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Development of CR3BP, ER3BP and N-Body Orbit 

Simulations Using Matlab 
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San Jose State University, San Jose, CA, 95192 

 
 

The Three-Body and N-body Problem has confounded the greatest physicists and 

mathematicians for centuries. In the many attempts for an elegant solution, this deceptively 

difficult problem has led to numerable advancements in mathematics. However, since its 

formulation by Newton, no closed-form solution has been found. Presently it is accepted that 

no such solution to the general three-body problem exists and never will. However, with some 

restrictions and computational tools, accurate simulations are possible. This paper will delve 

into the history of the Three-body problem and introduce mathematical concepts for solving 

the Circular Restricted Three-Body Problem (CR3BP), the Elliptic Restricted Three-Body 

Problem (ER3BP), and develop methods for solving an unrestricted N-Body Problem. 

Solutions to the restricted cases as well as the N-body are applied to Apollo missions for 

evaluation. The N-body goes a step further, simulating a wide range of orbital systems in 

various reference frames for evaluation. 

 

 

 
𝑟⃗ 𝑖 

 
= 

Nomenclature 

Position vector of object i 
𝑅 = Radius 

𝑅𝐸 = Earth Radius 

𝑅𝑆 = Sun Radius 
𝑎 = Semi-major axis 

𝐺 = Gravitational Constant 

𝐷 = Distance from Earth to Moon 

𝜌 = Mass ratio 

𝑖 = Inclination 

𝑑𝑡 = Time step 

𝜔 = Argument of Perigee 

𝑃 = Orbit Period 

𝑒 = Eccentricity 

𝜃̇  = Angular Velocity 

𝑀 = Mean Anomaly 
𝑛 = Mean Motion 

𝜇 = Gravitation Parameter 

𝜈 = True Anomaly 

𝑉  𝑖 = Velocity vector of object i 
Δ𝑉 = Delta-V, Change in velocity 

𝑝0 = Initial position 

𝑉0 = Initial velocity 
𝑡 = Time 

𝑚𝑖 = Mass 

|𝑟⃗ 1 − 𝑟⃗ 2| = Distance between objects 1 & 2 

 

 

 
 

1 SJSU MSAE Student, Aerospace Engineering, 1 Washington Square, San Jose, CA 95112 
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T 
I. Introduction 

HE three-body problem seeks to determine movements of three bodies in space under mutual gravitational 

interaction. A solution hopes to determine all future and past spatial locations of three bodies based solely on 

positions and velocities from a single instant in time. A general solution for the problem known as the general three- 

body problem, would describe these movements in 3 dimensions with no restrictions in mass, initial position or 

velocity. While the two-body problem has been solved completely from its inception, including an additional body to 

the problem has proven to be much more difficult. For centuries, physicists and mathematicians have been 

unsuccessful in their attempts to discover a closed-form solution, and as it is now known, no closed-form solution 

exists for the general three-body problem. Three-body motion is considered generally unpredictable. However, with 

some restrictions, namely one mass taken to be negligible, the problem becomes much easier. This is called the 

restricted three-body problem. There are two paths that can be taken in solving the restricted three-body problem, the 

simpler circular restricted three-body problem (CR3BP) where the two larger masses have circular orbits around their 

shared center of mass, or the more complicated but accurate elliptic three-body problem (ER3BP) where the larger 

masses move in elliptical orbits around their shared center of mass. 

The three-body problem was first formulated by Isaac Newton in 1687 in the Principia. He extensively studied 

the motion of the Earth around the Sun and the Moon around the Earth, but found the problem difficult. Newton was 

only able to obtain approximate solutions to within 8% of known observations. 

Later in 1767, Euler proposed a special form of the general three-body problem where the three bodies were places 

in a straight line. With sufficient initial conditions, the three bodies would move in elliptical orbits while preserving 

the straight line positions seen in 9Figure 1. Euler was also the first to study the three-body problem in a co-rotating, 

or synodic, reference frame by placing the origin at the barycenter. This was an important step in the eventual 

development of the circular restricted three-body problem. 

 

 

 
9Figure 1. Special form solution developed by Euler where three bodies are in a line. 

 
 

Soon after, in 1772, Lagrange discovered another special class of orbits. When the positions of three bodies formed 

an equilateral triangle with a certain set of specified initial velocities, the equilateral configuration stayed consistent 

over time. This configuration is shown in9Figure 2. Lagrange also greatly contributed to the CR3BP when he 

discovered 5 positions in a circular orbit where the gravitational force equaled the centrifugal force for negligible 

masses. These positions are now called the Lagrange points, where L1, L2, and L3 were determined unstable and L4 

and L5 we determined to be stable. Figure 3 shows the positions of the five Lagrange points. 
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9Figure 2. Lagrange's special solution with 3 objects in an equilateral triangle. 

 

 
 

 

 
Figure 3. Lagrange Points for a circular orbit 

 
 

Then in 1836, using the synodic barycenter coordinate system developed by Euler, Carl Gustav Jacob Jacobi was 

able show an integral of motion exists for a three body system. Now called the Jacobi integral, it is the only known 

conserved value in the circular restricted three-body problem. The constant of integration discovered by Jacobi is 

shown below, 
 

𝐶 = 𝑛2(𝑥2 + 𝑦2) + 2 (
𝜇1 

+ 
𝜇2
) − (𝑥 2 + 𝑦  2 + 𝑧̇ 2)𝑅 = −𝜔𝐿 

𝐽 𝑟⃗1 𝑟⃗2 
𝐵 

(1) 

where 𝑛 is the mean motion, 𝜇 is the GM or gravitational constant and mass multiple and 𝑟⃗1 and 𝑟⃗2 are distances from 

the two large masses. The integral equation is, 
 

𝑥 𝑥   + 𝑦 𝑦   + 𝑧̇ 𝑧̇   = 
𝛿𝑈 

𝑥   + 
𝛿𝑈 

𝑦   + 
𝛿𝑈 

𝑧̇   = 
𝑑𝑈

 
𝛿𝑥 𝛿𝑦 𝛿𝑧̇ 𝑑𝑡 

(2) 

 

After integration of Eq. (2) the formula becomes, 
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𝑥 2 + 𝑦  2 + 𝑧̇ 2 = 2𝑈 − 𝐶𝐽 (3) 

 

This integral was essential to George William Hill in 1878 when he applied it to the motion of the infinitesimally 

small masses of asteroids. This led to Hill conceptualizing zero velocity curves as a visualization tool still in use today. 

An example of zero velocity curves or surfaces is shown in Figure 4. This led Hill to his eventual formulation of a 

version of Lunar Theory also still in use today. Hill’s Lunar Theory approached the circular restricted three-body 

problem from a new angle by analyzing perturbations on special cases of lunar orbits to find positions to a relative 

high degree of accuracy. Applying perturbations to special orbits and analyzing the results became an important 

avenue for later CR2BP contributions. 

 
 

Figure 4. Zero Velocity Curves or Surfaces developed by George William Hill 

 
 

One of the most important contributions to the three-body problem came from Poincaré between 1892 and 1899. 

Poincaré published a series of books on methods for solving differential equations. More importantly, he developed 

methods for identifying systems of equations that were non-integrable. These new methods allowed Poincaré to 

identify the three-body problem as unpredictable or unsolvable which changed the focus of the problem to techniques 

used today. Poincaré later developed this farther into a theory of chaos. 

With this new knowledge, finding a closed form solution became highly unlikely. Future efforts were therefore 

focused on solutions using infinite series. Sundman in 1912 was able to find a complete solution to the three-body 
problem using a power series, however, this solution converged very slowly and restricted its use from any reasonable 

applications. Despite Sundman’s power series implying an overarching solution exists for the three-body problem, his 

method only gave results indirectly so the three-body problem’s unpredictability was preserved. Computational 

methods with series continued to develop through the first half of the 20th century, and as computers continued to 

advance into the latter half of the 20th century, numerical solutions of the three-body problem became easier and faster. 
Solutions to greater degrees of accuracy were calculated at increasing speeds allowing precise and accurate trajectories 

to be found for trajectories to the moon and beyond. 
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II. The Circular Restricted Three-Body Problem 

 
 Earth  Moon 

Mass 5.9723 × 1024 𝑘𝑔 Mass 7.346 × 1022 𝑘𝑔 
Equatorial Radius 6378.1 𝑘𝑚 Equatorial Radius 1738.1 𝑘𝑚 

Semimajor Axis 149.60 × 106 𝑘𝑚 Semimajor Axis 0.3844 × 106 𝑘𝑚 
Mean orbital velocity 29.78 𝑘𝑚/𝑠 Mean orbital velocity 1.022 𝑘𝑚/𝑠 

GM 0.39860 × 106 𝑘𝑚3/𝑠2
 GM 0.00490 × 106 𝑘𝑚3/𝑠2

 

Perihelion 147.09 × 106 𝑘𝑚 Perigee 0.3633 × 106 𝑘𝑚 
Aphelion 152.10 × 106 𝑘𝑚 Apogee 0.4055 × 106 𝑘𝑚 

Orbit inclination 0.000 𝑑𝑒𝑔 Revolution period 27.3217 𝑑𝑎𝑦𝑠 
Orbit eccentricity 0.0167 Synodic period 29.53 𝑑𝑎𝑦𝑠 

Sidereal rotation period 23.9345 ℎ𝑟⃗𝑠 Inclination to ecliptic 5.145 𝑑𝑒𝑔 
Inclination of equator 23.44 𝑑𝑒𝑔 Inclination to Earth equator 18.28 − 28.58 𝑑𝑒𝑔 

  Orbit eccentricity 0.0549 
  Distance from Earth 3.78 × 105 𝑘𝑚 

Table 1. Earth and Moon Parameters used in the proceeding chapters 

 
 

The Three-Body Problem can be simplified into the restricted three-body problem if one of the masses is 

infinitesimally small. This simplification can be readily applied to the motion of satellites in the Earth-Moon system. 

The problem can be simplified even farther if the orbits of the two massive bodies are nearly circular, that is to say, 

the eccentricity is nearly 0. This is called the Circular Restricted Three-Body Problem and reasonably accurate results 

can be obtained for low eccentricity systems. In the Earth-Moon system, the Moon has an eccentricity of 0.0549 and 

can be considered nearly circular. However, this approximation is not satisfactory for certain orbits due to increasing 

resonate perturbations, but in many occurrences this simplification suffices. 

The circular restricted three body problem in a rotating barycenter frame was first developed and utilized by Euler 

in 1772. His efforts focused on studying the Moon’s motion around the Earth, however, this section will center on 

satellite motion for which the same methods can be easily applied. 

 
 

1Figure 5. Typical Circular Restricted Three-Body Problem Geometry 

 

Since we are restricting the elliptical motion of the Earth and Moon to circular orbits about their barycenter, the 
angular velocity is simply constant. 

 

𝑛 = 
𝐺(𝑀1 + 𝑀2) 

√ 
𝐷3 

(4)1
 

 
𝑀1 and 𝑀2 are the masses of the Earth and the Moon respectively and 𝐷 is the distance between the two. For the 

circular restricted three-body problem, 𝐷 will also remain constant in time. 𝐺 is the gravitational constant and is taken 

to be 6.67408 × 10−11 𝑚3𝑘𝑔−1𝑠−2. 
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The position of the spacecraft is expressed in Cartesian coordinates in the barycenter frame of reference. The origin 

is therefore the combined center of mass of the Moon and the Earth 

 

𝑅   = 𝑋 𝑖  + 𝑌 𝑗  + 𝑍 𝑘   (5)1
 

 
The spacecraft’s inertial acceleration or the 2nd derivative of Eq. (5) is expressed in equation, 

 

𝑅  
   
= (𝑋   − 2𝑛𝑌   − 𝑛2𝑋) 𝑖  + (𝑌   + 2𝑛𝑋   − 𝑛2𝑌) 𝑗  + 𝑍  𝑘   (6)1

 

 
2𝑛𝑌  and 2𝑛𝑋  are Coriolis accelerations and 𝑛2X and 𝑛2𝑌 are centrifugal accelerations that arise from the rotating 
non-inertial frame. The equation of motion due to gravitational interactions is given by, 

 

𝑚𝑅  = − 
𝐺𝑀1𝑚 

𝑟⃗  − 
𝐺𝑀2𝑚 

𝑟⃗  
𝑟⃗3 1 𝑟⃗3 2 
1 2 

(7)1
 

 

where 𝑚 is the mass of the spacecraft and 𝑟⃗1 and 𝑟⃗2 are the radial magnitudes to the spacecraft from the Earth and the 

Moon respectively. Vectors 𝑟⃗ 1 and 𝑟⃗ 2 are defined as, 

 

𝑟⃗ 1  = (𝑋 − 𝐷1) 𝑖  + 𝑌 𝑗  + 𝑍 𝑘   

𝑟⃗ 2  = (𝑋 − 𝐷2) 𝑖  + 𝑌 𝑗  + 𝑍 𝑘   

 
(8)1

 

In Eq. (7) the mass 𝑚 of the spacecraft can be eliminated from the calculation by dividing it from both the left and 

right sides. 

By combining Eqs. (6) and (7), the equations of motion for the circular restricted three-body problem are 

established. The equations of motion are displayed in the following: 
 

𝑋  − 2𝑛𝑌  − 𝑛2𝑋 = − 
𝐺𝑀1(𝑋 − 𝐷1) 

− 
𝐺𝑀2(𝑋 − 𝐷2) 

𝑟⃗3 𝑟⃗3 
1 2 

(9)1
 

 

𝑌  + 2𝑛𝑋  − 𝑛2𝑌 = − 
𝐺𝑀1𝑌 

− 
𝐺𝑀2𝑌

 
𝑟⃗3 𝑟⃗3 
1 2 

(10)1
 

 

𝑍  = − 
𝐺𝑀1𝑍 

− 
𝐺𝑀2𝑍 

𝑟⃗3 𝑟⃗3 
1 2 

(11)1
 

 

III. The Elliptic Restricted Three-Body Problem 

The effects of eccentricity are ignored in the circular restricted three-body problem, but perturbations from even 

small eccentricities can have larger influences than radiation pressure and gravity of the sun. Therefore, disbarring 

special cases, the circular restricted three-body problem is generally inaccurate. To account for these eccentric 

perturbations, formerly constant variables of distance and angular velocity are implemented in their dynamic form. 

The Moon’s relatively small eccentricity (𝑒𝑚𝑜𝑜𝑛 = 0.05490) can drastically perturb satellites over time and 

complicates calculations significantly. 1Figure 6 shows the general geometry of a three-body system but with an 

arbitrary point of origin. We begin calculations from the most general depiction. 
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1Figure 6. Three Body System 

 
 

Adding the gravitational influences of the two massive bodies gives the satellites equation of motion, 
 

𝑚𝑅  
 
3  = −(𝐺𝑀1𝑚⁄𝑟⃗3) 𝑟⃗ 1 − (𝐺𝑀2𝑚⁄𝑟⃗3) 𝑟⃗ 2 

1 2 
(12)1

 

 
whereby the satellites mass 𝑚 can be removed from both sides of the equation. The result is the equation of 

acceleration, 
 

𝑅  
 
3  = −(𝐺𝑀1⁄𝑟⃗3) 𝑟⃗ 1 − (𝐺𝑀2⁄𝑟⃗3) 𝑟⃗ 2 

1 2 
(13)1

 

 
In order to find the equation of acceleration for 𝑀1 we must first define the position  vector  of mass 𝑀2  with respect 

to mass 𝑀1, 

 

𝑟⃗ 21  = 𝑅  2  − 𝑅  1 (14)1
 

 
Similar to the acceleration vector of the satellite, the acceleration equation of 𝑀1 is, 

 

𝑅  
 
1  = −(𝐺𝑀2⁄𝑟⃗3  ) 𝑟⃗ 21 + (𝐺𝑚⁄𝑟⃗3) 𝑟⃗ 1 

21 1 
(15)1

 

 
We can now combine the acceleration equations of masses 𝑚 and 𝑀1 into the relative motion of mass 𝑚 with 

respect to mass 𝑀1 using  𝑟⃗ 21  = 𝑅  
 
3  − 𝑅  

 
1. 

 

𝑟⃗     = −𝐺(𝑀   + 𝑚) 
𝑟⃗ 1  
− 𝐺𝑀  {

𝑟⃗ 2  
+ 
𝑟⃗ 21 

} 
1 1 𝑟⃗3 2    𝑟⃗3 𝑟⃗3 

1 2 21 

(16)1
 

Again using the same procedure outlined above, the relative motion of the infinitesimal mass 𝑚 with respect to mass 

𝑀2 is given by, 

 

𝑟⃗     = −𝐺(𝑀   + 𝑚) 
𝑟⃗ 2   

− 𝐺𝑀  {
𝑟⃗ 1  

+ 
𝑟⃗ 21 

} 
2 2 𝑟⃗3 1    𝑟⃗3 𝑟⃗3 

2 1 21 

(17)1
 

If you recall, in the circular restricted three-body problem above, the angular velocity was considered constant 

because the distances between the large masses 𝑀1 and 𝑀2 were also constant. In the elliptic three-body problem this 

is not the case, the farther in orbit an object is, the slower its orbital speed and angular velocity. An object at apoapsis 

moves slower than at its periapsis. Therefore the rotational speed or angular velocity is a dynamic quantity changing 
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over time. However, a position constant can be found from the ratio of the distance 𝐷 and the libration points 𝑙1 and 𝑙2. 

1Figure 7 shows the libration points and the typical elliptic restricted three-body system setup. 

 
 

 
1Figure 7. Elliptic Three-Body Problem 

 

The instantaneous distance 𝐷 with either of the instantaneous libration points 𝑙1 or 𝑙2 is constant, 

 

𝑙1/𝐷 = 𝛾 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (18)1
 

 
We can now define the position of the spacecraft with respect to libration point 1 or 2 in order to eventually describe 

its motion. 

 

𝑟⃗  = 𝑥 𝑖  + 𝑦 𝑗  + 𝑧̇ 𝑘   (19)1
 

 
Relating 1Figure 6 and 1Figure 7, and using Eqs. (18) and (19), we can describe the position vectors in the 

following new formulas: 

 

𝑟⃗ 21 = −𝐷 𝑖  (20)1
 

 
 

𝑟⃗ 1  = [−(1 + 𝛾)𝐷 + 𝑥] 𝑖  + 𝑦 𝑗  + 𝑧̇ 𝑘   (21)1
 

 
 

𝑟⃗ 2  = (−𝛾𝐷 + 𝑥) 𝑖  + 𝑦 𝑗  + 𝑧̇ 𝑘   (22)1
 

 
Please note that in the three equations above, the distance 𝐷 is not constant, changing at every instance during orbit. 

