)
11: end if
12: end if
13: lOutput1← lambert(rv.~r, ~rt, t ? (1− ε), µ, dir)
14: if Single-revolution Lambert trajectory does not exist then
15: lOutput1← multi-rev-lambert(rv.~r, ~rt, t ? (1− ε), µ, dir)
16: end if
17: if Either of Lambert’s trajectories exists then

18: dV l←
∥∥∥lOutput1. ~V 1− rv.~v

∥∥∥
2

19: return Result(0, dV l, rv.~r, rv.~v, t ? ε, lOutput1. ~V 2, 0)
20: end if
21: return Result(∞,∞, ~empty, ~empty, t ? ε, ~empty,∞)
22: end procedure
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implementations of MPI available today. MPICH [25] and OPENMPI [26] are the

most prevalent open-source implementations of the MPI standard. In this thesis,

MPICH implementation of MPI is used.

5.3 Parallelization with MPI

The MPI Send and MPI Recv functions are used extensively in coordinating

the communication between the master and worker cores. The fitness computation

is distributed to all the cores used in the program. Master core divides and

distributes the population for parent or offspring generation equally to all the

available cores using the MPI Scatter function. All the cores compute the fitness of

the sub-pool distributed to them from either the parent pool or offspring pool and

send the results back to master core using the MPI Gather function. Master core is

responsible for executing all the other Genetic Operators (selection, crossover, and

mutation) as well as the Operators of the TCGA (crowding method). Master core is

also responsible for testing the termination criteria and communicating termination

of algorithm to all the worker cores.

5.4 HPC Platform of Choice

There is a myriad of HPC platforms out there. However, the San Jose State

University is yet to establish an HPC environment accessible to students as of this

writing. Due to this, the HPC platform of choice is a small cluster of

micro-controllers, the ODROID XU4’s, manufactured by HardKernel [27],

established in the Control Science and Dynamical Systems (CSDy) laboratory of the

Aerospace Engineering department at San Jose State University. These

micro-controllers are very user friendly and yet powerful. The ODROID XU4 has



56

two types of ARM CortexTM processors, the 2 GHz A-15 and 1.2 GHz A-7

processor. There are 4 cores in each of these two processors, giving a total of 8 cores

for the ODROID XU4. The ODROID XU4 has 2GB of LPDDR3 RAM along with

support for Gigabit Ethernet for inter-node communication. A cluster of 7

ODROID XU4’s is established, with a total core capacity of 56.
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CHAPTER 6

FUEL-OPTIMAL TRAJECTORIES TO SATURN

6.1 An Optimal Earth-Saturn Trajectory with 4 Gravity-Assist

Maneuvers

For finding an optimal trajectory to Saturn with 4 gravity-assist maneuvers,

the proposed algorithm is tuned with the following configuration. Table 6.1 lists the

various configuration parameters for the GA. Table 6.2 lists the lower and upper

bounds, and the standard deviation for all the genes of the chromosome. The

resultant optimal trajectory is shown in Figure 6.1. Figure 6.2 shows the minimum

and average ∆V over the Genetic Algorithm generations. It also shows the total

number of feasible solutions found in each generation. Figure 6.3 shows the

minimum ∆V over the generations of the Genetic Algorithm. The total ∆V for the

mission is 10.018 km/s with a mission time of 19.06 years. Table 6.3 lists all the

parameters of this trajectory.

6.2 An Optimal Earth-Saturn Trajectory with 3 Gravity-Assist

Maneuvers

For finding an optimal trajectory to Saturn with 3 gravity-assist maneuvers,

the proposed algorithm is tuned with the following configuration. Table 6.4 lists the

various configuration parameters for the GA. Table 6.5 lists the lower and upper

bounds, and the standard deviation for all the genes of the chromosome. The

resultant optimal trajectory is shown in Figure 6.4. Figure 6.5 shows the minimum

and average ∆V over the Genetic Algorithm generations. It also shows the total
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Table 6.1: Configuration of the Algorithm for 4 Gravity-Assists