We then solve for the 2nd derivative, or acceleration of 𝑟⃗ 1 shown below, 
 

𝑟⃗ 1   = {−(1 + 𝛾)𝐷  + 𝑥  − 𝜃̇ 𝑦 − 2𝜃̇ 𝑦  − 𝜃̇ 2[−(1 + 𝛾)𝐷 + 𝑥]} 𝑖  

+  {𝑦  − 𝜃̇ (1 + 𝛾)𝐷 − 2𝜃̇ (1 + 𝛾)𝐷   + 𝜃̇ 𝑥 + 2𝜃̇ 𝑥  − 𝜃̇ 2𝑦} 𝑗  + 𝑧̇  𝑘   

 
(23)1

 

 
Please also note that the angular velocity 𝜃̇  is not constant during orbit for the elliptic restricted three-body problem. 

Lastly, before writing the equations of motion, 𝜌 is introduced as the mass ratio of the two large bodies. 
 

𝜌 = 𝑀2/(𝑀1 + 𝑀2) 

1 − 𝜌 = 𝑀1/(𝑀1 + 𝑀2) 

 
(24)1

 

Finally the equations of motion for the spacecraft can be obtained in non-dimensional form by removing 

gravitational constant 𝐺 and combining Eqs. (16) and (23) in the following: 
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𝑥  − 𝜃̇ 𝑦 − 2𝜃̇ 𝑦  − 𝜃̇ 2[𝑥 − (1 + 𝛾)𝐷] 
= (1 + 𝛾)𝐷  − (1 − 𝜌)[𝑥 − (1 + 𝛾)𝐷]/𝑟⃗3 − 𝜌(𝑥 − 𝛾𝐷)/𝑟⃗3 + 𝜌/𝐷2

 
1 2 

 
(25)1

 

 
𝑦  − 𝜃̇ (1 + 𝛾)𝐷 − 2𝜃̇ (1 + 𝛾)𝐷  + 𝜃̇ 𝑥 + 2𝜃̇ 𝑥  − 𝜃̇ 2𝑦 

=  −2𝜃̇ [𝑥   − (1 + 𝛾)𝐷  ] − (1 − 𝜌)𝑦/𝑟⃗3  − 𝜌𝑦/𝑟⃗3 
1 2 

 
(26)1

 

 
 

𝑧̇   =  −(1 − 𝜌)𝑧̇/𝑟⃗3  − 𝜌𝑧̇/𝑟⃗2 
1 2 (27)1

 

 

To reiterate, 𝑟⃗1 and 𝑟⃗2 are the magnitudes of vectors 𝑟⃗ 1 and 𝑟⃗ 2 respectively and are defined as 

 
𝑟⃗1 = √[𝑥 − (1 + 𝛾)𝐷]2 + 𝑦2 + 𝑧̇2 

 
 

𝑟⃗2 = √(𝑥 − 𝛾𝐷)2 + 𝑦2 + 𝑧̇2 

 
(28)1

 

It’s important to recognize that Eqs. 

(25), (26), and (27) are non-dimensional. The distances 𝑥, 𝑦, 𝑧̇, 𝑟⃗1, 𝑟⃗2 𝑎𝑛𝑑 𝐷 are in units of the semimajor axis 𝑎, the 

angular velocity 𝜃̇  is in units of mean angular rate 𝑛 and time is in units of 𝑛−1. 

Due to the dynamic nature of values 𝐷 and 𝜃̇  in the elliptic restricted three-body problem, an equation is necessary 
to represent their changing values. To simplify these equations and easily solve for their derivatives, a series expansion 

is used in terms of eccentricity and the mean anomaly 𝑀 = 𝑡 − 𝑡𝑝. The time of perigee passage is 𝑡𝑝. It is common to 

assume that 𝑡𝑝 = 0 for simplification, meaning the start of an orbit is at periapsis. The nondimensional series 

expansions for distance 𝐷 between masses 𝑀1 and 𝑀2 and the radial velocity 𝜃̇  are shown below: 
 

𝐷  =  1 + 
1 
𝑒2  + (−𝑒 + 

3 
𝑒3  −    

5 
𝑒5 + 

7 
𝑒7) cos 𝑀 

2 8 192 9216 

+ (− 
1 
𝑒2 + 

1 
𝑒4 − 

1 
𝑒6) cos 2𝑀 

2 3 16 

+ (− 
3 
𝑒3 + 

45 
𝑒5 − 

567 
𝑒7) cos 3𝑀 

8 128 5120 

+ (− 
1 
𝑒4 + 

2 
𝑒6) cos 4𝑀 

3 5 

+ (− 
125 

e5 + 
4375 

e7) cos 5𝑀 
384 9216 

− 
27 

𝑒6 cos 6𝑀 − 
16807 

𝑒7 cos 7𝑀 + ⋯ 
80 46080 

 

 

 

 

(29)1
 

 
 

𝜃̇  = 1 + (2𝑒 − 
1 
𝑒3 + 

5 
𝑒5 + 

107 
𝑒7) cos 𝑀 

4 96 4608 

+ 2 (
5 
𝑒2 − 

11 
𝑒4 + 

17 
𝑒6) cos 2𝑀 

4 24 192 

+ 3 (
13 

𝑒3 − 
43 

𝑒5 + 
95 

𝑒7) cos 3𝑀 
12 64 512 

+ 4 (
103 

𝑒4 − 
451 

𝑒6) cos 4𝑀 
96 480 

+ 5 (
1097 

𝑒5 − 
5957 

𝑒7) cos 5𝑀 
960 4608 

+ 6 
1223 

𝑒6 cos 6𝑀 + 7 
47273 

𝑒7 cos 7𝑀 + ⋯ 
960 32256 

 

 

 

 

 
(30)1
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IV. The N-Body Problem 

 
The n-body problem is the historically difficult problem of mathematically modeling the motion of 3 or more 

bodies in mutual interaction. This type of interaction, which is typically gravitational but can be electrical or other 

forms, is generally considered chaotic and unpredictable. However with the help of computers and increasingly fast 

computational speed, a numerical estimation is possible to a desired degree of accuracy. The problem is formulated 

by creating 𝑁 functions with 𝑁 − 1 terms each, where 𝑁 is the number of bodies in the system. This can be shown in 

simplistic form by the following equation, 
 

𝑁 

𝐹  = − ∑ 𝐺   
𝑚𝑖𝑚𝑗 

𝑟⃗   − 𝑟⃗  𝑖 = 1,2, … , 𝑁 
𝑖 2 𝑖 𝑗 

𝑗=1 |𝑟⃗ 𝑖 − 𝑟⃗ 𝑗| 
𝑖≠𝑗 

 

(31) 

 

where, 𝑟⃗𝑖 and 𝑟⃗𝑗 are the position vectors of objects 𝑖 and 𝑗. 𝐺 is the gravitational constant and 𝑚𝑖,𝑗 are the masses of 

objects 𝑖 and 𝑗. 𝐹𝑖  is the force on object 𝑖 which is equal to 𝐹𝑖  = 𝑎𝑖𝑚𝑖 or 𝐹𝑖  = 𝑚𝑖 (𝑑2𝑟⃗ 𝑖/𝑑𝑡2). This expression allows 

the mass 𝑚𝑖 to be divided from both sides of Eq. (31) to obtain, 

 
 

𝑑2𝑟⃗  
𝑁 

𝑚 𝑟⃗  
  𝑖  

= − ∑ 𝐺   𝑗  𝑖𝑗 𝑟⃗ 𝑖𝑗    = 𝑟⃗ 𝑖   − 𝑟⃗ 𝑗 & 𝑖 = 1,2, … , 𝑁 
𝑑𝑡2 

|𝑟⃗  |
3

 
𝑗=1 𝑖𝑗 
𝑖≠𝑗 

 

(32) 

 

This equation is used to develop 𝑁 second order differential equations. This system is nonlinear and highly 

coupled causing three main difficulties for integration. First, this system is highly chaotic and no analytical solution 
exists, only numerical methods are capable of producing solutions. Second, due to numerical integration being 

necessary, the system grows in computational time by 𝑁2 with an increase in bodies. This makes the study of large 

systems, such as galaxies, difficult and presents a limitation on its usefulness depending on the computational speeds 

available and the size of the system being modeled. Lastly, singularities and instabilities are encountered when two 
objects come into very close proximity, usually only encountered when an object moves inside a planets radius, except 

in the case of super dense objects such as neutron stars or black holes. 

 
Figure 8. As the number of objects increase, the number of calculations increases to 𝑁2, 

greatly increasing the computational time to reach a solution. 
 

As an example, for 3-bodies you would obtain 3 equations of motion with 6 terms or interactions. You have 3 

total terms on the left and 6 total terms on the right so you have 9 terms in total to numerically solve for. The equations 

of motions for 3-bodies is shown here. 
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𝑟⃗     = −𝐺    
𝑚2𝑟⃗ 12  

+ 
𝑚3𝑟⃗ 13 

) 
1 (

|𝑟⃗    |3 |𝑟⃗    |3 
12 13 

 

𝑟⃗     = −𝐺    
𝑚1𝑟⃗ 12  

+ 
𝑚3𝑟⃗ 23

) 
  2 (

|𝑟⃗    |3 |𝑟⃗    |3 
12 23 

 

𝑟⃗     = −𝐺    
𝑚1𝑟⃗ 13  

+ 
𝑚2𝑟⃗ 23

) 
  3 (

|𝑟⃗    |3 |𝑟⃗    |3 
13 23 

 

 

 
(33) 

 
 

Figure 9. 3-body system where each line represents 2 interactions for a total of 6 
interactions, or 2 for each of the 3 bodies. 

 

You can then infer that 4 bodies will require 4 equations of motions with 3 interactions for each individual body. 

Therefore the number of terms that must be solved for are 4 on the left and 12 on the right of Eq. (34) so 16 in total or 

𝑁2 for 𝑁 = 4. As one can see, adding additional bodies demands exponentially more computational time. 

 
 

𝑟⃗     = −𝐺    
𝑚2𝑟⃗ 12 

+ 
𝑚3𝑟⃗ 13 

+ 
𝑚4𝑟⃗ 14

)
 

1 (
|𝑟⃗    |3 |𝑟⃗    |3 |𝑟⃗    |3 

12 13 14 

 

𝑟⃗     = −𝐺    
𝑚1𝑟⃗ 12 

+ 
𝑚3𝑟⃗ 23 

+ 
𝑚4𝑟⃗ 24

)
 

2 (
|𝑟⃗  |3 |𝑟⃗   |3 |𝑟⃗  |3 

12 23 24 

 

𝑟⃗     = −𝐺    
𝑚1𝑟⃗ 13 

+ 
𝑚2𝑟⃗ 23 

+ 
𝑚4𝑟⃗ 34

)
 

   3 (
|𝑟⃗    |3 |𝑟⃗    |3 |𝑟⃗    |3 

13 23 34 

 

𝑟⃗     = −𝐺    
𝑚1𝑟⃗ 14 

+ 
𝑚2𝑟⃗ 24 

+ 
𝑚3𝑟⃗ 34

)
 

4 (
|𝑟⃗    |3 |𝑟⃗    |3 |𝑟⃗    |3 

14 24 34 

 

 

 

 

 

(34) 
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Figure 10. 4-body system with 12 interactions, or 3 for each of the 4 bodies. 

 

 

 

V. Translunar Injection Orbit Parameters and Initial Conditions 

 

 
2Table 2. Translunar Injection Initial Conditions from Apollo By The Numbers, Richard 
Orloff 

 
 

In order to determine the translunar injection (TLI) orbit parameters and to benchmark the initial flight path before 

the Moon’s influence is significant, some orbit calculations must be made from the above parameters. We first want 

to retrieve the accurate radius of the TLI from the altitudes listed above. The altitude represents the distance from the 

spacecraft to the surface of the Earth as a Fischer Ellipsoid. To find the radius of the Earth at the point of TLI, the 

following equation is used, 
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𝑅 = 
𝑎𝑏 

𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 
√(𝑏 cos 𝜓 )2 + (𝑎 sin 𝜓)2 

 
(35)2

 

 

where 𝑎 and 𝑏 are the equatorial and polar radii of earth respectively. 𝜓 is the Geocentric Latitude (deg N) of the point 

on the ellipsoid directly below the spacecraft. 𝜓 can be found in 2Table 2. The radius magnitude of the spacecraft 

from the center of the Earth is simply, 

 

𝑟⃗𝑆𝐶 = 𝑅𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 + 𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 (36) 

 

The perigee and apogee radii is then calculated using, 

 

𝑅 /𝑟⃗ = −𝐶 ± 
√𝐶2 − 4(1 − 𝐶)(− cos2 𝜙) 

𝑝,𝑎 2(1 − 𝐶) (37)2
 

 
where 𝜙 is the flight path angle from 2Table 2, 𝐶 = 2𝐺𝑀/(𝑟⃗𝑉2) and 𝑉 is the space-fixed velocity from 2Table 2. The 
eccentricity is given by, 

 

𝑟⃗𝑉2 2
 

𝑒 = √(
𝐺𝑀 

− 1) cos2 𝜙 sin2 𝜙 (38) 

 
or is given by 2Table 2. The true anomaly is calculated using, 

 

(
𝑟⃗𝑉2

) cos 𝜙 sin 𝜙 

𝜈 = tan−1 𝐺𝑀 
 

(
𝑟⃗𝑉2 

) cos2 𝜙 − 1 
𝐺𝑀 

 
(39)2

 

 

The semi-major axis can be calculated from two formulas, 
 

𝑎 =  
1 

= 
𝑅𝑝 + 𝑅𝑎 

(
 2 
− 
𝑉2 

)  2 
𝑟⃗ 𝐺𝑀 

 
(40) 

 

Next we need a way to transform coordinates between planes. This can be accomplished with the following 

equations: 
 

tan 𝛼 = 
sin 𝜆 cos 𝑖 − tan 𝛽 sin 𝑖 

cos 𝜆 

sin 𝛿 = sin 𝛽 cos 𝑖 + cos 𝛽 sin 𝑖 sin 𝜆 

 

(41)2
 

 

where 𝛼 is the equatorial longitude, 𝛿 is the equatorial latitude, 𝜆 is the orbital longitude, 𝛽 is the orbital latitude, and 

𝑖 is the orbital plane inclination. Note, in this case we are ignoring the influence of the moon, so 𝛽 is equal to 0 since 

the spacecraft will not deviate from its original orbital plane. Therefore the equations can be rewritten as, 

 

tan 𝛼 = tan 𝜆 cos 𝑖 
 

sin 𝛿 = sin 𝑖 sin 𝜆 

 
(42) 

 

In Table 1 above, we are given 𝛿 and 𝑖 as the geocentric latitude and inclination respectively. With the above two 

equations we have two unknowns which can be solved for, 𝛼, the equatorial longitude and 𝜆, the orbital longitude. 

With the orbital longitude in hand, the argument of perigee 𝜔 can be found with, 
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𝜔 = 𝜆 − 𝜈 (43) 

 

Then, the time of perigee passage is calculated. We will need to calculate the time between the spacecraft’s true 

anomaly at translunar injection and the last perigee. To do this, we first need the Eccentric Anomaly, given by, 
 

𝐸 = cos−1 (
 𝑒 + cos 𝜈  

1 + 𝑒 cos 𝜈
)
 

(44) 

Then the Mean Anomaly is found using, 

 
𝑀 = 𝐸 − 𝑒 sin 𝐸 (45) 

 

Which allows us to calculate the Mean Motion 𝑛, given by 

 

𝑛 = 
𝐺𝑀 

√ 
𝑎3 

(46) 

 
Finally we can solve for the time from perigee. The Mean Anomaly is in units of radians and the mean motion is in 

units of radians per second. So dividing the Mean Anomaly by the Mean Motion gives the time from perigee, 

 
Δ𝑡 𝑝𝑎𝑟⃗𝑖𝑔𝑒𝑒 = 𝑀/𝑛 (47) 

 

With this, all the orbital parameters of the Apollo missions at translunar injection are known. The MATLAB code 

used for finding these parameters is in Appendix A. These parameters will be used as the initial conditions for the 

circular restricted three-body problem and the elliptic restricted three-body problem discussed in the following 

sections. The main orbital elements for Apollo 11 through 17 are shown in the table below and the top-down view of 

each Apollo mission’s orbit without the influence of the moon is shown. 

 

 
 Apollo 11 Apollo 12 Apollo 13 Apollo 14 Apollo 15 Apollo 16 Apollo 17 

Semi-Major Axis (m) 286534624 217313692 291363850 237209195 274456600 254303965 236452232 

Eccentricity 0.976965 0.969664 0.977362 0.972206 0.976016 0.974125 0.972173 

Inclination (deg) 31.383 30.555 31.817 30.834 29.696 32.511 28.466 
Argument of Perigee (deg) 4.4102 15.573 -22.791 -55.664 42.928 -37.705 -5.1089 

Longitude of Ascen. Node (deg) 358.380 159.004 341.843 302.899 354.851 335.249 147.315 
Time from perigee (sec) 158.95 186.71 164.66 161.78 159.82 160.64 159.07 

 

Table 3: Calculated Orbit Elements of Apollo 11 through 17 
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Figure 11. The trajectories of Apollo missions 11-17 without moon influence in cartesian 
coordinates derived from celestial ccoordinates. These are derived using the common 
orbital equations in this section so that a comparison to the initial trajectories from the 
restricted three-body problems can be matached for benchmarking. 

 

 
 

VI. CR3BP Simulation 

 
The MATLAB code for the Circular Restricted Three-Body Problem can be found in Appendix B. In this code, 

the methods found in Section 2 are used to find the Equations of motion. The equations of motion are written into a 

function, called cr3bp3.m. In this function, variables are separated into new variables in a similar fashion to a Multi- 

Input Multi-Output (MIMO) for Ordinary Differential Equations (ODE). This format can be used by the ODE45 

numerical solver to calculate the position and velocity of the satellite incrementally from initial to final time with a 

specified step size. 

Rotations are implemented to the initial position and velocity vectors found in Section IV to account for the 

barycenter coordinates. In this instance, the barycenter or synodic coordinate system places the moon on the negative 

x-axis. However, the position of the translunar injection (TLI) is rotated around the Z-axis so that the spacecraft 

intercepts or rendezvous with the Moon as it traverses its orbit path in time. The purpose of the rotations on the initial 

values from Section IV are to match the TLI with the phase difference of the Moon’s location. 

 

 

Figure 12. The Apollo 11 translunar injection orbit in the circular restricted three-body 
problem 



17  

VII. ER3BP Simulation 

 
The MATLAB code for the Elliptic Restricted Three-Body Problem is displayed in Appendix C. The primary 

difference between the CR3BP and the ER3BP is found inside the function used by the ODE45 solver. The initial 

ODE45 parameters in both circular and elliptic restricted three-body problems is formatted identically as 𝑥0. 

 

𝑥0 = [𝑋, 𝑌, 𝑍, 𝑉𝑥, 𝑉𝑦, 𝑉𝑧̇] (48) 

 
The first three elements of the array represent the Cartesian coordinates of the spacecraft in the non-inertial, Earth- 

Moon barycenter frame. The last three elements represent the component velocities of the spacecraft in the same 

rotating frame. 

Reviewing the methods and steps outlined in Section III for the elliptic restricted three-body problem, decidedly 
more complicated, dynamic equations of motion are presented. No longer are the mass distances and radial velocities 
constant. Closer inspection of the ER3BP equations of motion reveal single and double derivatives of the dynamic 

values of 𝐷 and 𝜃̇ . Fortunately, 𝐷 and 𝜃̇  can be approximated by a series in eccentricity, making differentiation 
simpler. However, symbolic solvers are computationally taxing in MATLAB, so the pre-derived equations of Eqs. 

(29)1 and (30)1 are included in the ODE45 function at the bottom of Appendix C for faster results. After implementing 
the derivatives into the equations of motion, solving the ODEs is very similar to solving the CR3BP. 

However, certain graphical challenges are presented when displaying a dynamic system and the code displays 
changing graphical plots over time. Obviously, displaying dynamic plots is not possible in a paper, so some graphs 

display snapshots of the Moon’s position in multiple locations to hopefully give the impression of a dynamic and 

moving plot. 

 
 

 
Figure 13. This is a random satellite orbit of the Moon. The rotating barycenter frame is 

on the left, and the inertial barycenter frame is on the right. This shows the stark difference 
in visualization a frame of reference can make. 
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Figure 14. Here the satellite is positioned near one of the stable Lagrangian points. As can 

be seen in the left graph, the satellite never strays far from the location over many orbits. 

The Moon’s eccentric orbit can also be seen in the lower left corner at positions between 

apogee and perigee. The graph on the right shows the same satellite with less orbits but in 

an inertial frame. The end of the blue line is the satellite position and the Moon is in the 

top right. In this particular position, the satellite stays at a similar position from the moon 

during the entirety of orbit motion. You can also see the eccentric orbit of the Moon from 

the carrying distances of the satellites path. 

 
 

 

Figure 15. Here we see the rotating frame of Apollo 11's translunar orbit on the left and 

the inertial frame of the same orbit on the right. Using the initial conditions from Section 

IV and rotational transformations for proper orientation with the Moon, we can see that the 

initial conditions in a ER3BP simulation get the spacecraft close enough to the Moon to 

have a major trajectory change. In the actual Apollo 11 mission, a retrograde burn would 

slow the S/C down to orbit the Moon once it’s in close proximity. On the Right, The Moon 

moves in a counterclockwise direction. There initial position, rendezvous position and the 

final position are shown so the trajectory of Apollo 11 is clear. 
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Figure 16. Here the same Apollo 11 orbit trajectory from the right plot in Figure 15 is 
shown in 3 dimensions. The path of the vehicle as it leaves the earth is much clearer and 
its rendezvous with the Moon more dramatic. 

 

 
 

VIII. N-Body Simulation 

 
This section will introduce a method for modeling the n-body problem in MATLAB, however the same techniques 

could apply to other coding languages as well. As stated in previous sections, the n-body problem, or any system of 3 

or more bodies, has no analytical solution and must be solved numerically. Therefore a numerical solver, sometimes 

called a numerical integrator, is required. There are many different types of solvers available but it is not difficult to 

write one’s own solver once the concept is understood. Each solver has advantages and disadvantages that can greatly 

influence the speed and accuracy of a solution’s results. For this paper’s code, the family of Runge-Kutta solvers are 

primarily used, particularly the RK89. However, many types of solvers exist that are optimized for specific types of 

problems. One such example is presented in the paper by Ahmad11 which describes a more efficient method of 

numerical integration for the n-body problem. A more in-depth overview of solvers will be discussed in Section C. 

Methods for coding the equations of motion (EOM) for any chosen number of bodies is discussed next. 

 

A. Creating Dynamic Equations of Motion (EOM) Using For-Loops 

 

For a relatively small number of bodies, one could simply hard-code the equations of motion, such Eqs. (33) and 

(34), into MATLAB and be able to solve any orbital problems with the same number of bodies. This would very 

quickly become a tedious method as the number of bodies, N increase. Every unique value of N-bodies would require 

a unique set of equations. If you never required a solution to anything other than 5-body systems, then it may be more 

efficient to just use the EOM for 5-bodies. However, the spirit of the n-body problem is to have a solution that works 

for any numbers of objects. To have a robust orbit simulator, it’s required to build the equations of motion 

automatically. Probably the most obvious method would be to use for-loops. This method is shown in the following 

MATLAB function. 
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j ij ij 

 

 

Here we have a function with inputs of time t and combined position velocity vector xv. The variable t is not used 

in the function but is required for the integrator to incrementally solve the system over time. The vector xv is simply 

an array of the initial position and velocity coordinates in the format of Equation (49). 

 

xv = [x1, y1, z1, x2, y2, z2, … , xN, yn, zN, vx1 , vy1 , vz1 , vx2 , vy2 , vz2 , … , vxN , vyN , vzN ] (49) 

 
Combining the state vectors of position and velocity is not required, it simply reduced 2 arrays into one in a previous 

section of code. The first line of the function reshapes the array into 3 rows of [xi; yi; zi] and N columns. Space is then 

allocated for variable acc_RHS (accelerations on Right Hand Side). A nested for-loop is created for i equations with 

j-1 terms. The situation of i = j computationally the acceleration of body i acting on itself, which is 0. The distance 

vector is calculated and input into the acceleration equation for variable acc_term. Here you can make out components 

of Newton’s equation for gravitational acceleration with mu(j) = G m , r__ij = r  and norm(r_ij )^3 = |r  |
3
. This 

is one term from the sum in Eq. (32). This is saved in acc_RHS before repeating the inner loop to find the next 

acceleration term using object j+1. After finishing the inner loop, the process starts again for body i+1, finding the 

individual accelerations from every other body. This process repeats until N equations with N − 1 acceleration terms 

(recall that axyz is set to 0 when i = j) in x y z components, are saved in array acc_RHS. acc_RHS is reshaped into a 

3N x N matrix, with xyz components lined vertically and acceleration terms summed horizontally. The result is a 

column vector of the total acceleration of each xyz component for every system object. 
 

acc_Sum = [ax1
, ay1, az1

, ax2
, ay

2
, az2

, … , axN
, ay

n
, azN

] (50) 

 
The  differential  solvers  are  designed  to  expect  a  function  output  in  [𝑟⃗′; 𝑟⃗′′]  format  or  in  State-Space format, 

 
 

𝑥1 𝑥1 = 𝑥 
[
𝑥1′] = [

𝐴11 𝐴12] [    ] 𝑤ℎ𝑒𝑟⃗𝑒, 
𝑥2′ 𝐴21 𝐴22    𝑥2 𝑥2 = 𝑥′ 

(51) 

 
In short 𝑥′  𝑎𝑛𝑑 𝑥′   are equal to velocity and acceleration respectively. Thus the initial state vector velocities from 

1 2 

function input xv are combined with the sum of acceleration terms to obtain array ss_vec, 

%%%%% N-body Eq of Motion (EOM) Construction Function (For-Loop Method)%%%%% 

N = length(mu); % number of bodies 

 
function ss_vec = nBodyFunc(t,xv) 

pos = reshape(xv(1:3*N),3,N); % Separate/reshape position vectors 

acc_RHS = zeros(3,size(pos,2)^2); % Allocate space to RHS terms 

for i = 1:size(pos,2) % Reference body 

for j = 1:size(pos,2) % Interacting bodies 

if i ~= j 

r_ij = pos(:,i) - pos(:,j); % Distance vector 

acc_term = -mu(j)*r_ij/norm(r_ij)^3; % Acceleration term 

else 

acc_term = [0;0;0]; % Zero acceleration for i=j 

end 

acc_RHS(:,i*j) = acc_term; % Acceleration terms on RHS 

end 

end 

acc_Sum = sum(reshape(acc_RHS,3*N,N),2); % Sum of acceleration on RHS 

ss_vec = [xv(3*N+1:end);acc_Sum]; % state-space vector 

end 
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ss_vec = [vx1 , vy1 , vz1 , vx2 , vy2 , vz2 , … , vxN , vyN , vzN , 

ax1, ay1 , az1, ax2, ay
2
, az2, … , axN, ay

n
, azN] 

(52) 

 

Equation (52) is the result equating to the left side of Equation (51) and used in solving for the next iteration’s 

position and velocity [𝑥1 𝑥2]𝑇. 

B. Creating Dynamic Equations of Motion (EOM) Using Vectorization 

 
 

Another method for building the n-body’s EOM is to vectorize the function. Although for-loops are simple to 

understand and manipulate, they can be computationally slow for a large number of iterations. Vectorization is 

essentially creating arrays and matrices before the calculation which recreate the looping process so for-loop processes 

can be avoided. From the MathWorks (MATLAB) webpage on Vectorization, 

 
MATLAB® is optimized for operations involving matrices and vectors. The process 

of revising loop-based, scalar-oriented code to use MATLAB matrix and vector operations 

is called vectorization. Vectorizing your code is worthwhile for several reasons: 
 

 Appearance: Vectorized mathematical code appears more like the mathematical 

expressions found in textbooks, making the code easier to understand. 

 Less Error Prone: Without loops, vectorized code is often shorter. Fewer lines of code mean 

fewer opportunities to introduce programming errors. 

 Performance: Vectorized code often runs much faster than the corresponding code 

containing loops. 

 

This is done by creating vectors of pointers repeated and arranged in such a way as to recreate the i and j values 

in the previous section’s for-loops. Two useful functions in MATLAB, repmat() and reshape(), are invaluable for 
vectorization. The function repmat() is short for ‘repeat matrix’ and simply repeats the desired array or matrix 

vertically and/or horizontally a specified number of times. The function reshape() creates an equal element sized but 

differently shaped matrix, i.e. a 3x4 into a 6x2 or 12x1 matrix. If we evaluate 3 bodies, or 𝑁 = 𝑙𝑒𝑛𝑔𝑡ℎ(𝑚𝑢) = 3, then 
x123, x1214, x23, and x11 from the above code are, 

 

x123 = [1 2 3 1 2 3 1 2 3] 
x23 = [2 3 1 3 1 2] 
x12_34 = [1 2;   3 4;   5 6] 
x11 = [1 1 2 2 3 3] 

 
(53) 

end 

% state-space vector 

acc_Sum = sum(reshape(acc_RHS(:,x12_34(:)),3*N,N-1),2); % Acceleration Sum RHS 

ss_vec = [xv(3*N+1:end);acc_Sum]; 

mu_diag = diag(mu(x23)); % Diagonal Matrix of Grav Param 

acc_RHS = r_ij*r3*mu_diag; % Acceleration terms on RHS 

= diag(1./sqrt(sum(r_ij.^2)).^3); % |r_ij|^3 

% Separate/reshape position vectors 

% Distance vector 

= reshape(xv(1:3*N),3,N); 

= pos(:,x23) - pos(:,x11); 

pos 

r_ij 

r3 

%%%%% N-body Eq of Motion (EOM) Construction Function (Vectorization Method)%%%%% 

N = length(mu); 

 
x123 = repmat(1:N,1,N); 

x23 = x123(logical(ones(N) - eye(N))); 

x12_34 = reshape(1:N*(N-1),N-1,N)'; 

x11 = reshape(repmat(1:N,N-1,1),1,N*(N-1)); 

 

function [ss_vec] = nBodyFunc(t,xv) 
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Here x11 would represent the value of i and x23 the value of j in every loop of the previous section. So it would be 

the force on object 1 from object 2, then the force on object 1 from object 3, then the force on object 2 from object 1, 

then the force on object 2 from object 3 and so on. Vector x123 is just the list of objects (in this case 3) repeated in  

an array so that the values where i=j, can be removed to create x23. The formation of x23 can be complicated but it  

is shown here for clarity. 

(ones(N) - eye(N)) 

 
 

1 1    1 1 0 0 0 1    1 
([1 1    1] − [0 1 0]) = [1 0 1] 

1 1    1 0 0 1 1 1    0 

(54) 

logical(ones(N) - eye(N)) 
 

0 1 1 False True True 
logical [1 0 1] = [True False True] 

1 1 0 True True False 

(55) 

x123(logical(ones(N) - eye(N))) 
 

False True True 
𝑥123 ([True False True]) = [2     3 1 3 1 2] = 𝑥23 

True True False 

(56) 

 
Therefore x23 is only the instances where i≠j, avoiding a redundant calculation or loop not required when i=j. For 3 

objects, saving this step can be trivial, but for a large number of bodies and iterations, this step can save a significant 

amount of computational time. 

Lastly, x12_34 is the vector of forces in acc_Sum reshaped so that all forces acting on a single body are  

oriented into one row. So all forces on body 1 are collected in row 1, then all the forces on body 2 are collected in 

row 2 and so on. Ss_vec is then the sum of all the columns of each row to give the total force on each body given in 

a single column vector in one instance of time or one iteration of the numerical solver. 

This entire process of vectorization seems overcomplicated for 3 bodies, but is actually computationally simpler 

as the number of bodies increase, taking advantage of MATLAB’s optimization for vector and matrix calculations. 

A 70 object simulation would involve 70x70 sized matrices, but matrix calculations are much faster than 70 × 70 = 

4900 loops of individual calculations per iteration. 

 

C. Numerical Solvers 

 

Once the functions containing the equations of motion are developed from Section A and B, and the initial state 

vectors of position and velocity are saved in variables p0 and v0, one of many numerical integrators can be used to 

propagate the orbital system. The ones used here are variations of the Runge-Kutta methods which are a group of 

implicit and explicit iterative methods for approximating solutions to differential equations. These methods are 

extremely useful in approximately solving (to the desired accuracy) problems without analytical solutions. However, 

the cost of higher complexity and accuracy is required computational time. The same or very similar methods are used 

by NASA for their simulations, but to an extreme degree of accuracy, using super computers. 

 

While the majority of numerical differential solvers use the same fundamental framework, they can have 

massively different results and run times depending on the type of problems they are applied to. For very 

computationally heavy problems, solvers are sometimes specifically developed to optimize the specific simulation. 

The solvers tried during the development of this code are shown in the code below. 
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Solvers included in the MATLAB library are ode23 and ode113. These are considered nonstiff solvers, which 

are better suited for orbital mechanics equations. It is difficult to describe the difference between stiff and nonstiff 

problems, but one analogy is to imagine a ball rolling down a winding U-shaped slide versus a straight V-shaped 

slide. The ball will tend towards the center (the solution) of both slides, but disturbances in the U-slide will correct 

slowly and smoothly. In the V-shaped slide, a disturbance may correct quickly enough to bounce the ball back-and- 

forth between the sides (stable but erratic). A deflated ball (stiff solver) on the straight V-slide would reach the 

bottom faster than an inflated ball (nonstiff solver) bouncing erratically between the steep sides. An inflated ball 

would reach the bottom of winding U-shaped slide faster than a deflated ball due to less friction and a single bounce 

not overshooting the equilibrium point every time. The “stiffness” in this analogy refers to the straightness and 

steepness of the slide’s walls (the equation/problem), whereas the ball is the type of solver 
 

Figure 17. Nonstiff solver, ode23, used on a stiff problem (left) and stiff solver, ode23s, 
used on the same stiff problem (right). The bottom figures are zoomed in on the corner of 
vertical to horizontal transition. It shows the nonstiff solver (left) jumping around the 
solution while the stiff solver immediately finds the solution in much fewer steps. 

 

For a lot of orbital mechanics problems, such as the movement of the planets in the solar system, the gravity 

gradient is very smooth. So a nonstiff solver such as ode113 or even ode23 is accurate and very fast over long 

propagations. However, orbits that come into close proximity of a planet where the gravity gradient is much higher 

slow down considerably or sacrifice accuracy. In these cases, a stiff solver would also be slow as the true solution is 

also changing rapidly near periapsis. In these cases, the rkn86, rkn1210 and rk89 are more efficient because they 

decrease step sizes, increasing resolution, in areas of large gradients. For rkn86 and rkn1210, the rkn stands for 

Runge-Kutta-Nyström, which is a slightly different method than just Runge-Kutta. The rk89 however, has proven to 

be the best solver for both accuracy and speed with rkn86 coming in 2nd. The rkn1210 is highly accurate but 

unnecessarily slow for most applications. The GMAT program developed by NASA uses the rk89 solver by default 

because of its balance of high accuracy and speed for most simulations conducted on personal computers. Although, 

the nonstiff solvers, like ode113, seem to be more efficient for large propagation times of low eccentricity orbits. 

 

D. Dynamic Code for introducing Satellite Burns 

 

Many orbital simulations do not have a Δ𝑉, but for deep space probes and orbit insertions, it necessary to have a 

framework to add rocket burns into the equation. This is very necessary in simulating the Apollo missions as the 

capsule could not enter and leave lunar orbit without multiple burns taking place. For this code, all burns are 

%%%%% Choice of Numerical Solvers for Use %%%%% 

switch solv 

case 1; [t,dz] = ode113(@nBodyFunc,tt,[p0;v0]); 

case 2; [t,x,dx] = rkn86(@nBodyFunc,tt(1),tt(end),p0,v0); 

case 3; [t,dz] = ode23(@nBodyFunc,tt,[p0;v0]); 

case 4; [t,x,dx] = rkn1210(@nBodyFunc2, tt, p0, v0); 

case 5; [t,dz] = rk89(@nBodyFunc,[tt(1),tt(end)],[p0;v0], tol); 

end 
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considered impulse burns, which is a reasonable approximation for the majority of chemical thrusters, which 

typically fire for seconds at a time. 