Parameter Description Value
LEO Height Height of the LEO parking orbit of the

spacecraft for a Lambert’s launch
500 km

Population or
Pool Size

Size of the population for the GA 280

Target Planet Id Integer identifier for the target planet,
Saturn

6

Ephemerides
Start Date

Start date of the Ephemerides down-
loaded from JPL

01-01-2020

Ephemerides
End Date

End date of the Ephemerides down-
loaded from JPL

12-31-2055

Ephemerides
Granularity

Granularity of the Ephemerides down-
loaded from JPL

1 day

Termination
Tolerance

Tolerance for mission ∆V , over a given
number of generations

0.01 km
s

Convergence
Generations

Minimum number of generations for
which ∆V is within termination toler-
ance

50

Minimum Gen-
erations

The minimum number of generations to
execute for the GA

50

Maximum Gen-
erations

The maximum number of generations
to execute before termination of the
GA

1000

Table 6.2: The GA Gene Configuration for 4 Gravity-Assists

Gene Lower
Bound

Upper
Bound

Standard
Deviation

Td 01-01-2020 12-31-2020 30 days
m 4 5 1
Pi 2, Venus 5, Jupiter 1
Ti 3 months 72 months 2 months
hi 0.1 ∗ rp 10 ∗ rp 0.1 ∗ rp
gi 0 radians 2π radians 0.1 radians
ni 0 1 1
ei 0.1 ∗ Ti 0.9 ∗ Ti 0.05 ∗ Ti
f 0 1 0
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Table 6.3: 4 Gravity-Assist Fuel-Optimal Earth-Saturn Trajectory Parameters

Trajectory Parameter Value
Launch Date 07-06-2020 8:52 PM
Launch V∞ 0.1 km/s
DSM 1 Date 03-21-2021 7:59 PM
DSM 1 ∆V 0.4267 km/s
Earth Gravity-Assist Date 02-21-2022 2:45 AM
DSM 2 Date 04-23-2024 6:53 PM
DSM 2 ∆V 0.2264 km/s
Earth Gravity-Assist Date 02-20-2025 2:45 AM
Mars Gravity-Assist Date 06-25-2028 3:28 AM
Mars Gravity-Assist ∆V 7.561 km/s
Jupiter Gravity-Assist Date 09-30-2033 0:16 AM
Jupiter Gravity-Assist ∆V 1.2627 km/s
Saturn Rendezvous Date 04-29-2-39 1:15 AM
Total Mission ∆V 10.018 km/s
Total Mission Time 19.06 years
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Figure 6.1: An Earth-Saturn Optimal Trajectory with 4 Gravity-Assist Maneuvers

Figure 6.2: The Parameters of the Genetic Algorithm for 4 Gravity-Assists

number of feasible solutions found in each generation. Figure 6.6 shows the

minimum ∆V over the generations of the Genetic Algorithm. The total ∆V for the

mission is 11.2426 km/s with a mission time of 14.365 years. Table 6.6 lists all the

parameters of this trajectory.
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Table 6.4: Configuration of the Algorithm for 3 Gravity-Assists

Parameter Description Value
LEO Height Height of the LEO parking orbit of the

spacecraft for a Lambert’s launch
500 km

Population or
Pool Size

Size of the population for the GA 280

Target Planet Id Integer identifier for the target planet,
Saturn

6

Ephemerides
Start Date

Start date of the Ephemerides down-
loaded from JPL

01-01-2020

Ephemerides
End Date

End date of the Ephemerides down-
loaded from JPL

12-31-2055

Ephemerides
Granularity

Granularity of the Ephemerides down-
loaded from JPL

1 day

Termination
Tolerance

Tolerance for mission ∆V , over a given
number of generations

0.01 km
s

Convergence
Generations

Minimum number of generations for
which ∆V is within termination toler-
ance

50

Minimum Gen-
erations

The minimum number of generations to
execute for the GA

50

Maximum Gen-
erations

The maximum number of generations
to execute before termination of the
GA

1000

Table 6.5: The GA Gene Configuration for 3 Gravity-Assists

Gene Lower
Bound

Upper
Bound

Standard
Deviation

Td 01-01-2020 12-31-2020 30 days
m 3 5 1
Pi 2, Venus 5, Jupiter 1
Ti 3 months 72 months 2 months
hi 0.1 ∗ rp 10 ∗ rp 0.1 ∗ rp
gi 0 radians 2π radians 0.1 radians
ni 0 1 1
ei 0.1 ∗ Ti 0.9 ∗ Ti 0.05 ∗ Ti
f 0 1 0
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Table 6.6: 3 Gravity-Assist Fuel-Optimal Earth-Saturn Trajectory Parameters