One of the problems with simulating a burn is that it interrupts the solver with a sudden change of velocity and 

subsequent change of the equations of motion. There is no easy way of avoiding this interruption, so the goal is to 

have the burn interruption, then use the solver for the next section and then stich the section back together. For 

impulse burns, simulation is sectioned into pieces, where each burn is the start of a new section with a new velocity 

from a Δ𝑉. Each section has a new velocity vector but uses the final position vector from the previous section. So 

the initial state vectors are used to propagate to the 1st burn time. Then a new simulation is initialized using the last 

position and new velocity vectors to propagate to the next burn, repeating until the total simulation time is reached. 

Summarized, each burn is a separate simulation using values from the previous simulation and then patched at the 

end into one combined simulation. The code for this is shown below: 
 

Here the time of burn, tob, and the burn vector, bvec, are specified in the function used to store the initial data, 

described in detail in the next section. The time of burn is simply the seconds after the start of the simulation that 1 

or more burns occur in an array. The start and ending times of the simulation are tacked on to the ends as seen in the 

Apollo 11 example shown in Equation (57). The Δ𝑉 burn vectors are listed in columns with the coordinates listed by 

column  [𝑉𝑥 𝑉𝑦 𝑉𝑧̇] . Equation (58) shows the 3x3 matrix for bvec of Apollo 11. 
 

tob  = 
Start Burn 1 Burn 2 End 

0 258119.75 467432.4 680400 
(57) 

% Burn Variable Initialization 

dt = iter/time; 

pos(1,:) = p0; 

vel(1,:) = v0; 

tob = horzcat(0,tob,time); 

bvec = [bvec; 0 0 1e-10]; 

 

% Satellite Burn Segments Loop 

for i = 1:length(tob)-1 

 
% Sets section time and iteration for each burn segment 

iter2(i) = round((tob(i+1)-tob(i))*dt); 

tt = linspace(tob(i),tob(i+1),iter2(i)); 

 
% Burn Segment Solver/Propagation 

[t1, x1, dx1, ddx1] = nBodySolver(pos(i,:)', vel(i,:)', mu, tt', sol); 

 

% Set next burn segment initial values to previous end values 

% with adjusted velocity from Delta V burn 

pos(i+1,:) = x1(end,:); 

vsat = dx1(end,(3*n-2):3*n); 

dx1(end,(3*n-2):3*n) = vsat/norm(vsat)*norm(([norm(vsat) 0 0]+bvec(i,:))); 

vel(i+1,:) = dx1(end,:); 

 

% Pos Vel Acc Patching of solver segments 

x = [x;x1]; 

dx = [dx;dx1]; 

ddx = [ddx;dx]; 

t = [t;t1]; 

end 

 

% Removes duplicate values from patching 

dup = find(hist(t,unique(t))>1); 

t(dup)=[]; 

x(dup,:)=[]; 

dx(dup,:)=[]; 

ddx(dup,:)=[]; 
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Vx Vy Vz 

bvec  = Burn 1 −0.88142064 −0.13200888 0.00621792 
Burn 2 0.97941384 0.214884 −0.04230624 

End 0 0 0 

 
(58) 

 

The first segment simulation segment starts at time 0 and ends at time 258119.75 sec using the initial state 

vectors from translunar injection. The 2nd segment starts at time 258119.75 and ends at 467432.4 sec with Δ𝑉 Burn 1 

applied to the start of segment 2 and with the ending position vector of segment 1 applied to the start of segment 2. 

This continues until the last segment where the ending time is the end of the whole simulation. 0 Δ𝑉 always added to 

the last step when all the segments are completed. Each segment is combined in x and dx variables for position and 

velocity respectively. Lastly, because the end of one segment equals the start of the next segment, the duplicate 

positions and velocities are removed in the final section of the above code. The end result is a matrix of positions  

and a matrix of velocities that are continuous from the initial to the final simulation time with impulse Δ𝑉 burns 

included. 

 
E. Inputting Initial State Vectors and Orbiting Body Info 

 

This section is dedicated to explaining how data is input into the simulator. Unfortunately, a graphical user 

interface was not able to be made, so the less user friendly method is explained here. In order to input the desired data 

for the program required for a simulation, a function is created to store and pass on various initial values to the main 

code. The 6 required types of data passed are: 

 

1. Mass 

2. Object radius 

3. Position vector 

4. Velocity vector 

5. Burn time 

6. Burn Δ𝑉 vector 

 

which are stored in vector arrays. Other types of data that can be passed on are: 

1. Object color 

2. Objects to omit 

The purpose of storing the initial values in a function not only keeps simulations contained in their own 

sections, but it allows different sets of data, possibly from different sources, to be adjusted uniquely if needed in 

preparation for the solver. For example, state vectors from one source may be in a matrix format while another 

source has it in an array. The function allows different methods of preparation. An example of a function for 

simulating the solar system is given in the code below. 
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function [p0, v0, mu, scale, tob, bvec, cA] = StateVecInit 

 

M = [ 1988500, 0.33011, 4.8675, 5.9723, 0.07346, 0.64171, 1898.19, 568.34, 86.813, 

102.413, 0.01303 ]' * 1e24; 

scale = [695700, 2439.7, 6051.8, 6371.008, 1737.4, 3389.5, 69911, 58232, 25362, 24622, 1187]; 

cA = 1:length(M); % Which objects to simulate 

 

% Time: 1945-Jan-1 0:0:0 (Ref 

p0 = [ -6.514853452736166E+04 

Sun) 

6.923075832509800E+05 

 

2.969644123669676E+04; 

 

% 

 

Sun 

-4.090224402811901E+07 3.092971988307618E+07 6.251586293432735E+06; % Mercury 

8.649626519565648E+07 6.558753100815241E+07 -4.093465503005635E+06; % Venus 

-2.812655902373333E+07 1.450840122031818E+08 4.736565603273362E+04; % Earth 

-2.837642934184081E+07 1.453856908325931E+08 6.006681243879348E+04; % Moon 

-4.575332432237922E+07 -2.160750372389238E+08 -3.379480787481025E+06; % Mars 

-7.937071694877126E+08 1.708772517514482E+08 1.711521054427497E+07; % Jupiter 

-1.923795039832259E+08 1.337735118153997E+09 -1.574714310247427E+07; % Saturn 

8.814142859265038E+08 2.748130246512144E+09 -1.196667562167048E+06; % Uranus 

-4.507715302467741E+09 -4.203358655158987E+08 1.125516845885302E+08; % Neptune 

-3.580075486462851E+09 4.304575097306495E+09 5.745302970305955E+08];% Pluto 

v0 = [ -1.970463223071625E+00 

-4.089492060880693E+01 

-2.308493963878707E+01 

-3.168839597240482E+01 

-3.248928443141775E+01 

2.266216276795534E+01 

-4.873042121510281E+00 

-1.205496403155248E+01 

-8.512076610641467E+00 

-1.500221047078075E+00 

-1.955899360310175E-01 

-3.731269883404487E+01 

2.767558092658806E+01 

-5.981403599180973E+00 

-6.584149383830741E+00 

-3.115518389430809E+00 

-1.236602989967739E+01 

-1.599677934190488E+00 

1.557251793473381E+00 

-5.585955645339683E+00 

2.369174320448657E-01; 

7.856996007483481E-01; 

1.833208420054525E+00; 

2.348307120914044E-01; 

3.229759698734869E-01; 

-4.325189489577113E-01; 

3.519065081987538E-01; 

6.612639993819801E-01; 

3.284969194625559E-01; 

3.363419003462520E-01; 

% 

% 

% 

% 

% 

% 

% 

% 

% 

% 

Sun 

Mercury 

Venus 

Earth 

Moon 

Mars 

Jupiter 

Saturn 

Uranus 

Neptune 

-4.659388787869598E+00 -4.189821186825673E+00 1.441438596050844E+00];% Pluto 

 

tob = []; % Time of Burn 

bvec = []; % Burn Vector 

 

% Position of Barycenter in reference frame 

pBary = [-1.070183387116344E+06 1.335013302913338E+06 4.721272103390069E+04]; 

vBary = [-1.976510629978190E+00 -2.077526912802563E-01 2.371613343498015E-01]; 

 

G = 6.67259e-20; % [km^3/kg-s^2] gravitational constant 

mu = M * G; % Calculates Grav Parameter 

n = size( M, 1 ); % number of bodies 

 

% Reshape P0 and V0 for subtraction of Barycenter state vectors 

p0 = reshape(p0',[1,3*n]); 

v0 = reshape(v0',[1,3*n]); 

 

% reshape vectors into arrays 

for i = 1:size(p0,2)/3 

p0(1+(i-1)*3:3+(i-1)*3) = p0(1+(i-1)*3:3+(i-1)*3) - pBary; 

v0(1+(i-1)*3:3+(i-1)*3) = v0(1+(i-1)*3:3+(i-1)*3) - vBary; 

end 

 

% Reshape p0 and v0 into vertical arrays. 

p0 = reshape(p0,n*3,1); 

v0 = reshape(v0,n*3,1); 

end 

 

All the required information for simulating the solar system is in this function. It has the Sun, all planets, the 

Moon and Pluto (now considered a dwarf planet). The first line is an array of all the masses in 1024 kg values in the 

order that they will appear in the state vectors. The scale variable is the radius in km for all the objects in the same 

order as M. The cA variable is simply an array of [1 2 3 . . . ] that indicates which object data to use in the 

simulation. Here it shows that all objects will be simulated. Next the initial position vectors are stored in p0 as a 

matrix in [𝑋, 𝑌, 𝑍] Cartesian coordinates obtained from the JPL Horizons website. Each row is a body and each 

column is a coordinate. The same applies for the velocity state vectors in v0. There are no satellites in this 

simulation so no Δ𝑉 burns are taking place, but the variables must still be initialized. The 𝑣𝑎𝑟⃗ = [] initializes a 
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variable as NULL in MATLAB. At this point, all the externally sourced data is inputted. The lower half of the 

function is dedicated to calculations and matrix manipulations preparing it for the main code to read. 

Due to the way in which the JPL Horizons website gives positioning information, a reference object must be 

chosen, in this case the Sun. However, it was desired to have the solar system barycenter as point 0. Therefore the 

initial state vectors of the solar system barycenter, in reference to the Sun, was found in JPL Horizons to subtract 

from all the planet state vectors and moving the reference frame to the barycenter. Lastly the gravitational 

parameters are calculated and the p0 and v0 matrices are reshaped into one vector array for output to the main code. 

 

F. Graphical Output 
 

For a time dependent simulation such as orbital trajectories, it is really necessary to view the movements over 

time. Just viewing the entire path of a satellite at the end of a simulation does not give the fill picture, as the 

gravitational interaction with other bodies is dependent on both the time and location at rendezvous. A still image does 

not provide this information. Therefore the program is designed to play through simulation in an easy to view plot. 

Obviously this paper is restricted to showing still images, but the true usefulness of this simulator is watching the 

dynamics of orbits in real time. 

 

 

 

 

 
IX. Benchmarking and Results 

 
In order to benchmark the code to ensure that the results are accurate, several n-body scenarios were simulated 

and matched with known outcomes. One way to benchmark the code was to use GMAT, a free mission analysis tool 

by NASA. Figure 18 shows the results of from GMAT on the left and the MATALB code on the right. Here the solar 

system is modeled over the same time interval and with the Earth as the reference frame. In the Earth centered frame, 

the planets move in spirals due to the Earth’s motion around the Sun. This view led to many problematic theories 

before the Sun centered view was adopted, but here we can see that the results of GMAT and the MATLAB code are 

the same. 

 

 
Figure 18. The motion of the planets in the earth centered ecliptic frame over 1 year. Left 

side shows predictions from GMAT, right side shows predictions of the MATLAB 

propagator 
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Using the same MATLAB code from the previous example but from the Sun’s reference frame, we can see the 

movement of the solar system barycenter. Both this, and the previous example, use starting state vectors for the solar 

system at midnight of January 1st 1945. This date was chosen to match the same starting date of the benchmark 

shown in Figure 19. The barycenter is calculated using, 
 

∑𝑁 
1 𝑟⃗ 𝑖 ∙ 𝑀𝑖 

r 𝑏𝑎𝑟⃗𝑦𝑐𝑒𝑛𝑡𝑒𝑟⃗  =     
𝑖=

 
∑𝑁     𝑀𝑖 
𝑖=1 

(59) 

 

where 𝑟⃗ 𝑖 is the position vector of each body and 𝑀𝑖 is the mass of each body. The barycenter is calculated in the 

MATLAB code, 
 

where mu is the array of gravitational parameters and x is the matrix position for each solar system object at every 

point in time iterated. 

 

 

 

Figure 19. On the left, the barycenter and its path starting in 1945 is shown in white moving 

in the Sun centered frame from a simulation of the solar system. The image on the right 
shows the historic path of the solar system barycenter in the same time frame. 

 
 

Figure 19 shows the MATLAB results for the movement of the solar system’s barycenter. It can easily be seen 

that the results closely match the recorded movement over 50 years. It is interesting to note that the solar system’s 

barycenter is at times inside the envelope of the Sun, even passing through the nucleus, but also at times quite far. To 

an observer outside of our solar system, the Sun would seem to increase and decrease its “wobble” drastically over a 

short time. The earliest methods for discovering extra-solar planets used Doppler spectroscopy to measure “wobble” 

of a star around its barycenter as an indication of a large planetary object in orbit. It is fascinating to think that far 

observers could be measuring the complicated movement of our Sun now! Figure 20 shows the barycenter movement 

over 300 years. 

% Barycenter calculation 

bary = zeros(size(x,1),3); 

if ApNum == 0 

for i = 1:size(x,1) 

bary(i,:) = ([dot(mu,x(i,1:3:end)), dot(mu,x(i,2:3:end)),... 

dot(mu,x(i,3:3:end))]/sum(mu)); 

end 

end 
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Figure 20. Solar system barycenter movement over 300 years starting in 1945. 

 
 

To show that the 3-body problem of the Earth-Moon system is working correctly, a satellite was place in the 5th 

Lagrangian point (L5). L5 is one of the 2 stable Lagrangian points, points of neutral gravitational pull, in the Earth 

Moon system. A spacecraft placed at this point should stay relatively close to its original location in the Earth-Moon 

barycenter frame as the complicated interaction of gravitational forces of Earth and Moon create a gravitational 

potential valley in this region. Looking at Figure 21, we can see that the satellite moves in a complicated path, but 

always returns to the zone, even after 10 years, as seen in Figure 21. 

 
 

 
Figure 21. Movement of 1 year (left) and 10 years (right) of a satellite placed at the stable Lagrangian point 
L5 of the Earth Moon system. 
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Next, the Apollo 11 Mission starting at translunar injection (TLI), with Lunar orbit insertion, trans-earth 

injection (TEI) and ending at Earth atmosphere entry is shown. These images show different views centered at the 

E-M barycenter in the inertial ecliptic frame. Looking closely, you can see the (0, 0) coordinate which is the 

barycenter of the Earth and Moon is close to the surface but still inside the Earth as expected, but unlike the previous 
example of the Solar System barycenter moving in and out of the Sun’s radius. Another thing to note is the 

interesting movement of Apollo 11 as it orbits the Moon. This is caused by the Moon’s movement during its orbit, 
but in the non-inertial frame seen in Figure 25, the spacecraft moves in nearly circular orbits around the Moon. 

 

Figure 22. Apollo 11 trajectory from Earth to Lunar orbit and back again. (Top Inertial view) 
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Figure 23. Apollo 11 trajectory from Earth to Lunar orbit and back again. (2nd  Inertial view) 

 
 

Figure 24. Apollo 11 trajectory from Earth to Lunar orbit and back again. (3rd  Inertial view) 

 

 
 

Here the Apollo 11 Mission is shown in the rotating E-M barycenter frame. 
 

 
Figure 25. Barycenter Frame of Apollo 11 trajectory from Earth to Lunar orbit and back again. 
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Figure 26. 2nd  view of  Barycenter Frame of Apollo 11 trajectory from Earth to Lunar orbit and back again. 

 

 
 

 

Figure 27. 3rd  view of Barycenter Frame of Apollo 11 trajectory from Earth to Lunar orbit and back again. 

 
 

To benchmark the Apollo 11 mission, hourly data points were obtained from JPL Horizons. The only available Apollo 

11 data is for the S-IVB which was used for TLI and Lunar orbit insertion before being discarded. It is shown in red 
in the next figures and does not enter Lunar Orbit. So only the Apollo 11 trajectory up until Lunar orbit can be 

compared with. 
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Figure 28. Apollo 11 trajectory from Earth to Lunar orbit and back again with the S-IVB 
location shown in red. (Top Inertial view). 

 

 
 

 

Figure 29. Apollo 11 trajectory from Earth to Lunar orbit and back again. S-IVB trajectory 
shown in red. (2nd Inertial view) 
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Figure 28 and Figure 29 show the MATLAB results very closely matching the S-IVB trajectory from JPL 

Horizons initially, but slightly diverging as it moves closer to the Moon. The reasoning for this is unclear. Possible 

explanations could be from unaccounted perturbation, such as solar wind, gravitational pull from the Sun or other 

solar system planets, and/or J2 perturbations during the initial translunar injection. These possibilities are considered 

very unlikely however, as these effects are expected to be extremely small for such a short flight. 

 

Other, more likely reasonings could stem from a midcourse correction that was unaccounted for. Although the 

Apollo 11 flight plan called for a possible midcourse correction, from documents, it was stated as Nominally Zero. 
 

 

 
Figure 30. Apollo 11 Burn Schedule from Flight Plan. The Midcourse correction is stated 
as Nominally Zero. 

 

One would have to assume a burn small enough to be stated as “Nominally Zero” would not have a noticeable 

difference in trajectory at arrival to the Moon. Other possibilities are slightly different values of constants, such as 

the gravitational constant. Another possibility is a mistake in the code, but usually a coding mistake leads to large 

discrepancies, not small ones where every other simulation produces expected results. 

Lastly, I believe the most likely scenario is failure to match JPL Horizons data in the frame of reference used in 

the simulation. JPL cannot give state vectors from the Earth-Moon barycenter, it must use a body for reference. So I 

hypothesize that converting JPL data to the barycenter frame may have cause an issue that may stem from the 

Earth’s movement around the barycenter during the 3 days of travel. This would explain the gradual shifting of the 

trajectory of the S-IVB away from the MATLAB prediction. However, attempting to account for this did not give 

the desired results. Finding the cause of the discrepancy should be looked into further in a future examination. 

 

 

X. Conclusion 

 

The 3-body problem has played a surprisingly important role in math and physics for centuries, beginning with 

the influential, Isaac Newtown and his concept of gravity itself. The seemingly simple yet deceptively complicated 

addition of a single body, to a fully understood 2-body problem, must have been an extremely luring challenge for 

every serious mathematician of their day. Over its long unsolved tenure, new math was invented and advanced in 

pursuit of a solution, only to be proven to be unsolvable. Such an anticlimax to a century old question, yet despite 

this, better and more accurate approximate solutions were still pursued. Thanks to these efforts, and the 

advancement of computers, we can solve the 3-body and even n-body problems today, well almost solve. With such 

an influential problem, it is important to understand the development and evolution of its solutions, such as the 

circular restricted then elliptic restricted 3BPs. These solutions, along with computers, ultimately led to the n-body 
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solution used in this paper. As clearly illustrated in the sections above, the n-body problem is a very powerful tool 

for evaluating almost any desired system. With these simulation tools, in development since 1687, we are now 

beginning to understand and inch our way into the 99.99̅% of everything else out there. 

 

 

 

 

 
 

Appendix A - Apollo Translunar Injection Keplerian Equations 

 
 Contents  

 Apollo Translunar Injection orbits 

 Apollo 11-17 TLI parameters 

 Initial orbit elements 

 Elements past time = 0 

 Data print 
 Apollo Translunar Injection orbits  

 
 Apollo 11-17 TLI parameters  

 

EF_velocity = 34020.5;   % [ft/s] 

SF_vel = 35389.8; % [ft/s] 

FP_angle = 8.584;  % [deg] 

GeoLat = 16.0791;  % [deg N] 

GeodeticLong = 16.176;  % [deg N] 

Longitude = -154.2798; % [deg E] 

Inclin = 30.555; % [deg] 

W = 159.004272511991; 

 

case 3 

% Apollo 13 

Alt = 1108555; % [ft] Altitude 

Alt2 = 182.445; % [nmi] 

EF_velocity = 34195.3;    % [ft/s] 

SF_vel = 35538.4; % [ft/s] 

GeoLat = -3.8635;   % [deg N] 

GeodeticLong = -3.8602;    % [deg N] 

Longitude = 167.2074; % [deg E] 

FP_angle = 7.635;  % [deg] 

Inclin = 31.817; % [deg] 

W = 341.843467490158; 

% [ft] Altitude 

% [nmi] 

case 2 

% Apollo 12 

Alt = 1209284; 

Alt2 = 199.023; 

EF_velocity = 34195.6; % [ft/s] 

SF_vel = 35545.6; % [ft/s] 

FP_angle = 7.367;  % [deg] 

GeoLat = 9.9204; % [deg N] 

GeodeticLong = 9.983; % [deg N] 

Longitude = -164.8373; % [deg E] 

Inclin = 31.383; % [deg] 

W = 358.380069401768; 

% [ft] Altitude 

% [nmi] 

for j = 1:7 

switch j 

case 1 

% Apollo 11 

Alt = 1097229; 

Alt2 = 180.581; 

 

clear all; close all; clc; 

format shortg 
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% [deg E] 

% [deg] 

% [deg] 

% [deg] 

% [deg] 

% [ft/s] 

% [deg N] 

 
 

  
 

 

 

 

 

 

 
 
 
 
 

 
 

 

 Initial orbit elements  

 

 

GM = 3.986005e14; % [m^3/s^2] 

R_eq = 6378166; % [m] 

R_pol = 6356784.3;  % [m] 

Psi_elip = GeoLat; % [deg] 

 
SF_vel = SF_vel * 0.3048; % [m/s] Space-Fixed velocity 

Re_TLI = R_eq*R_pol/sqrt( (R_pol*cosd(Psi_elip))^2 ... 

+ (R_eq*sind(Psi_elip))^2); % [m] Earth Radius at TLI 

r = Re_TLI + Alt*0.3048; % [m] Radial distance of spacecraft from Earth center 

 

C = 2*GM/(r*SF_vel^2); 

R_p = (-C + sqrt(C^2 - 4*(1-C)*-cosd(FP_angle)^2))/(2*(1-C))*r; % [m] Perigee distance 

R_a = (-C - sqrt(C^2 - 4*(1-C)*-cosd(FP_angle)^2))/(2*(1-C))*r; % [m] apogee distance 

end 

EF_velocity = 34168.3;    % [ft/s] 

SF_vel = 35555.3; % [ft/s] 

GeoLat = 4.6824;  % [deg N] 

GeodeticLong = 4.7100;   % [deg N] 

Longitude = -53.1190; % [deg E] 

FP_angle = 7.379;  % [deg] 

Inclin = 28.466; % [deg] 

W = 147.315250419378; 

% [ft] Altitude 

case 4 

% Apollo 14 

Alt = 1090930; 

EF_velocity = 34151.5; % [ft/s] 

SF_vel = 35511.6; 

GeoLat = -19.4388; 

Longitude = 141.7312; % [deg E] 

FP_angle = 7.480; 

Inclin = 30.834; 

W = 302.898707272848; 

case 5 

% Apollo 15 

Alt = 1055296; 

Alt2 = 173.679; 

% [ft] Altitude 

% [nmi] 

GeodeticLong = 24.9700; % [deg N] 

Longitude = -142.1295; 

FP_angle = 7.430; 

Inclin = 29.696; 

W = 354.850726982177; 

case 6 

% Apollo 16 

Alt = 1040493; % [ft] Altitude 

Alt2 = 171.243; % [nmi] 

EF_velocity = 34236.6;  % [ft/s] 

SF_vel = 35566.1; % [ft/s] 

GeoLat = -11.9117;  % [deg N] 

case 7 

% Apollo 17 

Alt = 1029299; 

Alt2 = 169.401; 

% [ft] Altitude 

% [nmi] 

% [deg] 

% [deg] 

GeodeticLong = -11.9881; % [deg N] 

Longitude = 162.4820; % [deg E] 

FP_angle = 7.461; 

Inclin = 32.511; 

W = 335.248934532989; 

EF_velocity = 34202.2;   % [ft/s] 

SF_vel = 35579.1; % [ft/s] 

GeoLat = 24.8341;  % [deg N] 

GeodeticLong = -19.554; % [deg N] 

Alt2 = 179.544; % [nmi] 
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 Elements past time = 0  

 
 Data print  

 

[uu,nu,wu] = sphere; 

ue = uu*6371e3; 

ve = nu*6371e3; 

numRun = 145; 

Apollo = zeros(numRun,10); 

for i=1:numRun+2 

if i == 1 

t_per = t+(i-1)*60; 

elseif i < 33 

t_per = t +(i-2)*15*60; %% end 

elseif i < 103 

t_per = t +(i-2)*1.5*60*15; 

elseif i < 153 

t_per = t+(i-2)*15*2*60; 

% elseif i < 63 

% t_per = 746+(i-2)*15*4*2*60; 

% elseif i < 70 

% t_per = 746+(i-2)*15*4*3*60; 

end 

M2 = t_per * n; 

syms EE 

E2 = double(vpasolve(EE == M2 + e*sin(EE),EE)); 

nu2 = acosd( (cos(E2) - e) / (1 - e*cos(E2))); 

r2 = a*(1-e^2)/(1 + e*cosd(nu2)); 

f2 = atan2d((e*sind(nu2)),(1+e*cosd(nu2))); 

v2 = sqrt(GM*a*(1-e^2))/(r2*cosd(f2)); 

l2 = nu2 + w; % Orbit longitude 

eq_long_asc = atan2d( (sind(l2)*cosd(Inclin)),cosd(l2)); 

eq_long_cel = W + eq_long_asc - 360; 

eq_lat_cel = asind(sind(l2)*sind(Inclin)); 

 
Apollo(i,1) = t_per; % [sec] time since perigee 

Apollo(i,2) = nu2; % [deg] True Anomaly 

Apollo(i,3) = f2; % [deg] Flight path angle 

Apollo(i,4) = v2; % [m/s] velocity 

Apollo(i,5) = r2; % [m] Distance from earth center 

Apollo(i,6) = eq_long_cel; % [deg] Longitude Equitorial Coordinates celestial 

Apollo(i,7) = eq_lat_cel; % [deg] Latitude Equitorial Coordinates celestial 

Apollo(i,8) = r2*sind(90-eq_lat_cel)*cosd(eq_long_cel); % X-coordinates 

Apollo(i,9) = r2*sind(90-eq_lat_cel)*sind(eq_long_cel); % Y-coordinates 

Apollo(i,10) = r2*cosd(90-eq_lat_cel); % Z-coordinates 

end 

 

e = sqrt( (r*SF_vel^2/GM - 1)^2 * cosd(FP_angle)^2 + sind(FP_angle)^2); % Eccentricity 

nu = atand( (r*SF_vel^2/GM)*cosd(FP_angle)*sind(FP_angle) ... 

/ ((r*SF_vel^2/GM)*cosd(FP_angle)^2 - 1)); % [deg] True anomaly 

a = (R_p + R_a)/2; % [m] Semi-major Axis 

 
l_eqLat = asind( sind(GeoLat) / sind(Inclin)); % [deg] Orbital Longitude 

a_eqLong = atand( tand(l_eqLat) * cosd(Inclin)); % [deg] Equitorial Longitude 

w = l_eqLat - nu; % Argument of perigee 

GeoLon_ascNode = Longitude - a_eqLong + 360; % [deg] Geographic Longitude of Ascending Node 

E = acos( (e + cosd(nu))/(1 + e*cosd(nu))); % [rad] Eccentric anomoly 

M = E - e*sin(E); % [rad] Mean Anomoly 

n = sqrt(GM/a^3); % [rad/s] Mean Motion 

t = M/n; % [sec] time from parigee 
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 Appendix B - Circular Restricted Three-Body Problem (CR3BP) 

 Contents  

 Circular Restricted Three-Body Problem 

 ODE45 numerical solver 

 Plots and graphing 
 Circular Restricted Three-Body Problem  

we = wu*6371e3; 

 
 
 
 

um = uu*1737400; 

vm = nu*1737400; 

wm = wu*1737400; 

 

 
load('topo.mat','topo','topomap1'); 

topo2 = [topo(:,181:360) topo(:,1:180)]; 

pro.FaceColor= 'texture'; 

pro.EdgeColor = 'none'; 

pro.FaceLighting = 'phong'; 

pro.Cdata = topo2; 

 
title1 = {'Apollo 11', 'Apollo 12', 'Apollo 13', 'Apollo 14', 'Apollo 15', 'Apollo 16', 

'Apollo 17'}; 

subt = ' Orbit w/o Moon Influence'; 

 
% Apollo; 

% [xt,yt,zt] = sphere(20); 

% figure 

% plot(Apollo(:,1),Apollo(:,5)); 

% figure 

% plot3(Apollo(:,8),Apollo(:,9),Apollo(:,10)); 

% grid on 

% hold on 

% plot3(xt,yt,zt) 

figure 

plot(Apollo(:,8),Apollo(:,9)) 

hold on 

h1 = surface(ue,ve,we,pro); 

colormap(topomap1); 

title(strcat(title1(j),subt)); 

xlabel('X - [m]'); 

ylabel('Y - [m]'); 

% hold on 

% h2(i) = surf(um-384.4e6,vm,wm,'FaceColor', [.8 .8 .8]); 

axis equal 

 
% fprintf('a = %.9g\n',a); 

% fprintf('e = %.6g\n',e); 

% fprintf('i = %.5g\n',Inclin); 

% fprintf('w = %.5g\n',w); 

% fprintf('W = %.3f\n',W); 

% fprintf('t = %.5g\n',t); 

 
end 
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 ODE45 numerical solver  

 
 Plots and graphing  

 

figure 

 
hold on 

plot(-y(1,1),-y(1,2),'b') 

xlabel('X [m]') 

ylabel('Y [m]') 

grid on 

[u,v,w] = sphere; 

hold on 

u = u*6371e3; 

v = v*6371e3; 

w = w*6371e3; 

surf(-u+MU*R,v,w) 

[u,v,w] = sphere; 

hold on 

u = u*1737400; 

v = v*1737400; 

 
[t, y] = ode45('cr3bp3', [0:500:tout], xo1); 

r1e = [-6.3851e+06 -1.7158e+06 -1.1563e+06]'; % initial position of Apollo 11 

r1 = eul3*eul2*r1e; % YZ-rotations applied 

r = (r1 - [R*MU 0 0]'); % radius magnitude converted to vector 

 

v = 14.9087; % [deg] true anomaly 

gamma = 7.367; % [deg] flight path angle 

theta4 = -(90-v+gamma); % [deg] Velocity angle transormation 

i = 31.383; % [deg] inclination 

 
velu = [sind(90-i)*cosd(theta4); % Velocity Transform 

sind(90-i)*sind(theta4); 

cosd(90-i)]; 

 
vel_mag = 10834.3; % [m/s] Velocity 

vel = eul3*eul2*velu*vel_mag; % [m/s] Velocity transformation 

 
dt = 1500000*24*60*60; 

P = sqrt((4*pi^2*R^3)/(G*(M1+M2))); % [sec] Orbit Period 

tout = (2*pi*dt)/P; 

 
% xo1 = [-.5 -sqrt(3)/2 0 0 0 0]' 

xo1 = [r(1) r(2) r(3) vel(1) vel(2) vel(3)]'; % Initial conditions 

tout = 259200; % final time 

0; 

1]; 0 0 

sind(theta2) 0 cosd(theta2)]; 

 
theta3 = -39.485; % Z-rotation accounting for position of Moon 

eul3 = [cosd(theta3) sind(theta3) 0; 

-sind(theta3) cosd(theta3) 

-sind(theta2); 0 

0; 

eul2 = [cosd(theta2) 

0 1 

clear all; close all; clc; 

format shortg 

global M1 M2 R G MU MU1 

 
M1 = 5.9723e24; % [kg] Mass of Earth 

M2 = 0.07346e24; % [kg] Mass of Moon 

MU = M2 / (M1 + M2); % Mass ratio of Moon 

MU1 = M1 / (M1 + M2); % Mass ratio of Earth 

G = 6.67408e-11; % m^3/kg-s^2 

R = 384400e3; % m 

 

theta2 = -23.4 + 5.14; % Y-rotation accounting for Moon and Earth axis 
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w = w*1737400; 

surf(-u-(R-MU*R),v,w) 

title('Apollo 11 Circular Restricted Three-Body Problem') 

axis equal 

 
for i = 2:size(y) 

hold on 

plot(-y(1:i,1),-y(1:i,2),'b') 

pause(.01) 

axis equal 

end 

 

figure 

plot3(-y(1,1),-y(1,2),-y(1,3),'b') 

grid on 

xlabel('X [m]') 

ylabel('Y [m]') 

zlabel('Z [m]') 

axis equal 

[u,v,w] = sphere; 

hold on 

u = u*6371e3; 

v = v*6371e3; 

w = w*6371e3; 

surf(-u+MU*R,v,w) 

[u,v,w] = sphere; 

hold on 

u = u*1737400; 

v = v*1737400; 

w = w*1737400; 

surf(-u-(R-MU*R),v,w) 

title('Apollo 11 Circular Restricted Three-Body Problem') 

 
for i = 2:size(y) 

plot3(-y(1:i,1),-y(1:i,2),-y(1:i,3),'b') 

pause(.01) 

end 

 

function [ xdot ] = cr3bp2(t, x ) 

%UNTITLED11 Summary of this function goes here 

% Detailed explanation goes here 

 
global M1 M2 R G MU MU1 % Global constants 

 
tau = 2*pi/sqrt(G*(M1+M2))*R^(3/2); % Period 

w1 = 2*pi/tau; % angular velocity 

 
r_eb_mag = R * MU; % radius magnitude to earth from barycenter 

r_mb_mag = R * MU1; % radius magnitude to moon from barycenter 

 
r_eb = r_eb_mag * [-1 0 0]'; % coversion to vector form 

r_mb = r_mb_mag * [1 0 0]'; % conversion to vector form 

 
xdot(1:3,1) = x(4:6,1); % velocity to xdot 

rho = x(1:3,1); % barycenter to satalite 

v = x(4:6,1); % velocity 

 
r1 = r_eb - rho; % radius to earth from barycenter vector 

r2 = r_mb - rho; % radius to moon from barycenter vector 

 
r1_mag = norm(r1); % magnitude of earth to barycenter radius 

r2_mag = norm(r2); % magnitude of moon to barycenter radius 

 
% Equations of motion 

xdd = 2*w1*v(2) + w1^2*rho(1) - (G*M1*(rho(1)+MU*R))/r1_mag^3 - G*M2*(rho(1)-MU1)/r2_mag^3; 

ydd = -2*w1*v(1) + w1^2*rho(2) - (G*M1*(rho(2)))/r1_mag^3 - G*M2*(rho(2))/r2_mag^3; 

zdd = - (G*M1*(rho(3) ))/r1_mag^3 - G*M2*(rho(3) )/r2_mag^3; 
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Appendix C - Elliptic Restricted Three-Body Problem (ER3BP) 

 Contents  

 Elliptic Restricted Three-Body Problem 

 Main Code 

 Apollo mission rotations and pos/vel calculations 

 Initial conditions, Simulation Cases, 

 1 Moon Orbit 

 2 L4/L5 Stable Lagrangian Point 

 Random 

 ODE45 Function call 

 Graphing and Calculations 

 Plots 2D in Rotational Frame of Barycenter 

 Plots 3D in Inertial Frame of Barycenter 
 Elliptic Restricted Three-Body Problem  

 
 Main Code  

 
 Apollo mission rotations and pos/vel calculations  

 

 

switch apm 

case 11 

% Apollo 11 

r_pos = [-6.3851e+06 -1.7158e+06 -1.1563e+06]'; 

vel_mag = 10834.3; 

inc = 31.383; 

gamma_tj = 7.367; 

global rho gamma 

while 1 

apm = 11; 

 
prompt = 'Which simulation would you like to run?\nMoon Orbit[1] Stable Langrangian 

Point[2] Apollo Missions[3] Random Trajectory[4]\n'; 

sim = input(prompt); 

if sim ~= 0:4 

fprintf(2,'\nError: Input not recognized.\n\n'); 

continue 

end 

if sim == 3 

apm = input('Which Apollo mission [11, 12, 14, 15, 16, 17]: \n'); 

end 

close all; 

 

%%%%%% Constants/Variables 

a = 384748e3; % [m] Semi-Major Axis 

e = 0.05490; % Eccentricity 

n = 2.661699e-6; % [rad/s] Mean angular rate 

gammaL1 = -0.150935; % Instantaneous libration point 1 

gammaL2 = 0.167833; % Instantaneous libration point 2 

G = 6.67408e-11; % [m^3/(kg s^2)] Gravitational Constant 

M1 = 5.9723e24; % [kg] Mass of Earth 

M2 = 0.07346e24; % [kg] Mass of Moon 

rho = M2 / (M1 + M2); % Mass Ratio 

%%%%%% Constants/Variables 

 
clear all; close all; clc; 

 

xdot(4:6,1) = [xdd ydd zdd]'; 

end 
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offs = 7.52; 

theta3 = -29.2; 

nu = 14.9087; 

 

case 12 

% Apollo 12 

r_pos = -[-6.4145e+06 -9.2785e+05 1.8682e+06]'; 

vel_mag = 10787; 

inc = 30.555; 

gamma_tj = 8.584; 

offs = 15.573; 

theta3 = 159.004; 

nu = 17.439; 

 

case 13 

% Apollo 13 

r_pos = -[6.1019e+06 -2.7687e+06 -4.5252e+05]'; 

vel_mag = 10832; 

inc = 31.817; 

gamma_tj = 7.635; 

offs = 22.791; 

theta3 = 341.843; 

nu = 15.448; 

 

case 14 

% Apollo 14 

r_pos = -[-3.6914e+05 -6.3151e+06 -2.2325e+06]'; 

vel_mag = 10824; 

inc = 30.834; 

gamma_tj = 7.48; 

offs = -55.664; 

theta3 = 302.899; 

nu = 15.175; 

 

case 15 

% Apollo 15 

r_pos = -[3.9794e+06 4.5926e+06 2.8123e+06]'; 

vel_mag = 10845; 

inc = 29.696; 

gamma_tj = 7.43; 

offs = 7.52; 

theta3 = -29.2; 

nu = 15.044; 

 

case 16 

% Apollo 16 

r_pos = -[4.7055e+06 -4.5567e+06 -1.3817e+06]'; 

vel_mag = 10841; 

inc = 32.511; 

gamma_tj = 7.461; 

offs = 7.52; 

theta3 = -29.2; 

nu = 15.121; 

 

 

 

 

 

 

 

 

 

end 

 

case 17 

% Apollo 17 

r_pos = -[-6.093e+06 2.7123e+06 5.4626e+05]'; 

vel_mag = 10837; 

inc = 28.466; 

gamma_tj = 7.379; 

offs = 7.52; 

theta3 = -29.2; 

nu = 14.97; 

 

theta2 = -23.44 - 5.14 + offs; 

 

% Tilt Offset 

eul2 = ... 