Trajectory Parameter Value
Launch Date 11-15-2020 10:56 AM
Launch V∞ 0.1 km/s
DSM 1 Date 01-12-2022 12:26 PM
DSM 1 ∆V 0.4267 km/s
Earth Gravity-Assist Date 09-01-2022 11:42 AM
DSM 2 Date 10-12-2024 2:49 AM
DSM 2 ∆V 0.2264 km/s
Earth Gravity-Assist Date 08-13-2025 0:35 AM
Mars Gravity-Assist Date 07-09-2029 7:01 PM
Mars Gravity-Assist ∆V 7.561 km/s
Saturn Rendezvous Date 01-12-2035 9:33 PM
Total Mission ∆V 11.2426 km/s
Total Mission Time 14.365 years
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Figure 6.3: The Minimum ∆V over the Generations of the Genetic Algorithm for 4
Gravity-Assists

6.3 Comparison of the Optimal Trajectories

The main difference between the 4-gravity-assist trajectory and the

3-gravity-assist trajectory is the extended mission time in the 4-gravity-assist

trajectory, albeit with an improvement in the mission cost (total ∆V ) by 1.2242

km/s. In both the trajectories, the ∆V for Mars Gravity-Assist is very high at 7.561

km/s.
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Figure 6.4: An Earth-Saturn Optimal Trajectory with 3 Gravity-Assist Maneuvers

Figure 6.5: The Parameters of the Genetic Algorithm for 3 Gravity-Assists
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Figure 6.6: The Minimum ∆V over the Generations of the Genetic Algorithm for 3
Gravity-Assists

6.4 Performance of the Adaptive Twin-Space Crowding Genetic

Algorithm

For the 4-gravity-assist trajectory, the algorithm converged at the 534th

generation. Figure 6.2 shows the average and minimum ∆V values of the

population as well as the total number of feasible solutions in the population over

all of the 534 generations. As can be seen in Figure 6.2, the number of feasible

solutions in the population raises steeply till 125th generation to reach a value of

200 out of a total of 280 solution candidates in the population. Correspondingly, the

minimum and average ∆V values also steeply decrease during this span. After the

125th generation, the number of feasible raises steadily but slowly. Accordingly, the

minimum and average ∆V values also decrease slowly but steadily until

convergence. Similar trend is also observed in the 3-gravity-assist trajectory case in

Figure 6.5. In this case, the algorithm converged at the 293rd generation. Number

of feasible solutions in the population quickly gets to 200 out of possible 280
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candidate solutions by the 40th generation. After this the number raises slowly but

steadily. A similar trend is observed in minimum and average ∆V values. This is

due to the combination of adaptive and Twin-Space crowding techniques employed.

An attempt is made to use adaptive diversification technique alone for the Genetic

Algorithm. However, it is observed that the convergence is not as effective as when

the two diversification techniques are combined. The algorithm executed for 173

minutes for the 4-gravity-assist trajectory and for 110 minutes for the

3-gravity-assist trajectory. The scale of calculations involved in interplanetary travel

is astronomical. Given this, the execution times of the algorithm in these two cases

are deemed efficient.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

The algorithm proposed in this thesis is producing optimal solutions with

economical costs. The two solutions found using this algorithm are yielding costs

that are comparable to the Cassini 2 mission cost (8.385 km/s) found by Gad and

Abdelkhalik’s [1] hidden-gene based algorithm. However, the algorithm is not doing

well in terms of the mission time. This is because the cost/fitness function does not

include the mission time. The time-of-flight gene of the chromosome is also crucial

to the mission time. The proposed algorithm uses common minimum, maximum

and standard deviation values for all the Solar planets. This is not an ideal choice.

These GA parameters should be tuned according to the pair of planets involved in

each leg of the flight. For example, the time-of-flight in a Venus-Earth leg will be

way smaller to that of an Earth-Jupiter leg. Since the goal of this thesis is to

determine fuel-optimal trajectories, this work is left as a recommendation for future

work. To complete the mission design for a real mission, it is necessary to consider

the n-body effects in space. The process for refining the preliminary optimal

trajectories found using the proposed algorithm, to make sure that the spacecraft

does not crash into any of the known celestial bodies, is quite complex and cannot

be generalized. However, it can be attempted on a case by case basis and left as a

recommendation for future work. It is possible to further optimize the solutions

with the use of more than one deep-space maneuver in a leg of the flight. This is

also left as a recommendation for future work. Another interesting problem that is

worth solving is the trajectory design for the moon tour or orbiter missions of the
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parent planet. This problem requires solutions to gravity-assist maneuvers from

low-mass moons. This is also left as a recommendation for future work.
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