[cosd(theta2) 0 -sind(theta2); 
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 Initial conditions, Simulation Cases,  

 
 1 Moon Orbit  

 
 2 L4/L5 Stable Lagrangian Point  

 
 Random  

 

 
dt = .004; 

dt = .2; 

 
days = 2000; 

 
x1 = [-0.5, sqrt(3)/2, 0, 0, 0, 0]'*Da 

 
case 3 

% %%% 3 Apollo 11 Lunar Injection 

dt = .001; 

days = 2.5; 

x1 = [-r_SC(1), -r_SC(2), r_SC(3), -vel(1)/n, -vel(2)/n, vel(3)/n]'/a' 

case 4 

dt = .001; 

 
days = 27.3217; 

 
x1 = [-1.05, 0, 0, 0, 0, 0]' 

 
case 2 

 

syms M ti 

D1(M) = 1 + 1/2*e^2 + (-e + 3/8*e^3 - 5/192*e^5 + 7/9216*e^7)*cos(M) + (-1/2*e^2 + 1/3*e^4 

... 

- 1/16*e^6)*cos(2*M) + (-3/8*e^3 + 45/128*e^5 - 567/5120*e^7)*cos(3*M) + (-1/3*e^4 + 

2/5*e^6)*cos(4*M) ... 

+ (-125/384*e^5 + 4375/9216*e^7)*cos(5*M) - 27/80*e^6*cos(6*M) - 

16807/46080*e^7*cos(7*M); 

 
gamma = 0; 

Da = double(D1(0)); 

 
%%%%%% Initial Conditions 

switch sim 

case 1 

r_rot = eul3*eul2*r_pos; 

r_SC = (r_rot - [a*rho 0 0]'); 

theta4 = -(90-nu+gamma_tj); 

vel_uvec = ... 

[sind(90-inc)*cosd(theta4); 

sind(90-inc)*sind(theta4); 

cosd(90-inc)]; 

 

vel = eul3*eul2*vel_uvec*vel_mag; 

sind(theta3) 0; 

cosd(theta3) 0; 

1]; 0 0 

% Moon Position Offset 

eul3 = ... 

[cosd(theta3) 

-sind(theta3) 

cosd(theta2)]; 0 

0; 1 0 

sind(theta2) 
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 ODE45 Function call  

 
 Graphing and Calculations  

 
 Plots 2D in Rotational Frame of Barycenter  

 

 

for i = 1:size(y) 

if i > 1 

delete(h1(i-1)); 

delete(h2(i-1)); 

delete(h3(i-1)); 

end 

 
t2 = (i-1)*dt; 

Dt = 1.001507005 - 0.000003017133411*cos(4.0*t2) - 0.0000001616320167*cos(5.0*t2) ... 

- 0.0000618757641*cos(3.0*t2) - 0.000000009240763254*cos(6.0*t2) - 

0.0000000005482569438*cos(7.0*t2) ... 

- 0.05483796206*cos(t2) - 0.001503978626*cos(2.0*t2); 

Dt = Dt*a; 

y = y*a; 

 
%%%%%% Rotational Matrix 

rot(ti) = [cos(n*ti) -sin(n*ti) 0; sin(n*ti) cos(n*ti) 0; 0 0 1]; 

 
%%%%%% Planet Sphere Initialization 

[u,n1,w] = sphere; 

 
ue = u*6371e3; 

ve = n1*6371e3; 

we = w*6371e3; 

 
um = u*1737400; 

vm = n1*1737400; 

wm = w*1737400; 

 
 

%%%%%% Orbit Plotting 

figure 

xlabel('x') 

ylabel('y') 

axis equal 

grid on 

 
h1 = zeros(length(y)); 

h2 = zeros(length(y)); 

y_adj = zeros(length(y),3); 

 
%%%%%% Earth Topography 

load('topo.mat','topo','topomap1'); 

topo2 = [topo(:,181:360) topo(:,1:180)]; 

pro.FaceColor= 'texture'; 

pro.EdgeColor = 'none'; 

pro.FaceLighting = 'phong'; 

pro.Cdata = topo2; 

 

%%%%%% ODE45 Calculation and Time 

tf = days*24*3600*n; 

[t, y] = ode45('er3bp2', 0:dt:tf, x0); 

days = 50; 

 
x1 = [.001, .045, 0, -6.39e3/n/a, 1.35e3/n/a, .26e3/n/a]' 

 
case 0 

break 

end 

x0 = x1 + [double(D1(0))*(1 - rho + gamma) 0 0 0 0 0]'; 
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 Plots 3D in Inertial Frame of Barycenter  

 

figure 

 
xlabel('x') 

ylabel('y') 

zlabel('z') 

axis equal 

grid on 

for i = 1:size(y) 

if i > 1 

delete(h1(i-1)); 

if i ~= 365 && i ~= 2 

delete(h2(i-1)); 

end 

delete(h3(i-1)); 

end 

 
t2 = (i-1)*dt; 

Dt = 1.001507005 - 0.000003017133411*cos(4.0*t2) - 0.0000001616320167*cos(5.0*t2) ... 

- 0.0000618757641*cos(3.0*t2) - 0.000000009240763254*cos(6.0*t2) - 

0.0000000005482569438*cos(7.0*t2) ... 

- 0.05483796206*cos(t2) - 0.001503978626*cos(2.0*t2); 

Dt = Dt*a; 

 
hold on 

uue = [+(Dt)*(rho) 0 0]'; 

uue = double(rot(t2/n)*uue); 

h1(i) = surface(ue+uue(1),ve+uue(2),we+uue(3),pro); 

colormap(topomap1); 

rotate (h1(i), [0.47839,0,0.87815], 7.292115855377074e-005*t2/n*180/pi,uue'); 

 
hold on 

uum = [-Dt*(1 - rho) 0 0]'; 

uum = double(rot(t2/n)*uum); 

h2(i) = surf(um+uum(1),vm+uum(2),wm+uum(3),'FaceColor', [.8 .8 .8]); 

 
hold on 

y_adj(i,:) = double(rot(t2/n))*[y(i,1)-Dt*(1 - rho + gamma) y(i,2) y(i,3)]'; 

h3(i) = plot3(y_adj(1:i,1),y_adj(1:i,2),y_adj(1:i,3),'b', 'linewidth', 0.2); 

title('Apollo 11 Elliptic Restricted 3-Body Problem'); 

xlabel('X [m]'); 

ylabel('Y [m]'); 

zlabel('Z [m]'); 

 
drawnow limitrate 

end 

end 

 

hold on 

h1(i) = surface(ue+(Dt)*(rho),ve,we,pro); 

colormap(topomap1); 

rotate(h1(i), [0.47839,0,0.87815], (7.292115855377074e-005- 

0.00000265868)*t2/n*180/pi,[(Dt)*(rho),0,0]); 

 
hold on 

h2(i) = surf(um-(Dt)*(1 - rho),vm,wm,'FaceColor', [.8 .8 .8]); 

 
hold on 

y_adj(i,:) = [y(i,1)-Dt*(1 - rho + gamma), y(i,2), y(i,3)]'; 

h3(i) = plot(y_adj(1:i,1),y_adj(1:i,2),'b', 'linewidth', 0.2); 

title('Apollo 11 Elliptic Restricted 3-Body Problem'); 

xlabel('X [m]'); 

ylabel('Y [m]'); 

 
drawnow limitrate 

end 
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function [ rdot] = er3bp2( t, x ) 

%Elliptic restricted three-body problem 

% D and theta-dot derivatives calculated ahead of time for speed 

 

global rho gamma D2 Dd2 Ddd2 thd2 thdd2 

 

% J2 = 1.08265e-3; 

% thdd = -3/2*n*J2* 

 

rdot(1:3,1) = x(4:6,1); 

 

v = x(4:6,1); 

r = x(1:3,1); 

 

M = t; 

D = 1.001507005 - 0.000003017133411*cos(4.0*M) - 0.0000001616320167*cos(5.0*M) ... 

- 0.0000618757641*cos(3.0*M) - 0.000000009240763254*cos(6.0*M) - 

0.0000000005482569438*cos(7.0*M) ... 

- 0.05483796206*cos(M) - 0.001503978626*cos(2.0*M); 

 

Dd = 0.003007957252*sin(2.0*M) + 0.00001206853364*sin(4.0*M) + 0.0000008081600836*sin(5.0*M) ... 

+ 0.0001856272923*sin(3.0*M) + 0.00000005544457952*sin(6.0*M) + 

0.000000003837798606*sin(7.0*M) + 0.05483796206*sin(M); 

 

Ddd = 0.006015914503*cos(2.0*M) + 0.00004827413458*cos(4.0*M) + 0.000004040800418*cos(5.0*M) ... 

+ 0.0005568818769*cos(3.0*M) + 0.0000003326674771*cos(6.0*M) + 0.00000002686459025*cos(7.0*M) 

+ 0.05483796206*cos(M); 

 

thd = 0.007526702614*cos(2.0*M) + 0.00003888369655*cos(4.0*M) + 0.000002839773804*cos(5.0*M) ... 

+ 0.000536770327*cos(3.0*M) + 0.0000002092861752*cos(6.0*M) + 0.00000001542080711*cos(7.0*M) 

+ 0.1097586587*cos(M) + 1.0; 

 

thdd = - 0.01505340523*sin(2.0*M) - 0.0001555347862*sin(4.0*M) - 0.00001419886902*sin(5.0*M) ... 

- 0.001610310981*sin(3.0*M) - 0.000001255717051*sin(6.0*M) - 0.0000001079456497*sin(7.0*M) - 

0.1097586587*sin(M); 

 

r1 = sqrt((-(1+gamma)*D+r(1))^2 + r(2)^2 + r(3)^2); 

r2 = sqrt((-gamma*D+r(1))^2 + r(2)^2 + r(3)^2); 

 

xdd = 2*thd*v(2) + thdd*r(2) + thd^2*(-(1+gamma)*D + r(1)) + (1 + gamma)*Ddd - (1 - rho)*(-(1 + 

gamma)*D + r(1))/r1^3 - rho*(-gamma*D + r(1))/r2^3 + rho/D^2; 

ydd = -thdd*(-(1 + gamma)*D + r(1)) + thd^2*r(2) - 2*thd*(-(1 + gamma)*Dd + v(1)) - (1 - 

rho)*r(2)/r1^3 - rho*r(2)/r2^3; 

zdd = -(1 - rho)*r(3)/r1^3 - rho*r(3)/r2^3; 

rdot(4:6,1) = [xdd ydd zdd]'; 

end 

 

 

 

 

Appendix D – N-Body Problem 

 N-Body Main  

 

 Contents  

 N-Body Problem 

 Input 

 Time Parameters 

 Initial State Vectors and Masses 

 N-Body Function for Numerical Integration Solver 

 Graphical Setup 
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 Animation Loop for Orbit Visualization 
 N-Body Problem  

 
 Input  

 
 Time Parameters  

 
 

 Initial State Vectors and Masses  

 

 

global tol 

tol = 1e-19; 

gravFab = 0; 

centObj = 0; 

barycen = 0; 

tob = []; 

 
bvec = []; 

 

% iterations 

iter = 1e5; 

 
anim = 2; 

rePlay = 0; 

while 1 

try 

ApNum = input('Which Simulation: '); % Simulation number input 

catch ME 

fprintf(2,'%s\n', ME.message); 

continue 

end 

if isempty(ApNum) % Usable value test 

fprintf(2,'Error: input not recognized.\n'); % Error notification 

continue 

elseif ApNum >= 10 && ApNum <= 12 && rem(ApNum,1) == 0 || ApNum == 5 ... 

|| ApNum == 0 || ApNum == 66 || ApNum == 6 || ApNum == 777 || ApNum == 3 

break 

else 

fprintf(2,'Error: input not recognized.\n'); % Error notification 

continue 

end 

end 

 
if ApNum ~= 0 

while 1 

try 

ref_Frame = input('Frame [Inertial(1), Rotational(2)]: '); % rot or inertial frame 

catch ME 

fprintf(2,'%s\n', ME.message); 

continue 

end 

if isempty(ref_Frame) % Usable value test 

fprintf(2,'Error: input not recognized.\n'); % Error notificati1on 

continue 

elseif ref_Frame == 1 || ref_Frame == 2 

break 

else 

fprintf(2,'Error: input not recognized.\n'); % Error notification 

continue 

end 

end 

else 

ref_Frame = 1; 

end 

 

clear all; 

close all; 

clc; 
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 G. N-Body Function for Numerical Integration Solver  

 

tic 

 
fprintf('\n working ...\n\n'); 

 
% Numerical Solver Function 

t=[]; 

x=[]; 

dx=[]; 

ddx=[]; 

 
% Burn Variable Initialization 

dt = iter/time; 

pos(1,:) = p0; 

vel(1,:) = v0; 

tob = horzcat(0,tob,time); 

bvec = [bvec; 0 0 0]; 

 
% Satellite Burn Segments Loop 

for i = 1:length(tob)-1 

 

if ApNum >= 10 && ApNum <= 12 && rem(ApNum,1) == 0; 

if ApNum == 11; x11=apolloHor(); end 

[p0, v0, mu, n, scale, cA, tob, bvec] = ApolloCoords(ApNum); 

pFrame = 4:6; 

yrs = 0; days = 7; hrs = 21; sec = 0; 

spd = 2; solv = 5; blk = 0; gravFab = 0; centObj = 1; 

 

elseif ApNum == 5; 

[p0, v0, mu, n, scale, cA] = LagrangeP(ApNum); 

pFrame = 4:6; 

yrs = 1; days = 0; hrs = 0; sec = 0; 

spd = 3; solv = 2; blk = 0; 

 
elseif ApNum == 66; 

[p0, v0, mu, n, scale, cA] = Rings2(); 

pFrame = 4:6; 

yrs = 0; days = 5; hrs = 0; sec = 0; 

spd = 1; solv = 3; blk = 0; 

 
elseif ApNum == 777; 

[p0, v0, mu, n, scale, cA] = Rings3(); 

pFrame = 4:6; 

yrs = 0; days = 10; hrs = 0; sec = 0; 

spd = 2; solv = 3; blk = 1; 

 
elseif ApNum == 6; 

[p0, v0, mu, n, scale, cA, tob, bvec, xvec] = CassiniCoord; 

pFrame = 10:12; 

yrs = 0; days = 2; hrs = 0; sec = 211939200; 

spd = 4; solv = 2; blk = 0; centObj = 0; 

xvec = [xvec; 0 0 1e-10]; 

 
elseif ApNum == 3; 

[p0, v0, mu, n, scale, cA] = FallSolEr; 

[p0, v0, mu, n, scale, cA] = FallNoP; 

pFrame = 1:3; 

yrs = 0; days = 0; hrs = 0; sec = 0; 

spd = 1; solv = 5; blk = 0; 

else 

[p0, v0, mu, n, scale, cA] = StateVecInit; 

yrs = 300; days = 0; hrs = 0; sec = 0; 

spd = 1; solv = 1; centObj = 1; blk = 0; barycen = 1; 

end 

 
time = ((yrs*365.25+days)*24+hrs)*3600+sec; 
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% Sets section time and iteration for each burn segment 

iter2(i) = round((tob(i+1)-tob(i))*dt); 

tt = linspace(tob(i),tob(i+1),iter2(i)); 

 

% Burn Segment Solver/Propagation 

[t1, x1, dx1, ddx1] = nBodySolver(pos(i,:)', vel(i,:)', mu, tt', solv); 

 

% Set next burn segment initial values to previous end values 

% with adjusted velocity from Delta V burn 

if i ~= 0 && ApNum == 6; 

x1(end,(3*n-2):3*n) = xvec(i,:); 

end 

pos(i+1,:) = x1(end,:); 

vsat = dx1(end,(3*n-2):3*n); 

if i ~= 0 && ApNum == 6 

dx1(end,(3*n-2):3*n) = bvec(i,:); 

else 

 

end 

 

dx1(end,(3*n-2):3*n) = vsat/norm(vsat)*norm(([norm(vsat) 0 0]+bvec(i,:))); 

vel(i+1,:) = dx1(end,:); 

 

 

 

 

 
end 

 

% Pos Vel Acc Patching of solver segments 

x = [x;x1]; 

dx = [dx;dx1]; 

ddx = [ddx;dx]; 

t = [t;t1]; 

 

% Removes duplicate values from patching 

dup = find(hist(t,unique(t))>1); 

t(dup)=[]; 

x(dup,:)=[]; 

dx(dup,:)=[]; 

ddx(dup,:)=[]; 

 

figN = 1; 

if ref_Frame == 2 

 

xR = zeros(size(x)); 

dxR = zeros(size(x)); 

ddxR = zeros(size(x)); 

Arot = vrrotvec2mat(vrrotvec(x(1,pFrame),[-1 0 0])); 

for i = 1:size(x,2)/3 

 

ip = 1+(i-1)*3; 

fp = 3+(i-1)*3; 

for j = 1:spd:size(x,1) 

 

v1x = x(j,pFrame); 

vec = x(1,pFrame); 

 

Arot2 = Arot*vrrotvec2mat(vrrotvec(v1x,vec)); 

xR(j,ip:fp) = Arot2*x(j,ip:fp)'; 

dxR(j,ip:fp) = Arot2*dx(j,ip:fp)'; 

% ddxR(j,ip:fp) = Arot2*ddx(j,ip:fp)'; 

 

end 

end 

 

Arot = vrrotvec2mat(vrrotvec([0, xR(1,8:9)],[0 1 0])); 

for i = 1:size(xR,2)/3 

 

ip = 1+(i-1)*3; 

fp = 3+(i-1)*3; 

for j = 1:spd:size(xR,1) 

 

v1x = xR(j,pFrame); 

vec = xR(1,pFrame); 
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working ... 

 

 

 

 

Elapsed time is 8.187602 seconds. 

 
 H. Graphical Setup  

 

 

% Barycenter calculation 

bary = zeros(size(x,1),3); 

if ApNum == 0 

for i = 1:size(x,1) 

bary(i,:) = ([dot(mu,x(i,1:3:end)), dot(mu,x(i,2:3:end)),... 

dot(mu,x(i,3:3:end))]/sum(mu)); 

end 

end 

 
% Change of reference frame 

x = horzcat(x,bary); 

if centObj ~=0 

objA = centObj*3-2:centObj*3; 

mDiff = x(:,objA); 

x = x - repmat(mDiff,1,size(x,2)/3); 

bary = bary - repmat(mDiff,1,size(bary,2)/3); 

end 

 

while 1 

while 1 

try 

anim = input('Animation [Yes(1), No(2)]: '); % Animate or show last frame? 

catch ME 

fprintf(2,'%s\n', ME.message); 

continue 

end 

if isempty(anim) % Usable value test 

fprintf(2,'Error: input not recognized.\n'); % Error notificati1on 

continue 

elseif anim == 1 || anim == 2 

break 

else 

fprintf(2,'Error: input not recognized.\n'); % Error notification 

continue 

end 

end 

%  anim = 2; 

if anim == 1 

plst = 1; 

elseif anim == 2 

plst = size(x,1); 

end 

 

Arot2 = Arot*vrrotvec2mat(vrrotvec(v1x,vec)); 

xR(j,ip:fp) = Arot2*xR(j,ip:fp)'; 

dxR(j,ip:fp) = Arot2*dxR(j,ip:fp)'; 

% ddxR(j,ip:fp) = Arot2*ddxR(j,ip:fp)'; 

 

end 

end 

 

x = xR; 

dx = dxR; 

% ddx = ddxR; 

 

end 

toc 
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 I. Animation Loop for Orbit Visualization  

 

 

if ApNum == 11 

plot3(x11(:,1), x11(:,2),... 

x11(:,3), 'r-', 'markeredgecolor', 'r',... 

'markers', .01); hold on 

end 

 
pColor = SetColor(n); 

plotStep = plst:spd:size(x,1); 

h1 = zeros(plotStep(end),n); 

h2 = zeros(plotStep(end),n); 

h0 = zeros(plotStep(end),1); 

h01 = zeros(plotStep(end),1); 

m = 0; 

loops = size(plotStep,2); 

F(loops) = struct('cdata',[],'colormap',[]); 

for i = plotStep 

 
if barycen == 1 

h0(i) = surf(us*scale(4) + bary(i,1), vs*scale(4) +... 

bary(i,2), ws*scale(4) + bary(i,3), 'FaceColor', 'none',... 

'EdgeColor', 'w'); hold on; 

h01(i) = plot3(bary(1:spd:i,1), bary(1:spd:i,2),... 

bary(1:spd:i,3), 'w-', 'markeredgecolor', 'r',... 

'markers', .1); hold on 

end 

 

if n > 1 

for j = 1:n 

if i <= (round(dup/spd)+50) & i >= (round(dup/spd)-50) 

h1(i,j) = surf(us*scale(j) + x(i,1+(j-1)*3),... 

vs*scale(j) + x(i,2+(j-1)*3),... 

ws*scale(j) + x(i,3+(j-1)*3), 'FaceColor',... 

'none', 'EdgeColor', pColor(cA(j),1:3)); hold on; 

h2(i,j) = plot3(x(1:spd:i,1+(j-1)*3),... 

x(1:spd:i,2+(j-1)*3), x(1:spd:i,3+(j-1)*3),... 

'-', pColor(cA(j),1:3), 'markeredgecolor',... 

pColor(cA(j),1:3), 'markers', .01); hold on 

else 

h1(i,j) = surf(us*scale(j) + x(i,1+(j-1)*3),... 

vs*scale(j) + x(i,2+(j-1)*3),... 

 

wmax = max(max(x(:,:))) * 1.05; 

wmin = min(min(x(:,:))) * 1.05; 

if abs(wmax)>abs(wmin);rnge=abs(wmax); else rnge=abs(wmin);end 

ax_range = [-rnge,rnge, -rnge,rnge, -rnge, rnge]; 

if ishandle(figN) == 0 

 
[u1,n1,w1] = sphere(16); 

us = u1; 

vs = n1; 

ws = w1; 

 
set(0,'defaultfigurecolor', [0 0 0]) 

figure 

set(gcf,'position',[2561 219 1680 979]); 

axis equal 

if blk == 1; axis(ax_range,'square'); end 

grid on 

set(gca,'Color', [0 0 0]) 

ax2 = gca; 

alpha(1) 

 
xlabel('X [km]'); 

ylabel('Y [km]'); 

zlabel('Z [km]'); 

rotate3d on 

end 
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end 

 

 

 

 

 

 

 

 

end 

 

 

 

 

 

 

 
end 

 

ws*scale(j) + x(i,3+(j-1)*3), 'FaceColor',... 

'none', 'EdgeColor', pColor(cA(j),1:3)); hold on; 

h2(i,j) = plot3(x(1:spd:i,1+(j-1)*3),... 

x(1:spd:i,2+(j-1)*3), x(1:spd:i,3+(j-1)*3),... 

'-', 'color', pColor(cA(j),1:3),... 

'markeredgecolor', pColor(cA(j),1:3),... 

'markers', .01); hold on 

 

if ApNum == 66 || ApNum == 777 

h3 = plot3(x(i,7:3:end), x(i,8:3:end), x(i,9:3:end),... 

'.', 'markeredgecolor', pColor(1,1:3), 'markers',... 

12); hold on % Rings 

end 

 

% Gravitational Potential Surface 

if gravFab == 1 

[X,Y] = meshgrid(-wmin*1.5:wmin*1.5/100:wmin*1.5,... 

-wmin*1.5:wmin*1.5/100:wmin*1.5); 

Z = -(mu(1)./(sqrt((X-x(i,1)).^2+(Y-x(i,2)).^2)).^1 +... 

mu(2)./(sqrt((X-x(i,4)).^2+(Y-x(i,5)).^2).^1))*.5e5-.1e5; 

h4 = surf(X,Y,Z,'facecolor',[.3 .3 .3],'FaceAlpha',0.1,... 

'EdgeColor',[.1 .1 .1]); 

end 

 

grid on 

axis equal 

if blk == 1; axis(ax_range,'square'); end 

set(gca,'Color',[0 0 0]) 

ax2.XColor = [.4 .4 .4]; 

ax2.YColor = [.4 .4 .4]; 

ax2.ZColor = [.4 .4 .4]; 

ax2.GridAlpha = .4; 

ax2 = gca; 

ax2.GridColor = [1 1 1]; 

alpha(1) 

xlabel('X [km]'); 

ylabel('Y [km]'); 

zlabel('Z [km]'); 

 

% m = m + 1; 

% F(m) = getframe; 

% drawnow() 

pause(1e-20) 

 

if i ~= plotStep(end) 

if barycen == 1 

delete(h0(i)) 

delete(h01(i)) 

end 

delete(h2(i,:)) 

if ApNum == 66 || ApNum == 777 

delete(h3) 

end 

if gravFab == 1; 

delete(h4) 

end 

if n > 1 

delete(h1(i,:)) 

 

end 

 

end 

end 

 

% Requests user input to stop or run the animation again 

while 1 

try 

rePlay = input('\nWould you like to graph again? \n Yes = 1, No = 0: '); 
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 N-Body Solver Function  

 

 

catch ME 

fprintf(2,'%s\n', ME.message); 

continue 

end 

if isempty(rePlay) % Usable value test 

fprintf(2,'Error: input not recognized.\n');%Error notification 

continue 

elseif rePlay == 1 

 

fprintf('\n') 

if ishandle(1) 

if barycen == 1 

delete(h0(i)) 

delete(h01(i)) 

end 

delete(h2(i,:)) 

 

if ApNum == 66 || ApNum == 777 

delete(h3) 

end 

if n > 1 

delete(h1(i,:)) 

end 

if gravFab == 1 

delete(h4) 

end 

end 

break 

elseif rePlay == 0 

break 

else 

fprintf(2, 'Error: Value was not 1 or 0.\n'); 

continue 

end 

end 

 

if rePlay == 0 

break 

end 

 

end 

 

% myVideo = VideoWriter('CassiniRK86.avi'); 

% open(myVideo); 

% writeVideo(myVideo, F); 

% close(myVideo); 

% end 

= rk89(@nBodyFunc,[tt(1),tt(end)],[p0;v0], tol); 

case 4; [t,x,dx] = rkn1210(@nBodyFunc2, tt, p0, v0); 

case 5; [t,dz] 

function [t,x,dx,ddx] = nBodySolver(p0, v0, mu, tt, solv) 

 
global tol 

N = length(mu); 

x123 = repmat(1:N,1,N); 

x23 = x123(logical(ones(N) - eye(N))); 

x12_34 = reshape(1:N*(N-1),N-1,N)'; 

x11 = reshape(repmat(1:N,N-1,1),1,N*(N-1)); 

 
switch solv 

case 1; [t,dz] = ode113(@nBodyFunc,tt,[p0;v0]); 

case 2; [t,x,dx] = rkn86(@nBodyFunc,tt(1),tt(end),p0,v0); 

case 3; [t,dz] = ode23(@nBodyFunc,tt,[p0;v0]); 
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 Solar System State Vectors  

 

 
function [p0, v0, mu, n, scale, cA, tob, bvec, pBary, M] = StateVecInit 

 

M = [ 1988500, 0.33011, 4.8675, 5.9723, 0.07346, 0.64171, 1898.19, 568.34, 86.813, 102.413, 0.01303 ]' 

* 1e24; 

scale = [695700, 2439.7, 6051.8, 6371.008, 1737.4, 3389.5, 69911, 58232, 25362, 24622, 1187]; 

 
% Time: 1945-Jan-1 0:0:0 (Ref Sun) 

p0 = [ -6.514853452736166E+04 6.923075832509800E+05 2.969644123669676E+04; % Sun 

-4.090224402811901E+07 3.092971988307618E+07  6.251586293432735E+06; % Mercury 

8.649626519565648E+07 6.558753100815241E+07 -4.093465503005635E+06; % Venus 

-2.812655902373333E+07 1.450840122031818E+08 4.736565603273362E+04; % Earth 

-2.837642934184081E+07 1.453856908325931E+08 6.006681243879348E+04; % Moon 

-4.575332432237922E+07 -2.160750372389238E+08 -3.379480787481025E+06; % Mars 

-7.937071694877126E+08 1.708772517514482E+08 1.711521054427497E+07; % Jupiter 

-1.923795039832259E+08 1.337735118153997E+09 -1.574714310247427E+07; % Saturn 

8.814142859265038E+08 2.748130246512144E+09 -1.196667562167048E+06; % Uranus 

-4.507715302467741E+09 -4.203358655158987E+08 1.125516845885302E+08; % Neptune 

-3.580075486462851E+09 4.304575097306495E+09 5.745302970305955E+08];% Pluto 

 
v0 = [ -1.970463223071625E+00 -1.955899360310175E-01 2.369174320448657E-01; % Sun 

-4.089492060880693E+01 -3.731269883404487E+01 7.856996007483481E-01; % Mercury 

-2.308493963878707E+01 2.767558092658806E+01 1.833208420054525E+00; % Venus 

-3.168839597240482E+01 -5.981403599180973E+00 2.348307120914044E-01; % Earth 

-3.248928443141775E+01 -6.584149383830741E+00  3.229759698734869E-01; % Moon 

2.266216276795534E+01 -3.115518389430809E+00 -4.325189489577113E-01; % Mars 

-4.873042121510281E+00 -1.236602989967739E+01 3.519065081987538E-01; % Jupiter 

-1.205496403155248E+01 -1.599677934190488E+00 6.612639993819801E-01; % Saturn 

-8.512076610641467E+00 1.557251793473381E+00 3.284969194625559E-01; % Uranus 

-1.500221047078075E+00 -5.585955645339683E+00 3.363419003462520E-01; % Neptune 

-4.659388787869598E+00 -4.189821186825673E+00 1.441438596050844E+00];% Pluto 

 
tob = []; % Time of Burn 

 

end 

if solv ~= 2 && solv ~= 4 

x = dz(:,1:3*N); 

dx = dz(:,3*N+1:end); 

end 

 
xSize = size(x); 

ddx = zeros(xSize); 

% for i = 1:xSize(1) 

% xv = [x(i,:)';dx(i,:)']; 

% pos = reshape(xv(1:3*leng),3,leng); 

% r = pos(:,x23) - pos(:,x11); 

% r3 = diag(1./sqrt(sum(r.^2)).^3); 

% gm = diag(mu(x23)); 

% dpos = r*r3*gm; 

% ddx(i,:) = sum(reshape(dpos(:,x1214(:)),3*leng,leng-1),2); 

% end 

 
function [ss_vec] = nBodyFunc2(t,xv) 

pos = reshape(xv(1:3*N),3,N); 

r_ij = pos(:,x23) - pos(:,x11); 

r3 = diag(1./sqrt(sum(r_ij.^2)).^3); 

mu_diag = diag(mu(x23)); 

acc_Sum = r_ij*r3*mu_diag; 

ss_vec = sum(reshape(acc_Sum(:,x12_34(:)),3*N,N-1),2); 

end 

 
%%%%% N-body Eq of Motion (EOM) Construction Function (Vectorized Method)%%%%% 

function [ss_vec] = nBodyFunc(t,xv) 

pos = reshape(xv(1:3*N),3,N); % Separate/reshape position vectors 

r_ij = pos(:,x23) - pos(:,x11); % Distance vector 

r3 = diag(1./sqrt(sum(r_ij.^2)).^3); % |r_ij|^3 

mu_diag = diag(mu(x23)); % Diagnal Matrix of -G*m_j (Std. Grav Param) 

acc_RHS = r_ij*r3*mu_diag; % Acceleration terms on RHS 

acc_Sum = sum(reshape(acc_RHS(:,x12_34(:)),3*N,N-1),2); % Sum of acceleration on RHS 

ss_vec = [xv(3*N+1:end);acc_Sum]; % state-space vector 

end 

end 
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 Apollo 10, 11, 12 Coordinates  

 

M = [ M_cent; M_moon; M_sat]; % [kg] mass vector 

mu = M*G; % [km^3/s^2]gravitational parameter vector 

n = size(M,1); % number of elements/bodies to calculate 

scale = [6371.008, 1737.4, 500]; 

cA = [4 5 1]; 

 
switch ApNum 

case 10 

p0 = [ 

-7.938423193298528E+07 -1.281468857961604E+08 -7.148663508873433E+04; 

-7.935307206546827E+07 -1.277448075089262E+08 -3.581297047458589E+04; 

-7.937498435283971E+07 -1.281425552209317E+08 -7.014042292705178E+04]; 

 
v0 = [ 

2.380344596873252E+01 -1.414320514423730E+01 1.774069620155609E-01; 

2.283432883606584E+01 -1.405442902850622E+01 1.834657257489427E-01; 

2.543573433098150E+01 -5.677983640890194E+00 1.495517849936535E+00]; 

 
pMinus = [-7.938385332238917E+07 -1.281420003100482E+08 -7.105317922063172E+04]; 

vMinus = [2.379167062934461E+01 -1.414212646256195E+01 1.774805795348753E-01]; 

tob = []; bvec = []; 

case 11 

 
p0 = [ 

6.218930309131721E+07 -1.381040976798286E+08 7.338742270641029E+04; 

6.189261520200559E+07 -1.378311813866535E+08 9.427421511062980E+04; 

6.219089189323087E+07 -1.380934578742084E+08 7.489060787452012E+04]; 

 
v0 = [ 

= 5.9724 * 1e24; % [kg] central body mass 

= 0.07346 * 1e24*1; % [kg] central body mass 

= 721.9; % [kg] satellite mass (voyager 2) 

M_cent 

M_moon 

M_sat 

function [ p0, v0, mu, n, scale, cA, tob, bvec] = ApolloCoords( ApNum ) 

 
% Apollo 10 date: 1969-MAY-18 19:44:21.9965 

% Apollo 11 date: 1969-07-16 16:40:02.7475 

% Apollo 12 date: 1969-NOV-14 19:32:44.9606 

 
G = 6.67259e-20; % [km^3/kg-s^2] gravitational constant 

fps = 0.0003048; 

 
bvec = []; % Burn Vector 

 
% Position of Barycenter in reference frame 

pBary = [-1.070183387116344E+06 1.335013302913338E+06 4.721272103390069E+04]; 

vBary = [-1.976510629978190E+00 -2.077526912802563E-01 2.371613343498015E-01]; 

 

G = 6.67259e-20; % [km^3/kg-s^2] gravitational constant 

mu = M * G; % Calculates Grav Parameter 

n = size( M, 1 ); % 

cA = 1:length(M); % Which objects to simulate 

 

% Reshape P0 and V0 for subtraction of Barycenter state vectors 

p0 = reshape(p0',[1,3*n]); 

v0 = reshape(v0',[1,3*n]); 

 
% reshape vectors into arrays 

for i = 1:size(p0,2)/3 

p0(1+(i-1)*3:3+(i-1)*3) = p0(1+(i-1)*3:3+(i-1)*3) - pBary; 

v0(1+(i-1)*3:3+(i-1)*3) = v0(1+(i-1)*3:3+(i-1)*3) - vBary; 

end 

 

% Reshape p0 and v0 into vertical arrays. 

p0 = reshape(p0,n*3,1); 

v0 = reshape(v0,n*3,1); 

end 
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 Lagrangia Point Simulation  

 

 

2.554414977285855E+01  1.054079699013750E+01 8.710014369007490E-02; 

2.489893178548856E+01  9.810915868269419E+00 1.572353597697207E-02; 

1.974980780257676E+01 1.668804564195570E+01 8.599988484918057E-01]; 

 
pMinus = [6.218569816011626E+07 -1.381007815874097E+08 7.364120943764597E+04]; 

vMinus = [2.553630999733053E+01 1.053192850805920E+01 8.623287620315478E-02]; 

 
% [hr min sec burnTime[hr min sec] 

b1 = ApBurn([ 75 54 28.4 0 5 58.9 4 44 44.9])+.5-.012; 

b2 = ApBurn([135 24 33.8 0 2 29.4 4 44 44.9])+.5-.012-1.33; 

tob = [b1, b2]*3600; 

bvec = [-2891.8 -433.1 20.4; 

3213.3 705.0 -138.8]*fps; 

 

case 12 

 

p0 = [ 

-6.217812098137438E+03, 1.296452154958064E+03, -5.819416748518005E+02; 

1.683955442344367E+05, -3.213509647196801E+05, -2.585085769468364E+04; 

-8.803658700360249E+03, -4.821380113666855E+03, 8.037374643977058E+03]; 

 
v0 = [ 

-1.036172498994042E-01, -4.161119718400264E-01, 1.800924936869037E-01; 

8.429580735560637E-01, 7.043707572870070E-02, 2.381643866208534E-01; 

4.959673801548565E+00, -5.256147488411352E+00, 4.908245942836967E+00]; 

 
pMinus = [-4.096157797361373E+03, -2.623902473255802E+03, -8.889737683608131E+02]; 

vMinus = [-9.211580666391250E-02, -4.102001166360834E-01, 1.807981011157126E-01]; 

 
tob = []; 

bvec = []; 

 

end 

 
p0 = reshape(p0',[1,3*n]); 

v0 = reshape(v0',[1,3*n]); 

 
for i = 1:size(p0,2)/3 

p0(1+(i-1)*3:3+(i-1)*3) = p0(1+(i-1)*3:3+(i-1)*3) - pMinus; 

v0(1+(i-1)*3:3+(i-1)*3) = v0(1+(i-1)*3:3+(i-1)*3) - vMinus; 

end 

 
p0 = reshape(p0,n*3,1); 

v0 = reshape(v0,n*3,1); 

end 

M = [ M_cent; M_moon; M_sat]; % [kg] mass vector 

mu = M*G; % [km^3/s^2]gravitational parameter vector 

n = size(M,1); % number of elements/bodies to calculate 

scale = [6371.008, 1737.4, 500]; 

cA = [4 5 1]; 

 
switch ApNum 

% [kg] central body mass 

% [kg] central body mass 

% [kg] satellite mass (voyager 2) 

= 5.9724  * 1e24; 

= 0.07346 * 1e24; 

= 721.9; 

M_cent 

M_moon 

M_sat 

function [ p0, v0, mu, n, scale, cA, bt] = LagrangeP( ApNum) 

% Lagrangian point 5 

 

G = 6.67259e-20; % [km^3/kg-s^2] gravitational constant 
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case 5 

p0 = [ 

-6.217816180618011E+03 1.296435760194887E+03 -5.819345792284226E+02; 

1.683955774470052E+05 -3.213509619444179E+05 -2.585084831102862E+04; 

-8.803463283383866E+03 -4.821587199650016E+03 8.037568025370150E+03]; 

 
v0 = [ 

-1.036159472140258E-01 -4.161122434560039E-01 1.800926156082740E-01; 

8.429593196935455E-01 7.043690720315035E-02 2.381645166614605E-01; 

4.959706422015502E+00 -5.256073099243214E+00 4.908140946707825E+00]; 

 
pMinus = [-4.096161426685309E+03 -2.623918635091969E+03 -8.889666449365138E+02]; 

vMinus = [-9.211450466562407E-02 -4.102003869994519E-01 1.807982231357364E-01]; 

end 

 
p0 = reshape(p0',[1,3*n]); 

v0 = reshape(v0',[1,3*n]); 

 
for i = 1:size(p0,2)/3 

p0(1+(i-1)*3:3+(i-1)*3) = p0(1+(i-1)*3:3+(i-1)*3) - pMinus; 

v0(1+(i-1)*3:3+(i-1)*3) = v0(1+(i-1)*3:3+(i-1)*3) - vMinus; 

end 

 
switch ApNum 

case 5 

p0(7:9) = rot(cross(p0(4:6),v0(4:6)),-pi/3)*p0(4:6)'; 

v0(7:9) = rot(cross(p0(4:6),v0(4:6)),-pi/3)*v0(4:6)'; 

end 

 
p0 = reshape(p0,n*3,1); 

v0 = reshape(v0,n*3,1); 

bt = []; 

end 
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 Runge-Kutta 89  

 

 

function [ tout, yout ] = rk89( ode_functions, tspan, init, tol ) 

 

 
c = [ 0 1/1 2 1/9 1/6 z(2,2)/15 z(6,1)/15 z(6, -1)/15 2/3 1/2 1/3 1/4 4/3 5/6 1 1/6 1]; 

b = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 1/12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 1/27 2/2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 1/24 0 1/8 0 0 0 0 0 0 0 0 0 0 0 0 0 
 z(4,94)/375 0 z(-94,-84)/125 z(328,208)/375 0 0 0 0 0 0 0 0 0 0 0 0 
 z(9,-1)/150 0 0 z(312,32)/1425 z(69,29)/570 0 0 0 0 0 0 0 0 0 0 0 

z(927,-347)/1250 0 0 z(-16248,7328)/9375 z(-489,179)/3750 z(14268,-5798)/9375 0 0 0 0 0 0 0 0 0 0 

2/27 0 0 0 0 z(16,-1)/54 z(16,1)/54 0 0 0 0 0 0 0 0 0 

19/256 0 0 0 0 z(118,-23)/512 z(118,23)/512 -9/256 0 0 0 0 0 0 0 0 

11/144 0 0 0 0 z(266,-1)/864 z(266,1)/864 -1/16 -8/27 0 0 0 0 0 0 0 

z(5034,-271)/61440 0 0 0 0 0 z(7859,-1626)/10240 z(-2232,813)/20480 z(-594,271)/960 z(657,-813)/5120 0 0 0 0 0 0 

z(5996,-3794)/405 0 0 0 0 z(-4342,-338)/9 z(154922,-40458)/135 z(-4176,3794)/45 z(-340864,242816)/405 z(26304, -15176)/45 -26624/81 0 0 0 0 0 

z(3793,2168)/103680 0 0 0 0 z(4042,2263)/13824 z( -231278,40717)/69120 z(7947,-2168)/11520 z(1048,-542)/405 z(-1383,542)/720 2624/1053 3/1664 0 0 0 0 

-137/1296 0 0 0 0 z(5642,-337)/864 z(5642,337)/864 -299/48 184/81 -44/9 -5120/1053 -11/468 16/9 0 0 0 

z(33617,-2168)/518400 0 0 0 0 z(-3846,31)/13824 z(155338,-52807)/345600 z(-12537,2168)/57600 z(92,542)/2025 z(-1797,-542)/3600 320/567 -1/1920 4/105 0 0 0 

z(-36487,-30352)/279600  0 0 0 0 z( -29666,-4499)/7456 z(2779182,-615973)/186400 z(-94329,91056)/93200 z(-232192,121408)/17475 z(101226,-22764)/5825 -169984/9087 -87/30290 492/1165 0 1260/233 0]; 

 

c8 = [103/1680 0 0 0 0 0 0  -27/140 76/105 -201/280 1024/1365 3/7280 12/35 9/280 0 0]; 

c9 = [  23/525 0 0 0 0 0 0 171/1400 86/525 93/280 -2048/6825 -3/18200 39/175 0 9/25 233/4200]; 

 

if nargin < 4 

tol = 1.e-14; 

end 

 

t0 = tspan(1); 

tf = tspan(2); 

t = t0; 

y = init; 

 

tout = t; 

yout = y'; 

h = (tf-t0/100); 

 

while t < tf 

hmin = 16*eps(t); 

ti = t; 

yi = y; 

for i = 1:size(b,1) 

t_inner = ti + c(i)*h; 

y_inner = yi; 

for j = 1:i-1 

y_inner = y_inner + h*b(i,j)*f(:,j); 

 

end 

end 

f(:,i) = feval(ode_functions, t_inner, y_inner); 

 

te_max = max(abs(h*f*(c8' - c9'))); 

 

te_allowed = tol*max(max(abs(y)),1.0); 

 

delta = (te_allowed/(te_max + eps))^(1/9); 

 

if te_max <= te_allowed 

h = min(h, tf-t); 

t = t + h; 

y = yi + h*f*c9'; 

tout  = [tout;t]; 

yout = [yout;y']; 

end 

 

h = min(delta*h, 4*h); 

if h < hmin 

fprintf(['\n\n Warning: Step size fell below its minimum\n'... 

' allowable value (%g) at time %g.\n\n'], hmin, t) 

 

end 

end 

 

end 

return 
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 Runge-Kutta 86  

 
function [tout, yout ,dyout,iaccept,ireject] = rkn86(FunFcn, t0, tfinal, y0, dy0, tol); 

% rkn86 Integrates a special system of ordinary differential equations using 

% an effectivelly 8-stages Runge-Kutta-Nystrom pair of orders 8 and 6. 

% 

% [T,Y,DY,IA,IR] = rkn86('yprime', T0, Tfinal, Y0, DY0) integrates the special system 

% of second order ordinary differential equations of the form: 

% 

% y''=f(t,y), y(t0)=y0, y'(t0)=y'0 

% 

% described by the M-file YPRIME.M over the interval T0 to Tfinal. 

% 

% [T,Y,DY,IA,IR] = rkn86(F, T0, Tfinal, Y0, DY0, TOL) uses tolerance TOL 

% 

% INPUT: 

% F - String containing name of user-supplied problem description. 

% Call: yprime = fun(t,y) where F = 'fun'. 

% t - Time (scalar). 

% y - Solution column-vector. 

% yprime - Returned derivative column-vector; yprime(i) = d^2y(i)/dt^2. 

% t0 - Initial value of t. 

% tfinal- Final value of t. 

% y0 - Initial value column-vector. 

% dy0 - Initial derivatives column vector 

% tol - The desired accuracy. (Default: tol = 1.e-6). 

% 

% OUTPUT: 

% T - Returned integration time points (row-vector). 

% Y - Returned solution, one solution column-vector per tout-value. 

% DY - Returned derivative solution, 

% Iaccept - Returned number of accepted steps 

% Ireject - Returned number of rejected steps 

% 

% The result can be displayed by: plot(tout, yout). 

% 

% Example: Solve two-body problem using inline 

% the problem : 

% y1''=-y1/(y1^2+y2^2)^1.5, y2''=-y2/(y1^2+y2^2)^1.5 

% Initial contitions y1(0)=.5, y2(0)=0, y1'(0)=0, y2'(0)=3^0.5 

% Matlab call : 

% [x,y]=rkn86(inline('[-y(1)/sqrt(y(1)^2+y(2)^2)^3;- 

y(2)/sqrt(y(1)^2+y(2)^2)^3]','x','y'), ... 

% 0, 20, [.5 0]',[0 sqrt(3)]', 1e-11); 

% write : plot(y(:,1),y(:,2),'-k'); % to get the elliptic orbit 

% 

% based on the code ODE86 by Ch. Tsitouras 

% 

% The coefficients of the Runge-Kutta-Nystrom pair NEW8(6) are taken from 

% S. N. Papakostas and Ch. Tsitouras, "High phase-lag order Runge-Kutta and Nystrom pairs", 

% SIAM J. Sci. Comput. 21(1999) 747-763. 

% 

% The error control is based on 

% Ch. Tsitouras and S. N. Papakostas, "Cheap Error Estimation for Runge-Kutta 

% methods", SIAM J. Sci. Comput. 20(1999) 2067-2088. 

 

% Matlab version : 6.1 

% Author : Ch. Tsitouras, 1996-2003. 

% URL address: http://users.ntua.gr/tsitoura/ 

%--------------------------------------------------------------------------- 

% the coefficients 

alpha=[0 6397/98811 12794/98811 14/37 8/13 17/22 43/46 1 1]'; 

 

function [val] = z(a,b) 

val = (a+b*sqrt(6)); 

end 

http://users.ntua.gr/tsitoura/
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beta=[[0 0 0 0 0 0 0 0 0] 

[21738209/10373173531 0 0 0 0 0 0 0 0] 

[81843218/29290841163 82694821/14797810534 0 0 0 0 0 0 0] 

[286557584/4330809711 -912003620/7090326959 2215175292/16525689869 0 0 0 0 0 0] 

[-1732991908/3477246155 20699018807/16215676961 -8943798416/12438207277 711229321/5458138039 0 0 

0 0 0] 

[10259024870/9108477419 -25149249362/9340973033 4686267579/2513053636 -326162972/7839732939 

556579829/13434269006 0 0 0 0] 

[-32801447959/18176875798 31592171746/6958893399 -111550006196/40089394711 3451154231/7987305225 

68790340/8728368029 123716081/2797556961 0 0 0] 

[62469663917/6900212338 -171339392336/7672895439 262962495363/17824923050 - 

22108842829/16963055973 661764535/1698709821 -238225641/2934789434 260644226/13286668711 0 0] 

[257873323/6918876884 0 1503948753/8413843957 2236434251/13285504895 1069201912/15512587877 

980034039/25364950097 92941557/11497613663 0 0]]'; 

 

gamma=[[257873323/6918876884 0 1503948753/8413843957 2236434251/13285504895 

1069201912/15512587877 980034039/25364950097 92941557/11497613663 0 0] 

[-108540447/9734693747 0 216990433/7248923167 -693180867/13981264399 783383731/11490287817 - 

639183288/13156494967 143178476/12783609495 0 0]]'; 

 

dgamma=[[257873323/6918876884 0 1885846298/9184313637 10010095879/36964622736 

576314810/3215962383 378512797/2226489968 1523915682/12294818705 13956454/1038655275 0] 

[-108540447/9734693747 0 300730357/8745591283 -339555838/4257328827 4673474889/26364705520 - 

1278366576/5980224985 1108173697/6452782413 411153357/5767449338 -3/20]*3]'; 

%---------------------------------------------------------------------- 

ireject=0;iaccept=0; 

pow = 1/8; 

if nargin < 6, tol = 1.e-6; end 

 

% Initialization 

t=t0; 

y=y0; 

dy=dy0; 

tout = t0(:)'; 

yout = y0(:)'; 

dyout = dy0(:)'; 

hmax = (tfinal - t)/1; 

hmin = (tfinal - t)/100000000; 

f = y0*zeros(1,length(alpha)); 

 

% initial step 

f(:,1) = feval(FunFcn,t,y); 

h=tol^pow/max(max(abs([dy' f(:,1)'])),1e-2); 

h=min(hmax,max(h,hmin)); 

 

% The main loop 

while (t < tfinal) & (h >= hmin) 

if t + h > tfinal, h = tfinal - t; end 

 

% Compute the  slopes 

for j = 1:length(alpha), 

f(:,j) = feval(FunFcn, t+alpha(j)*h,y+alpha(j)*h*dy+h^2*f*beta(:,j)); 

end 

 

% Estimate the error and the acceptable error 

delta1 = max(abs(h^2*f*gamma(:,2))); 

delta2 = max(abs(h*f*dgamma(:,2))); 

delta=max(delta1,delta2)*h; 

 

% Update the solution only if the error is acceptable 

if delta <= tol, 

t = t + h; 

y = y + h*dy+h^2*f*gamma(:,1); 

dy = dy +h*f*dgamma(:,1); 

iaccept=iaccept+1; 

tout=[tout; t]; 

yout=[yout;y']; 

dyout=[dyout;dy']; 

else 

ireject=ireject+1; 
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function [color] = SetColor(BodyN) 

color = [ 

]/255; 

if BodyN > size(color,1) 

r = randi([0 255],BodyN-size(color,1),3)/255; 

color = vertcat(color, r); 

end 

end 

 

 

 Set Color Function  

 

 
249, 219, 026; % sun 1 

122, 120, 122; % mercury 2 

175, 107, 031; % venus 3 

079, 082, 115; % earth 4 

172, 159, 158; % moon 5 

140, 083, 063; % mars 6 

179, 166, 151; % jupiter 7 

206, 172, 117; % saturn 8 

185, 222, 226; % uranus 9 

059, 089, 214; % neptune 10 

171, 135, 112; % pluto 11 

249, 219, 026; % Sat1 12 

185, 222, 226; % Sat2 13 

 
 
 
 
 
 
 

 Rotation Matrix Function  

 

V(1)*V(2)*(1-cos(theta))+V(3)*sin(theta), V(2)^2+(1-V(2)^2)*cos(theta), V(2)*V(3)*(1-cos(theta))-V(1)*sin(theta); 

V(1)*V(3)*(1-cos(theta))-V(2)*sin(theta), V(2)*V(3)*(1-cos(theta))+V(1)*sin(theta), V(3)^2+(1-V(3)^2)*cos(theta)]; 

 
end 

V(1)*V(2)*(1-cos(theta))-V(3)*sin(theta), V(1)*V(3)*(1-cos(theta))+V(2)*sin(theta); R=[V(1)^2+(1-V(1)^2)*cos(theta), 

function R= rot(V,theta) 

%This function returns the 3D rotation matrix about an arbitary vector V 

%passing the origin. 

 
V=V/norm(V); 

 

end 

 

if delta ~= 0.0 

h = min(hmax, .9*h*(tol/delta)^pow); 

end 

end; 

 

if (t < tfinal) 

disp('SINGULARITY LIKELY.') 

end 
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